首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
As one of the most important mesoscale ocean features, the mesoscale eddies are omnipresent and have significant impact on the overlying atmosphere. Based on the comprehensive review of the influence of mesoscale eddies on the atmospheric boundary layer and the local circulation, the corresponding physical mechanisms and their impacts on weather systems were presented systematically. ①Eddy-induced SST anomalies may modify the surface wind speed, horizontal divergence, cloud and precipitation through turbulence heat flux anomalies. Meanwhile, additional secondary circulations arise over the eddies. What is more, there are obvious regional and seasonal differences for atmospheric responses. ② Studies in the South China Sea, the Kuroshio Extension region and the Southern Ocean indicate that atmospheric responses to mesoscale eddies can be explained by the changes of sea level pressure or the vertical momentum transport. These two mechanisms can be distinguished by the phase relationship between the atmospheric anomaly center and the eddy core. Diagnosis on the inner dynamical processes may draw better conclusions. ③The energy conversions are affected by mesoscale eddies, which may affect storm tracks and jet streams, and finally result in distant influences on weather patterns. Moreover, sea temperature anomalies from sea surface to the thermocline associated with mesoscale eddies have significant impacts on the intensification and the maintenance of tropical cyclones.  相似文献   

2.
热带西太平洋暖池是引发强烈的大气对流、驱动Walker环流和Hadley环流系统的主要热源之一,对全球、尤其是东亚气候有重要影响。针对我国在提升气候预测水平方面的重大和迫切需求,国家重点基础研究发展计划项目"热带太平洋海洋环流与暖池的结构特征、变异机理和气候效应"于2011年7月正式立项。项目拟解决的关键科学问题包括:①调控暖池形成和变异的海洋环流多尺度相互作用过程;②海洋动力过程在暖池热盐结构变异中的作用及其机理;③暖池变异对不同类型El Nio影响机理的异同和对东亚季风变异的调制机理。围绕上述关键科学问题,项目将以暖池变异为中心,关注影响和控制暖池结构与变异的关键海洋过程,以及暖池海气相互作用影响ENSO循环、东亚季风年际变异的过程和机理,重点组织开展以下3个方面有针对性的调查研究:①热带太平洋环流和暖池的结构和变异特征;②热带太平洋环流与暖池相互作用的关键过程和机理;③暖池变异的海洋—大气耦合过程及其气候效应。在此基础上,项目将力争阐明暖池影响东亚季风和我国气候变异的过程、机理与敏感区,改进模式的混合参数化方案,提出有效提高ENSO预报技巧的同化方案,为我国短期气候预测能力的提高提供科学支撑。  相似文献   

3.
1998—2012年,全球平均地面增温速率较之前明显趋缓,出现全球变暖停滞现象,该现象的成因与机制是当前气候变化研究的一个热点领域。主要从外部强迫和内部变率2个角度回顾全球变暖停滞产生机制的研究进展。从气候系统外部强迫影响来说,全球变暖停滞主要受到太阳活动、火山爆发、气溶胶以及平流层水汽等的影响。从气候系统内部调控作用来看,全球增温速率减缓主要受到太平洋、大西洋、印度洋和南大洋自然变率以及相应的热量再分配过程的影响。全球变暖停滞期间气候系统内部能量并没有减少,其中一部分能量被转移并储存在了海洋中深层,从而对全球增温减缓产生影响。同时,重点回顾了针对部分耦合强迫作用的"起搏器"试验,该类试验是研究全球变暖停滞的特征、成因及机制的有力手段。此外,也总结了全球变暖停滞现象对气候系统能量收支平衡、资料、模拟以及相关政策制定等方面带来的挑战,展望了未来的研究重点。  相似文献   

4.
From 1998 to 2012, the warming rate of global mean surface air temperature showed significantly slower than before, which is referred to as the global warming hiatus. The causes and underlying mechanisms of this phenomenon are currently a hot topic of climatic change research. The research significance of global warming hiatus was discussed and relevant research progress was reviewed from two perspectives of external forcings and internal variabilities. In term of external forcings, global warming hiatus is mainly affected by solar activities, volcanic eruptions, aerosols and stratospheric water vapor. With respect to internal variabilities, the warming rate of global mean surface air temperature slowdown is mainly related to the natural variabilities of the Pacific Ocean, the Atlantic Ocean, the Indian Ocean and the Southern Ocean and influenced by the related heat redistribution processes. During the global warming hiatus period, some energy is transferred and restored in the deep ocean so as to modulate the global warming rate, rather than there is a reduction of global total energy in the climate system. In addition, the partially coupled forcing pacemaker model experiment was also reviewed. The pacemaker experiment is a powerful tool for studying the characteristics, causes and underlying mechanisms of the global warming hiatus. Besides, some challenges resulted from the global warming hiatus, including the global energy imbalance, data, simulation and related policy-making were summarized, and future research directions were also discussed.  相似文献   

5.
2002年国外物理海洋学研究主要进展   总被引:8,自引:1,他引:7  
在技术进步和多学科交叉的推动下,当今的物理海洋学研究已经大大突破传统的研究范畴。与气候变化相联系的缓慢变化海洋物理过程成为现阶段物理海洋学的核心研究内容之一。世界大洋环流研究计划(WOCE)在经过20年实施后于2002年结束,国际上物理海洋学研究又面临一个新的起点。2002年国外物理海洋学的研究涵盖了与大尺度问题相关的许多领域,主要成果体现在:热盐过程和热盐环流变率、海洋混合、年代际与长期海洋变率、印度洋气候变化、海洋盐度与气候变化、古海洋学、海洋模型等方面。  相似文献   

6.
It is summarized based on previous studies that warm and salty Atlantic Water (AW) brings huge amount of heat into Arctic Ocean and influences oceanic heat distribution and climate. Both heat transportation and heat release of AW are key factors affecting the thermal process in Eurasian Basin. The Arctic circumpolar boundary current is the carrier of AW, whose flow velocity varies to influence the efficiency of the warm advection. Because the depth of AW in Eurasian Basin is much shallower than that in Canadian Basin, the upward heat release of AW is an important heat source to supply sea ice melting. Turbulent mixing, winter convention and double-diffusion convention constitute the main physical mechanism for AW upward heat release, which results in the decrease of the Atlantic water core temperature during its spreading along the boundary current. St. Anna Trough, a relatively narrow and long trough in northern continental shelf of Kara Sea, plays a key role in remodeling temperature and salinity characteristics of AW, in which the AW from Fram Strait enters the trough and mixes with the AW from Barents Sea. Since the 21st Century, AW in the Arctic Ocean has experienced obvious warming and had the influence on the physical processes in downstream Canada Basin, which is attributed to the anomalous warming events of AW inflowing from the Fram Strait. It is inferred that the warming AW is dominated by a long-term warming trend superimposed on low frequency oscillation occurring in the Nordic Seas and North Atlantic Ocean. As the Arctic Ocean is experiencing sea ice decline and Arctic amplification, the role of AW heat release in response to the rapid change needs further investigation.  相似文献   

7.
The location of South Georgia (54°S, 36°W) makes it a suitable site for the study of the climatic connections between temperate and polar environments in the Southern Hemisphere. Because the mass balance of the small cirque glaciers on South Georgia primarily responds to changes in summer temperature they can provide records of changes in the South Atlantic Ocean and atmospheric circulation. We use grey scale density, weight-loss-on-ignition, and grain size analyses to show that the proportion of glacially eroded sediments to organic sediments in Block Lake was highly variable during the last 7400 cal yr B.P. We expect that the glacial signal is clearly detectable above noise originating from nonglacial processes and assume that an increase in glacigenic sediment deposition in Block Lake has followed Holocene glacier advances. We interpret proglacial lake sediment sequences in terms of summer climate warming and cooling events. Prominent millennial-scale features include cooling events between 7200 and 7000, 5200 and 4400, and 2400 and 1600 cal yr B.P. and after 1000 cal yr B.P. Comparison with other terrestrial and marine records reveals that the South Georgian record captures all the important changes in Southern Hemisphere Holocene climate. Our results reveal a tentative coupling between climate changes in the South Atlantic and North Atlantic because the documented temperature changes on South Georgia are anti-phased to those in the North Atlantic.  相似文献   

8.
Dimethylsulphide (DMS) is an important marine biogenic gas and can be released into atmosphere through sea air gas exchange. The oxidants of DMS in atmosphere are the main compounds of pristine marine sulphate aerosols and would affect the global climate change finally. Almost all the atmospheric DMS, about 90%, comes from the ocean. The southern ocean, which consists about 20% of the whole ocean area, is one of the largest atmospheric DMS sources. In contrast with the other oceans, the Southern Ocean appears great spatial and temporal variability of surface seawater DMS. In addition, there are the complex hydrography system, variable sea ice condition and various biologic activities in the Southern Ocean as to make survey and understand DMS as well as its controlling factors most difficult. Moreover, it is significant to integrate the DMS sea ice exchange processes and its controlling factors studies. In order to develop survey and research on the sea air DMS exchange and biogeochemistry processes, estimate methods of the sea air DMS fluxes will be reviewed, characteristics of the spatial and temporal distribution of surface seawater DMS will be discussed and the sea air DMS flux in the Southern Ocean will be assessed. Finally, major controlling factors of DMS sea air DMS processes will also be analyzed.  相似文献   

9.
南大洋是全球面积最大的一个大洋。传统观点倾向于认为由于南大洋与北半球相距遥远而与北半球气候系统关系不大,其全球性气候效应也较弱,这主要是由于以往对南大洋的了解不足。随着观测分析、数值模拟与理论研究的加强,以及对南大洋的认识不断加深,南大洋的气候效应日益凸显。从南极底层水、南极绕极流、南大洋海冰、南大洋与热带之间的遥相关、以及南大洋对气候变化的响应等多个角度梳理了南大洋物理过程特别是动力过程在全球气候系统中的作用,较为完整地总结了对南大洋气候效应的已有认识,并结合南大洋研究现状对未来有价值的科学问题和潜在的研究热点进行了探讨,以期强调南大洋在全球气候系统中的重要地位,推动南大洋研究不断走向深入。  相似文献   

10.
The Southern Ocean is a strong sink for atmospheric CO2, making it especially vulnerable to ocean acidification (OA). The aragonite saturation state (Ωarg) of seawater has been used as an index for the estimation of OA, which plays a critical role in evaluating the living environment of marine calcified organisms. However, it is very difficult to perform the studies of OA and Ωarg in the Southern Ocean due to its harsh climate. Therefore, in order to better understand the OA and its further influences, the advances of Ωarg studies were summarized in the oceans surrounding the Antarctica. Significant spatial and temporal variations of surface seawater Ωarg are demonstrated in the Southern Ocean. In general, the surface seawater Ωarg shows a lower value in the off-shore areas than in the open oceans. And, Ωarg also exhibits a strong seasonal cycle with a higher value in summer than in winter. The distributions of Ωarg in vertical water column generally present a declining tendency from surface to bottom. In addition, the shoaling of Ωarg horizon at high latitude could be attributed to the ventilation and upwelling of deep waters in the Southern Ocean. There are many factors that could impact the Ωarg in the Southern Ocean, including sea ice melting, sea-air CO2 exchange, biological activities and hydrological processes, etc. Finally, the future changes and key scientific problems of OA in the Southern Ocean are proposed.  相似文献   

11.
The transition from the Last Glacial Maximum to the Holocene was an internal of climate variability that was characterised by large spatial and temporal variations. Here we show that deglaciation warming in the northern Indian Ocean was initiated ca. 19 ka, which is contemporary with deglaciation warming in the Antarctica and Southern Ocean. A gradual warming occurred during the glacial/Holocene transition in the northern Indian Ocean, unlike the two‐step warming seen in Greenland and the North Atlantic. Synchronous deglacial warming ca. 19 ka in Antarctica and the northern Indian Ocean suggests a strong connection in the propagation of climate signals between Antarctica and the Indian Ocean, probably through the Indonesian Throughflow and/or Subantarctic Mode Water. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The Indian Ocean and the West Pacific Ocean and their ocean-continent connection zones are the core area of "the Belt and Road". Scientific and in-depth recognition to the natural environment, disaster distribution, resources, energy potential of “the Belt and Road” development, is the cut-in point of the current Earth science community to serve urgent national needs. This paper mainly discusses the following key tectonic problems in the West Pacific and North Indian oceans and their ocean-continent connection zones (OCCZs): 1. modern marine geodynamic problems related to the two oceans. Based on the research and development needs to the two oceans and the ocean-continent transition zones, this item includes the following questions. (1) Plate origin, growth, death and evolution in the two oceans, for example, 1) The initial origin and process of the triangle Pacific Plate including causes and difference of the Galapagos and West Shatsky microplates; 2) spatial and temporal process, present status and trends of the plates within the Paleo- or Present-day Pacific Ocean to the evolution of the East Asian Continental Domain; 3) origin and evolution of the Indian Ocean and assembly and dispersal of supercontinents. (2) Latest research progress and problems of mid-oceanic ridges: 1) the ridge-hot spot interaction and ridge accretion, how to think about the relationship between vertical accretion behavior of thousands years or tens of thousands years and lateral spreading of millions years at 0 Ma mid-oceanic ridges; 2) the difference of formation mechanisms between the back-arc basin extension and the normal mid-oceanic ridge spreading; 3) the differentials between ultra-slow dian Ocean and the rapid Pacific spreading, whether there are active and passive spreading, and a push force in the mid-oceanic ridge; 4) mid-oceanic ridge jumping and termination: causes of the intra-oceanic plate reorganization, termination, and spatial jumps; 5) interaction of mantle plume and mid-oceanic ridge. (3) On the intra-oceanic subduction and tectonics: 1) the origin of intra-oceanic arc and subduction, ridge subduction and slab window on continental margins, transform faults and transform-type continental margin; 2) causes of the large igneous provinces, oceanic plateaus and seamount chains. (4) The oceanic core complex and rheology of oceanic crust in the Indian Ocean. (5) Advances on the driving force within oceanic plates, including mantle convection, negative buoyancy, trench suction and mid-oceanic ridge push, is reviewed and discussed. 2. The ocean-continent connection zones near the two oceans, including: (1) Property of continental margin basement: the crusts of the Okinawa Trough, the Okhotsk Sea, and east of New Zealand are the continental crusts or oceanic crusts, and origin of micro-continent within the oceans; (2) the ocean-continent transition and coupling process, revealing from the comparison of the major events between the West Pacific Ocean seamount chains and the continental margins, mantle exhumation and the ocean-continent transition zones, causes of transform fault within back-arc basin, formation and subduction of transform-type continental margin; (3) strike-slip faulting between the West Pacific Ocean and the East Asian Continent and its temporal and spatial range and scale; (4) connection between deep and surface processes within the two ocean and their connection zones, namely the assembly among the Eurasian, Pacific and India-Australia plates and the related effect from the deep mantle, lithosphere, to crust and surface Earth system, and some related issues within the connection zones of the two oceans under the super-convergent background. 3. On the relationship, especially their present relations and evolutionary trends, between the Paleo- or Present-day Pacific plates and the Tethyan Belt, the Eurasian Plate or the plates within the Indian Ocean. At last, this paper makes a perspective of the related marine geology, ocean-continent connection zone and in-depth geology for the two oceans and one zone.  相似文献   

13.
To understand Holocene climatic development and to determine drivers of climatic changes and climate variability, high-resolution marine proxy records are required from key oceanic locations. However, information on the Holocene climate development from the Southern Hemisphere is still rare and mainly based on terrestrial archives. Here, we present data with a high-resolution of circa 35 years from sediment cores taken east of the Great Australian Bight, where it is possible to determine Southern Ocean Holocene climate and the longer-term trends of the El Niño–Southern Oscillation (ENSO) conditions. For this purpose, we used the oxygen-isotope records of two planktonic foraminifer species Globigerinoides ruber and Globigerina bulloides which inhabit different water masses as well as faunal counts of planktonic foraminifers. After the ocean frontal systems off southern Australia were pushed northward by orbitally-forced insolation changes during the early Holocene, the data indicate increasing ENSO variability during the mid to late Holocene when the fronts shifted polewards again. A strong circa 1550 year cycle is found in the Globigerina bulloides record which reflects the wider Southern Ocean signal with prominent cold phases centred at circa 9.2, 7.3, 5.8, 4.3, 2.7, 1.4 ka BP and, possibly the Little Ice Age, which have global counterparts.  相似文献   

14.
《Comptes Rendus Geoscience》2014,346(11-12):279-286
The Southern Ocean is a major opal sink and plays a key role in the silica cycle of the world ocean. So far however, a complete cycle of silicon in the Southern Ocean has not been published. On one hand, Southern Ocean surface waters receive considerable amounts of silicic acid (dissolved silica, DSi) from the rest of the world ocean through the upwelling of the Circumpolar Deep Water, fed by contributions of deep waters of the Atlantic, Indian, and Pacific Oceans. On the other hand, the Southern Ocean exports a considerable flux of the silicic acid that is not used by diatoms in surface waters through the northward pathways of the Sub-Antarctic Mode Water, of the Antarctic Intermediate Water, and of the Antarctic Bottom Water. Thus the Southern Ocean is a source of DSi for the rest of the world ocean. Here we show that the Southern Ocean is a net importer of DSi: because there is no significant external input of DSi, the flux of DSi imported through the Circumpolar Deep Water pathway compensates the sink flux of biogenic silica in sediments.  相似文献   

15.
Aiming at the current climate status, i.e., drastic rise of atmospheric greenhouse gases and the apparent trend of global warming, the International Ocean Discovery Program (IODP), launched in 2013, proposed four scientific challenges, including the response of global climate to CO2 rise, the feedback of ice-sheet and sea-level to global warming, the dynamics of the mid- and low-latitude hydro-cycle, and the mechanism of the marine carbon-chemical buffering system. By August 2017, eight IODP expeditions of climate-related themes were implemented, focusing on the Neogene evolution of the monsoon system over Asia-Pacific-Indian and the West Pacific Warm Pool, with specific interests in the variabilities and mechanisms of the Asian Monsoon system on orbital-to millennial-scales, as well as the connections between Asian Monsoon and the uplift/weathering of the Tibetan Plateau on tectonic time scale. The planned IODP expeditions in the forthcoming two years will explore the Southern high-latitude climate histories of West Antarctic ice in the Cenozoic, and Southern Ocean currents and carbon cycle in the Cretaceous-Paleogene. In sum, during the current phase of IODP (2013-2023), our knowledge about the marine climate system would be greatly advanced via deciphering the past changes in tropical processes of Asian Monsoon and West Pacific Warm Pool, as well as in high-latitude factors of the West Antarctic ice. A better scientific background of natural variability would be provided, accordingly, for predicting the future tendency in climate change. In this context, China’s strategic directions include the global monsoon concept, the tropical forcing hypothesis, and in particular the climate effect of the Sunda Shelf.  相似文献   

16.
古亚洲洋与古特提斯洋关系初探   总被引:1,自引:0,他引:1  
李文渊 《岩石学报》2018,34(8):2201-2210
从板块构造研究中国古生代洋陆关系和构造-岩浆-成矿作用,离不开对古亚洲洋和古特提斯洋的关系判断,特别是对于中国西北部的研究,两个古生代大洋形成演化和关系是理清重要地质构造和成矿事件的关键。本文认为早古生代的原特提斯洋与古亚洲洋应连为一体,合称古亚洲-原特提斯洋,简称古亚洲洋。古亚洲洋是发育于早古生代劳亚大陆与冈瓦纳大陆之间的大洋,金川超大型铜镍矿床的形成是元古宙罗迪尼亚超大陆裂解三叉裂谷开启大洋的开始,塔里木陆块作为古亚洲洋南岸的一个陆块,早古生代的昆仑洋、祁连洋和秦岭洋只是古亚洲洋的分支或次生洋盆,这些次生洋盆于志留纪末闭合,古亚洲洋主洋则直到晚古生代泥盆纪末才闭合。石炭纪天山及邻区是古亚洲洋闭合后板块构造后碰撞机制与地幔柱作用提供热动力的两种地球动力学机制并存的构造背景,为大规模壳幔混合(染)岩浆作用和成矿爆发提供了可能。古特提斯洋是古亚洲洋在晚古生代的发展和继承,东昆仑夏日哈木超大型铜镍矿床的产生是冈瓦纳大陆北侧志留纪末破裂三叉裂谷开启大洋的开始,塔里木和华北等泛华夏陆块群构成了古特提斯洋北岸陆缘,石炭纪大洋形成,西昆仑玛尔坎苏大型优质锰矿可能就形成于大洋北侧被动大陆边缘的浅海或陆表海,成矿物质则很可能来自于同时代的大洋中脊。德尔尼大型铜钴矿为晚石炭世大洋中脊塞浦路斯型块状硫化物矿床。而铜峪沟大型铜矿和大场大型金矿等则分别为古特提斯洋消减俯冲岛弧岩浆作用矽卡岩-斑岩矿床和浅成低温热液矿床。中三叠世末古特提斯洋闭合。  相似文献   

17.
In the northeastern portion of the Atlantic Ocean, at depths of 500–1500 m, there are regular intrathermocline eddies that are characterized by high temperature and salinity. As these eddies interact with the ambient medium, they can transmit a dynamic signal to the ocean surface. These eddies are clearly identifiable on altimetric maps showing variations in the ocean’s surface level obtained by satellites. Such observations allow recording not only the complex interaction pattern of surface cyclonic and anticyclonic eddies, but also the processes of merging and separation of intrathermocline eddies.  相似文献   

18.
The Kuroshio Extension (KE) is the key area where the water heats the atmosphere in the northwestern Pacific Ocean in winter. Previous studies show that the active eddies in the KE area can affect sea surface temperature and thus sea surface winds. The present study reviewed the progress about the influences of the eddies on local atmosphere in recent years. Analysis and comparison were made especially for the achievements from shipboard sounding data, satellite observations and numerical experiments. Based on the geostrophic adaptation theory involved in atmospheric anomalies induced by the eddies, the following new scientific deductions were suggested: Air pressure adjustment mechanism dominated in the atmospheric response to eddies under the conditions of weaker wind speed over the eddies. The influence of eddies was often limited in the atmospheric boundary layer. On the other hand, vertical mixing mechanism played a major role in the response of the atmosphere to warm (cold) eddies when air moved faster over the eddies. Surface wind speed increased (decreased) over the warm (cold) water. Significant wind convergence took place downwind the warm water, and large amount of water vapor was transported also downwind from the warm water surface. The positive feedback between water vapor condensation and rising air forced by the surface convergence provided necessary conditions for the development of strong convection in atmosphere. These deductions will be conducive to further depicting the impact of oceanic eddies on the atmosphere quantitatively.  相似文献   

19.
北极海冰减退引起的北极放大机理与全球气候效应   总被引:4,自引:1,他引:4  
自20世纪70年代以来,全球气温持续增高,对北极产生了深刻的影响。21世纪以来,北极的气温变化是全球平均水平的2倍,被称为"北极放大"现象。北极海冰覆盖范围呈不断减小的趋势,2012年北极海冰已经不足原来的40%,如此大幅度的减退是过去1 450年以来独有的现象。科学家预测,不久的将来,将会出现夏季无冰的北冰洋。全球变暖背景下北极内部发生的正反馈过程是北极放大现象的关键,不仅使极区的气候发生显著变化,而且对全球气候产生非常显著的影响,导致很多极端天气气候现象的发生。北极科学的重要使命之一是揭示这些正反馈过程背后的机理。北极放大有关的重大科学问题主要与气—冰—海相互作用有关,海冰是北极放大中最活跃的因素,要明确海冰结构的变化,充分考虑融池、侧向融化、积雪和海冰漂移等因素,将海冰热力学特性的改变定量表达出来。海洋是北极变化获取能量的关键因素,是太阳能的转换器和储存器,要认识海洋热通量背后的能量分配问题,即能量储存与释放的联系机理,认识淡水和跃层结构变化对海气耦合的影响。全面认识北极气候系统的变化是研究北极放大的最终目的,要揭示气—冰—海相互作用过程、北极海洋与大气之间反馈的机理、北极变化过程中的气旋和阻塞过程、北极云雾对北极变化的影响。在对北极海冰、海洋和气候深入研究的基础上,重点研究极地涡旋罗斯贝波的核心作用,以及罗斯贝波变异的物理过程,深入研究北极变化对我国气候影响的主要渠道、关键过程和机理。  相似文献   

20.
沈建忠 《地球学报》1999,20(2):121-128
从地球环境动力学和地球内部动力学2个方面介绍国际大洋钻探计划研究方向与钻探目标,前者主要试图了解地球气候变化历史与规律、海平面变化的原因与影响以及通过沉积物、液体和细菌等研究了解全球碳循环、气水合物形成和深海生物资源等重要问题;后者主要试图探测地球深部热与物质的转换、调查岩石圈变形与地震形成过程。同时,也介绍了ODP提出的3个挑战性项目,即自然气候变化和气候剧变原因、地质过程的现场监测和大陆边缘与洋壳深部结构探测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号