首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microphysical and radiative effects of ice clouds on diurnal variations of tropical convective and stratiform rainfall are examined with the equilibrium simulation data from three experiments conducted with a two-dimensional cloud resolving model with imposed temporally and zonally invariant winds and sea surface temperature and zero mean vertical velocity. The experiment without ice radiative effects is compared with the control experiment with ice microphysics (both the ice radiative and microphysical effects) to study effects of ice radiative effects on diurnal rainfall variations whereas it is compared with the experiment without ice microphysics to examine ice microphysical effects on the diurnal rainfall variations. The ice radiative processes mainly affect diurnal cycle of convective rainfall whereas the ice microphysical processes have important impacts on the diurnal cycles of both convective and stratiform rainfall. Turning off the ice radiative effects generally enhances convective rainfall during the morning and evening and suppresses convective rainfall in the afternoon whereas turning off the ice microphysical effects generally suppresses convective and stratiform rainfall during the morning and enhances convective and stratiform rainfall in the afternoon and evening. The ice radiative and microphysical effects on the diurnal cycle of surface rainfall are mainly associated with that of vapor condensation and deposition, which is controlled by air temperature through saturation specific humidity. The ice effects on the diurnal cycle of local temperature tendency are largely explained by that of latent heating since the diurnal cycle of radiation is insensitive to the ice effects.  相似文献   

2.
In this study,two convective-stratiform rainfall partitioning schemes are evaluated using precipitation and cloud statistics for different rainfall types categorized by applying surface rainfall equation on grid-scale data from a two-dimensional cloud-resolving model simulation.One scheme is based on surface rainfall intensity whereas the other is based on cloud content information.The model is largely forced by the large-scale vertical velocity derived from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment(TOGA COARE).The results reveal that over 40% of convective rainfall is associated with water vapor divergence,which primarily comes from the rainfall type with local atmospheric drying and water hydrometeor loss/convergence,caused by precipitation and evaporation of rain.More than 40% of stratiform rainfall is related to water vapor convergence,which largely comes from the rainfall type with local atmospheric moistening and hydrometeor loss/convergence attributable to water clouds through precipitation and the evaporation of rain and ice clouds through the conversion from ice hydrometeor to water hydrometeor.This implies that the separation methods based on surface rainfall and cloud content may not clearly separate convective and stratiform rainfall.  相似文献   

3.
The short-term tropical surface rainfall processes in rainfall regions (raining stratiform and convective regions) and rainfall-free regions (non-raining stratiform and clear-sky regions) are investigated based on the hourly data from a two-dimensional cloud-resolving model simulation. The model is integrated over a 21-day period with imposed zonally uniform vertical velocity, zonal wind, horizontal temperature and vapor advection, and sea surface temperature from the Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment (TOGA COARE). The analysis of the model domain-mean surface rainfall budget reveals that surface rainfall is mainly associated with water vapor convergence and local atmospheric drying. The mean surface rainfall lags the mean water vapor convergence by 3?h. The convective?Cstratiform rainfall separation analysis shows that convective rainfall is associated with water vapor convergence, whereas stratiform rainfall is related to the local atmospheric drying and hydrometeor loss/convergence. The transport of water vapor from rainfall-free regions to rainfall regions creates the main water vapor source for rainfall while it balances local atmospheric drying in rainfall-free regions. Surface evaporation plays a minor role in short-term surface rainfall processes.  相似文献   

4.
A new scheme that separates convective-stratiform rainfall is developed using threshold values of liquid water path (LWP) and ice water path (IWP). These cloud contents can be predicted with radiances at the Advanced Microwave Sounding Unit (AMSU) channels (23.8, 31.4, 89, and 150 GHz) through linear regression models. The scheme is demonstrated by an analysis of a two-dimensional cloud resolving model simulation that is imposed by a forcing derived from the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE). The rainfall is considered convective if associated LWP is larger than 1.91 mm or IWP is larger than 1.70 mm. Otherwise, the rainfall is stratiform. The analysis of surface rainfall budget demonstrates that this new scheme is physically meaningful.  相似文献   

5.
The surface rainfall processes and diurnal variations associated with tropical oceanic convection are examined by analyzing a surface rainfall equation and thermal budget based on hourly zonal-mean data from a series of two-dimensional cloud-resolving simulations. The model is integrated for 21 days with imposed large-scale vertical velocity, zonal wind, and horizontal advection obtained from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) in the control experiment. Diurnal analysis shows that the infrared radiative cooling after sunset, as well as the advective cooling associated with imposed large-scale ascending motion, destabilize the atmosphere and release convective available potential energy to energize nocturnal convective development. Substantial local atmospheric drying is associated with the nocturnal rainfall peak in early morning, which is a result of the large condensation and deposition rates in the vapor budget. Sensitivity experiments show that diurnal variations of radiation and large-scale forcing can produce a nocturnal rainfall peak through infrared and advective cooling, respectively.  相似文献   

6.
Yafei YAN  Yimin LIU 《大气科学进展》2019,36(10):1089-1102
Cloud is essential in the atmosphere, condensing water vapor and generating strong convective or large-scale persistent precipitation. In this work, the relationships between cloud vertical macro- or microphysical properties, radiative heating rate, and precipitation for convective and stratiform clouds in boreal summer over the Tibetan Plateau (TP) are analyzed and compared with its neighboring land and tropical oceans based on CloudSat/CALIPSO satellite measurements and TRMM precipitation data. The precipitation intensity caused by convective clouds is twofold stronger than that by stratiform clouds. The vertical macrophysics of both cloud types show similar features over the TP, with the region weakening the precipitation intensity and compressing the cloud vertical expansion and variation in cloud top height, but having an uplift effect on the average cloud top height. The vertical microphysics of both cloud types under conditions of no rain over the TP are characterized by lower-level ice water, ice particles with a relatively larger range of sizes, and a relatively lower occurrence of denser ice particles. The features are similar to other regions when precipitation enhances, but convective clouds gather denser and larger ice particles than stratiform clouds over the TP. The atmospheric shortwave (longwave) heating (cooling) rate strengthens with increased precipitation for both cloud types. The longwave cooling layer is thicker when the rainfall rate is less than 100 mm d?1, but the net heating layer is typically compressed for the profiles of both cloud types over the TP. This study provides insights into the associations between clouds and precipitation, and an observational basis for improving the simulation of convective and stratiform clouds over the TP in climate models.  相似文献   

7.
Effects of time-dependent large-scale forcing, solar zenith angle, and sea surface temperature on time-mean rainfall during the Tropical Ocean Global Atmosphere Coupled Ocean?CAtmosphere Response Experiment (TOGA COARE) are examined through a partitioning analysis of a series of sensitivity cloud-resolving model experiment data based on surface rainfall budget. The model is forced by time-dependent large-scale forcing (LSF), solar zenith angle (SZA), and sea surface temperature (SST) in the control experiment and is forced only by either time-dependent LSF, SZA, or SST while others are replaced with their time averages in the sensitivity experiments. The rainfall associated with water vapor divergence and local atmospheric drying and hydrometeor loss/convergence has the largest contribution to total rainfall among eight rainfall types. The largest rainfall contribution is increased in the simulations where either time-dependent LSF, SZA, or SST is replaced with its average, whereas it is decreased in the simulation where COARE-derived large-scale vertical velocity is replaced with zero vertical velocity. The contribution of the rainfall associated with water vapor convergence to total rainfall is decreased in the simulations with time-mean LSF, SZA, and SST, whereas it is increased in the simulation without large-scale vertical velocity.  相似文献   

8.
Sea surface temperature (SST) variations include negative feedbacks from the atmosphere, whereas SST anomalies are specified in stand-alone atmospheric general circulation simulations. Is the SST forced response the same as the coupled response? In this study, the importance of air–sea coupling in the Indian and Pacific Oceans for tropical atmospheric variability is investigated through numerical experiments with a coupled atmosphere-ocean general circulation model. The local and remote impacts of the Indian and Pacific Ocean coupling are obtained by comparing a coupled simulation with an experiment in which the SST forcing from the coupled simulation is specified in either the Indian or the Pacific Ocean. It is found that the Indian Ocean coupling is critical for atmospheric variability over the Pacific Ocean. Without the Indian Ocean coupling, the rainfall and SST variations are completely different throughout most of the Pacific Ocean basin. Without the Pacific Ocean coupling, part of the rainfall and SST variations in the Indian Ocean are reproduced in the forced run. In regions of large mean rainfall where the atmospheric negative feedback is strong, such as the North Indian Ocean and the western North Pacific in boreal summer, the atmospheric variability is significantly enhanced when air–sea coupling is replaced by specified SST forcing. This enhancement is due to the lack of the negative feedback in the forced SST simulation. In these regions, erroneous atmospheric anomalies could be induced by specified SST anomalies derived from the coupled model. The ENSO variability is reduced by about 20% when the Indian Ocean air–sea coupling is replaced by specified SST forcing. This change is attributed to the interfering roles of the Indian Ocean SST and Indian monsoon in western and central equatorial Pacific surface wind variations.  相似文献   

9.
Summary Cloud microphysical properties in tropical convective and stratiform regions are examined based on hourly zonal-mean data from a two-dimensional cloud-resolving simulation. The model is integrated for 21 days with the imposed large-scale vertical velocity, zonal wind and horizontal advections obtained from Tropical Ocean Global Atmosphere Coupled Ocean-atmosphere Response Experiment (TOGA COARE). Time-mean cloud microphysical budgets are analyzed in raining stratiform regions, convective regions, and non-raining stratiform regions, respectively. In raining stratiform regions, ice water path (IWP) and liquid water path (LWP) have similar magnitudes. The collection process contributes slightly more to the growth of raindrops than the melting processes do, and surface rain rate is higher than the raindrop-related microphysical rate, indicating that the hydrometeor convergence from the convective regions plays a role in surface rainfall processes. In convective regions, IWP is much smaller than LWP, the collection process is dominant in producing raindrops, and surface rain rate is lower than the raindrop-related microphysical rate. In non-raining stratiform regions, IWP is much larger than LWP, and the melting processes are important in maintaining the raindrop budget. The statistical analysis of hourly data suggests that the slopes of linear regression equations between IWP and LWP in three regions are different. Rain producing processes in convective regions are associated with the water cloud processes regardless of convection intensity.  相似文献   

10.
Data from Goddard cumulus ensemble model experiment are used to study temporal and spatial scale dependence of tropical rainfall separation analysis based on cloud budget during Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment(TOGA COARE).The analysis shows that the calculations of model domain mean or time-mean grid-scale mean simulation data overestimate the rain rates of the two rainfall types associated with net condensation but they severely underestimate the rain rate of the rainfall type associated with net evaporation and hydrometeor convergence.  相似文献   

11.
A fast version of the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geo- physical Fluid Dynamics(LASG)/Institute of Atmospheric Physics(IAP)climate system model is briefly documented.The fast coupled model employs a low resolution version of the atmospheric component Grid Atmospheric Model of IAP/LASG(GAMIL),with the other parts of the model,namely an oceanic component LASG/IAP Climate Ocean Model(LICOM),land component Common Land Model(CLM),and sea ice component from National Center for Atmospheric Research Community Climate System Model (NCAR CCSM2),as the same as in the standard version of LASG/IAP Flexible Global Ocean Atmosphere Land System model(FGOALS g).The parameterizations of physical and dynamical processes of the at- mospheric component in the fast version are identical to the standard version,although some parameter values are different.However,by virtue of reduced horizontal resolution and increased time-step of the most time-consuming atmospheric component,it runs faster by a factor of 3 and can serve as a useful tool for long- term and large-ensemble integrations.A 1000-year control simulation of the present-day climate has been completed without flux adjustments.The final 600 years of this simulation has virtually no trends in global mean sea surface temperatures and is recommended for internal variability studies.Several aspects of the control simulation’s mean climate and variability are evaluated against the observational or reanalysis data. The strengths and weaknesses of the control simulation are evaluated.The mean atmospheric circulation is well simulated,except in high latitudes.The Asian-Australian monsoonal meridional cell shows realistic features,however,an artificial rainfall center is located to the eastern periphery of the Tibetan Plateau persists throughout the year.The mean bias of SST resembles that of the standard version,appearing as a"double ITCZ"(Inter-Tropical Convergence Zone)associated with a westward extension of the equatorial eastern Pacific cold tongue.The sea ice extent is acceptable but has a higher concentration.The strength of Atlantic meridional overturning is 27.5 Sv.Evidence from the 600-year simulation suggests a modulation of internal variability on ENSO frequency,since both regular and irregular oscillations of ENSO are found during the different time periods of the long-term simulation.  相似文献   

12.
Numerical simulation of meso-β-scale convective cloud systems associated with a PRE-STORM MCC case has been carried out using a 2-D version of the CSU Regional Atmospheric Modeling System (RAMS) nonhydrostatic model with parameterized microphysics. It is found that the predicted meso-γ-scale convective phenomena are basically unsteady under the situation of strong shear at low-levels, white the meso-β-scale convective system is maintained up to 3 hours or more. The meso-β-scale cloud system exhibits characteristics of a multi-celled convective storm in which the meso-γ-scale convective cells have lifetime of about 30 min. Pressure perturbation depicts a meso-low after a half hour in the low levels. As the cloud system evolves, the meso-low inten-sifies and extends to the upshear side and covers the entire domain in the mid-lower levels with the peak values of 5-8 hPa. Temperature perturbation depicts a warm region in the middle levels through the entire simulation period. The meso-γ-scale warm cores with peak values of 4-8oC are associated with strong convective cells. The cloud top evapo-ration causes a stronger cold layer around the cloud top levels.Simulation of microphysics exhibits that graupel is primarily concentrated in the strong convective cells forming the main source of convective rainfall after one hour of simulation time. Aggregates are mainly located in the stratiform region and decaying convective cells which produce the stratiform rainfall. Riming of the ice crystals is the predominant precipitation formation mechanism in the convection region, whereas aggregation of ice crystals is the predominant one in the stratiform region, which is consistent with observations. Sensitivity experiments of ice-phase microphysical processes show that the microphysical structures of the convective cloud system can be simulated better with the diagnosed aggregation collection efficiencies.  相似文献   

13.
邢书强  李小凡 《气象科学》2021,41(4):427-440
以2010年6月19日发生在浙闽赣地区的一次强降水过程为例,利用中尺度WRF模式进行模拟,用模拟资料对该地区降水收支特征和冰云热力作用进行分析。依据局地水汽/热量变化项、水汽/热量辐合辐散项和云凝物辐合辐散项这3个因子可将降水分为8类,其中局地水汽变干和大气变暖、水汽辐合和热量辐散以及云凝物辐合时,降水强度(雨强)最强,而局地水汽变湿和大气变冷、水汽辐合和热量辐散以及云凝物辐合时,降水覆盖率最大。冰云热力效应包括辐射和潜热两部分。基准试验与敏感性试验对比分析表明冰云辐射减弱降水,而冰云潜热增强降水。热量收支对比分析发现冰云辐射造成辐射冷却的减弱在对流层中低层随高度增加,减弱大气不稳定和降水;而冰云潜热造成潜热增强在对流层中高层随高度减小,增强大气不稳定和降水。  相似文献   

14.
Ice clouds are an important component in precipitation systems. The radiative processes of ice clouds directly impact radiation in heat budget and the microphysical processes of ice clouds directly affect latent heat and net condensation through deposition processes, which may eventually change surface rainfall. Thus, torrential rainfall responses to radiative and microphysical processes of ice clouds during a landfall of severe tropical storm Bilis (2006) are investigated with the analysis of sensitivity experiments. The two-dimensional cloud-resolving model is integrated for 3 days with imposed zonally uniform vertical velocity, zonal wind, horizontal temperature and vapor advection from NCEP/GDAS data. One sensitivity experiment excludes the radiative effects of ice clouds and the other sensitivity experiment excludes ice microphysics and associated radiative and microphysical processes. Model domain mean surface rain rate is barely changed by the exclusion of radiative effects of ice clouds due to the small decrease in net condensation associated with the small reduction in latent heat as a result of the offset between the increase in radiative cooling and the decrease in heat divergence. The exclusion of microphysical effects of ice clouds decreases the mean rain rate simply through the suppression of latent heat as a result of the removal of deposition processes. The total exclusion of ice microphysics decreases the mean rain rate mainly through the exclusion of microphysical effects of ice clouds.  相似文献   

15.
南京"03.7"大暴雨中云物理过程的数值模拟研究   总被引:9,自引:8,他引:1  
利用三维全弹性、双参数化对流云模式和南京站探空资料,对南京“03.7”特大暴雨过程进行了数值模拟研究,着重分析产生这次大暴雨的云物理机制。模拟结果表明,此次暴雨属于积雨云降水,其中云雨碰并是最主要的成雨过程,贡献率达到74%,其次是霰/雹融化,占22%,说明此次降水以暖雨过程为主。通过暖雨过程对比试验表明,虽然冰相过程对雨水的贡献较小,但加入冰相过程能使模拟结果更接近云的实际情况。  相似文献   

16.
A large scale numerical time-dependent model of sea ice that takes into account the heat fluxes in and out of the ice, the seasonal occurrence of snow, and ice motions has been used in an experiment to determine the response of the Arctic Ocean ice pack to a warming of the atmosphere. The degree of warming specified is that expected for a doubling of atmospheric carbon dioxide with its associated greenhouse effect, a condition that could occur before the middle of the next century. The results of three 5-year simulations with a warmer atmosphere and varied boundary conditions were: (1) that in the face of a 5 K surface atmospheric temperature increase the ice pack disappeared completely in August and September but reformed in the central Arctic Ocean in mid fall; (2) that the simulations were moderately dependent on assumptions concerning cloud cover; and (3) that even when atmospheric temperature increases of 6–9 K were combined with an order-of-magnitude increase in the upward heat flux from the ocean, the ice still reappeared in winter. It should be noted that a year-round ice-free Arctic Ocean has apparently not existed for a million years or more.Currently on leave, working for the World Meteorological Organization in Geneva, Switzerland, on the World Climate Programme.The calculations for this work were carried out while both authors were at the National Center for Atmospheric Research (NCAR), which is sponsored by the National Science Foundation.  相似文献   

17.
Based on experiments using a coupled general circulation model which resolves tropical ocean–atmosphere coupled phenomena such as El Niño/Southern Oscillation (ENSO) and the Indian Ocean Dipole, forcing mechanisms of the Indian Ocean subtropical dipole (IOSD) are investigated. In the control experiment, as in the observation, several types of the IOSD are generated by the variations in the Mascarene High during austral summer and characterized by a dipole pattern of sea surface temperature (SST) anomalies in the northeastern and southwestern parts of the southern Indian Ocean. In another experiment, where the SST outside the southern Indian Ocean is nudged toward the monthly climatology of the simulated SST, one type of the IOSD occurs, but it is less frequent and associated with the zonal wavenumber four pattern of equivalently barotropic geopotential height anomalies in high latitudes, suggesting an interesting link with the Antarctic Circumpolar Wave. This indicates that, even without the atmospheric teleconnection from tropical coupled climate modes, the IOSD may develop in association with the atmospheric variability in high latitudes of the Southern Hemisphere. In the other experiment, where only the southern Indian Ocean and the tropical Pacific are freely interactive with the atmosphere, two types of both positive and negative IOSD occur. Since the occurrence frequency of the IOSD significantly increases as compared to the second experiment, this result confirms that the atmospheric teleconnection from ocean-atmosphere coupled modes in the tropical Pacific such as ENSO may also induce the variations in the Mascarene High that generate the IOSD. The present research, even within the realm of model studies, shows clearly that the predictability of the IOSD in mid-latitudes is related to both low and high-latitudes climate variations.  相似文献   

18.
新疆准噶尔盆地冬季系统性降水研究Ⅱ.理论探讨   总被引:4,自引:0,他引:4       下载免费PDF全文
根据对北疆盆地冬季冷锋降水个例的观测分析,建立一个二维动力场给定、微物理时变的冷云模式。模式考虑了云水、云冰、雪、霰和水汽五种水元间16个微物理过程。本文用其研究了无扰动层状云、发生泡区和高空引晶自然播撒作用于层状云和飞机播撒层状云的降水发展过程,并用一维模式作一些模拟补充。模拟表明,无扰动层状云内液水丰富、冰粒子少,降水不充分。高空引晶自然播撒能大大加强层状云降水。低层发生泡既产生更多的云水又提供大量冰晶,对增加降水有双重作用。模拟得出各个过程中不同部位的各微物理过程相对重要性的时间演变,清楚地解释了观测发现的一些主要降水特征。对层状云飞机播撒同样能加强降水形成,播撒后主要增水区约10公里宽且有最大剂量限制。泡区人工播撒可进一步增加降水,而在自然播撒区再作人工播撒效果不好。  相似文献   

19.
Effects of time-dependent large-scale forcing (LSF), solar zenith angle (SZA), and sea surface temperature (SST) on time-mean rainfall processes during Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) are examined by conducting a control experiment and a series of sensitivity experiments with a two-dimensional cloud-resolving model. The model is forced by time-dependent LSF, SZA, and SST in the control experiment. The sensitivity experiments are forced only by either time-dependent LSF, or SZA, or SST while others are replaced with their time averages. When the model is imposed by time-dependent LSF, time dependence of SZA and SST has no discernable effect on surface rainfall, but it affects rainfall processes. The rainfall is reduced by 15% when the time-dependent LSF is replaced by its time mean. The reduction of rainfall is associated with the suppression of water vapor convergence as a result of low correlation between upward motion and water vapor variation.  相似文献   

20.
华北层状云系人工增雨个例数值研究   总被引:4,自引:0,他引:4  
高茜  王广河  史月琴 《气象》2011,37(10):1241-1251
利用耦合了CAMS详尽云方案和非静力中尺度数值模式MM5V3的CAMS中尺度云分辨模式对2008年3月20—21日环北京地区的一次层状云系降水进行模拟和人工催化数值试验。模拟自然降水分布与实测结果一致,分析微物理特征并在所得分析的基础上进行催化试验。研究在不同催化剂量、高度进行试验对降水的影响。结果表明:在过冷水含量高且冰晶含量低的区域引入人工冰晶可使地面降水增加。引入人工冰晶后催化区域水汽明显减少,云水也有减少,冰晶粒子和雪粒子增加,而且水汽减少的量明显大于过冷云水的减少量。同时催化后550 hPa附近的下沉气流中心变为上升气流,动力、热力效应明显。雪碰并冰晶增长、冰晶转化成雪增长是催化高度附近雪晶增加的主要过程,而催化高度以下,雪碰并过冷云滴增长是雪晶增加的主要过程;雪晶碰并过冷雨滴增长是霰粒子增加的主要过程;雨滴碰并云滴增长是雨滴增长的主要过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号