首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Between 2 and 3 km depth, North Pacific deep waters contain a plume of water with high silicic acid concentrations. The plume extends outward from Cascadia Basin (the Washington Margin), where waters can contain in excess of 200 μM off the coast of Oregon and Washington. To identify the source of the high Si concentrations in Cascadia Basin, we measured silicic acid and germanium concentrations in deep waters, and their fluxes from sediments using incubated cores. The mean flux of silicic acid into bottom waters is 0.81±0.05 mmol/m2-day, and the Ge/Si ratio of this flux is 0.7±0.1 μmol/mol. A box model, incorporating these results with hydrographic data, indicates that (1) no more than 5% of the silicic acid added to Basin deep waters can have a hydrothermal source (either hot or warm seeps), and (2) the total input of silicic acid to Basin deep waters is 0.06±0.02 Tmol/y. This input is nearly all from remineralized biogenic debris and should contribute about 0.5% of the 14 Tmol/y that are estimated to be necessary to maintain the North Pacific plume.  相似文献   

2.
An extended time series of particle fluxes at 3800 m was recorded using automated sediment traps moored at Ocean Station Papa (OSP, 50°N, 145°W) in the northeast Pacific Ocean for more than a decade (1982–1993). Time-series observations at 200 and 1000 m, and short-term measurements using surface-tethered free-drifting sediment traps also were made intermittently. We present data for fluxes of total mass (dry weight), particulate organic carbon (POC), particulate organic nitrogen (PON), biogenic Si (BSi), and particulate inorganic carbon (PIC) in calcium carbonate. Mean monthly fluxes at 3800 m showed distinct seasonality with an annual minimum during winter months (December–March), and maximum during summer and fall (April–November). Fluxes of total mass, POC, PIC and BSi showed 4-, 10-, 7- and 5-fold increases between extreme months, respectively. Mean monthly fluxes of PIC often showed two plateaus, one in May–August dominated by <63 μm particles and one in October–November, which was mainly >63 μm particles. Dominant components of the mass flux throughout the year were CaCO3 and opal in equal amounts. The mean annual fluxes at 3800 m were 32±9 g dry weight g m−2 yr−1, 1.1±0.5 g POC m−2 yr−1, 0.15±0.07 g PON m−2 yr−1, 5.9±2.0 g BSi m−2 yr−1 and 1.7±0.6 g PIC m−2 yr−1. These biogenic fluxes clearly decreased with depth, and increased during “warm” years (1983 and 1987) of the El Niño, Southern Oscillation cycle (ENSO). Enhancement of annual mass flux rates to 3800 m was 49% in 1983 and 36% in 1987 above the decadal average, and was especially rich in biogenic Si. Biological events allowed estimates of sinking rates of detritus that range from 175 to 300 m d−1, and demonstrate that, during periods of high productivity, particles sink quickly to deep ocean with less loss of organic components. Average POC flux into the deep ocean approximated the “canonical” 1% of the surface primary production.  相似文献   

3.
A study of organic carbon mineralization from the Congo continental shelf to the abyssal plain through the Congo submarine channel and Angola Margin was undertaken using in situ measurements of sediment oxygen demand as a tracer of benthic carbon recycling. Two measurement techniques were coupled on a single autonomous platform: in situ benthic chambers and microelectrodes, which provided total and diffusive oxygen uptake as well as oxygen microdistributions in porewaters. In addition, sediment trap fluxes, sediment composition (Org-C, Tot-N, CaCO3, porosity) and radionuclide profiles provided measurements of, respectively input fluxes and burial rate of organic and inorganic compounds.The in situ results show that the oxygen consumption on this margin close to the Congo River is high with values of total oxygen uptake (TOU) of 4±0.6, 3.6±0.5 mmol m−2 d−1 at 1300 and 3100 m depth, respectively, and between 1.9±0.3 and 2.4±0.2 mmol m−2 d−1 at 4000 m depth. Diffusive oxygen uptakes (DOU) were 2.8±1.1, 2.3±0.8, 0.8±0.3 and 1.2±0.1 mmol m−2 d−1, respectively at the same depths. The magnitude of the oxygen demands on the slope is correlated with water depth but is not correlated with the proximity of the submarine channel–levee system, which indicates that cross-slope transport processes are active over the entire margin. Comparison of the vertical flux of organic carbon with its mineralization and burial reveal that this lateral input is very important since the sum of recycling and burial in the sediments is 5–8 times larger than the vertical flux recorded in traps.Transfer of material from the Congo River occurs through turbidity currents channelled in the Congo valley, which are subsequently deposited in the Lobe zone in the Congo fan below 4800 m. Ship board measurements of oxygen profiles indicate large mineralization rates of organic carbon in this zone, which agrees with the high organic carbon content (3%) and the large sedimentation rate (19 mm y−1) found on this site. The Lobe region could receive as high as 19 mol C m−2 y−1, 1/3 being mineralized and 2/3 being buried and could constitute the largest depocenter of organic carbon in the South Atlantic.  相似文献   

4.
《Marine Chemistry》2007,103(1-2):185-196
Large-volume sampling of 234Th and drifting sediment trap deployments were conducted as part of the 2004 Western Arctic Shelf–Basin Interactions (SBI) spring (May 15–June 23) and summer (July 17–August 26) process cruises in the Chukchi Sea. Measurements of 234Th and particulate organic carbon (POC) export fluxes were obtained at five stations during the spring cruise and four stations during the summer cruise along Barrow Canyon (BC) and along a parallel shelf-to-basin transect from East Hanna Shoal (EHS) to the Canada Basin. 234Th and POC fluxes obtained with in situ pumps and drifting sediment traps agreed to within a factor of 2 for 70% of the measurements. POC export fluxes measured with in situ pumps at 50 m along BC were similar in spring and summer (average = 14.0 ± 8.0 mmol C m 2 day 1 and 16.5 ± 6.5 mmol C m 2 day 1, respectively), but increased from spring to summer at the EHS transect (average = 1.9 ± 1.1 mmol C m 2 day 1 and 19.5 ± 3.3 mmol C m 2 day 1, respectively). POC fluxes measured with sediment traps at 50 m along BC were also similar in both seasons (31.3 ± 9.3 mmol C m 2 day 1 and 29.1 ± 14.2 mmol C m 2 day 1, respectively), but were approximately twice as high as POC fluxes measured with in situ pumps. Sediment trap POC fluxes measured along the EHS transect also increased from spring to summer (3.0 ± 1.9 mmol C m 2 day 1 and 13.0 ± 6.4 mmol C m 2 day 1, respectively), and these fluxes were similar to the POC fluxes obtained with in situ pumps. Discrepancies in POC export fluxes measured using in situ pumps and sediment traps may be reasonably explained by differences in the estimated POC/234Th ratios that arise from differences between the techniques, such as time-scale of measurement and size and composition of the collected particles. Despite this variability, in situ pump and sediment trap-derived POC fluxes were only significantly different at a highly productive station in BC during the spring.  相似文献   

5.
Community metabolism (respiration and production) and bacterial activity were assessed in the upper water column of the central Arctic Ocean during the SHEBA/JOIS ice camp experiment, October 1997–September 1998. In the upper 50 m, decrease in integrated dissolved oxygen (DO) stocks over a period of 124 d in mid-winter suggested a respiration rate of ∼3.3 nM O2 h−1 and a carbon demand of ∼4.5 gC m−2. Increase in 0–50 m integrated stocks of DO during summer implied a net community production of ∼20 gC m−2. Community respiration rates were directly measured via rate of decrease in DO in whole seawater during 72-h dark incubation experiments. Incubation-based respiration rates were on average 3-fold lower during winter (11.0±10.6 nM O2 h−1) compared to summer (35.3±24.8 nM O2 h−1). Bacterial heterotrophic activity responded strongly, without noticeable lag, to phytoplankton growth. Rate of leucine incorporation by bacteria (a proxy for protein synthesis and cell growth) increased ∼10-fold, and the cell-specific rate of leucine incorporation ∼5-fold, from winter to summer. Rates of production of bacterial biomass in the upper 50 m were, however, low compared to other oceanic regions, averaging 0.52±0.47 ngC l−1 h−1 during winter and 5.1±3.1 ngC l−1 h−1 during summer. Total carbon demand based on respiration experiments averaged 2.4±2.3 mgC m−3 d−1 in winter and 7.8±5.5 mgC m−3 d−1 in summer. Estimated bacterial carbon demand based on bacterial productivity and an assumed 10% gross growth efficiency was much lower, averaging about 0.12±0.12 mgC m−3 d−1 in winter and 1.3±0.7 mgC m−3 d−1 in summer. Our estimates of bacterial activity during summer were an order of magnitude less than rates reported from a summer 1994 study in the central Arctic Ocean, implying significant inter-annual variability of microbial processes in this region.  相似文献   

6.
JGOFS-KERFIX (KERguelen point FIXe) time-series station, located south of the polar front in the Indian sector of the Antarctic Ocean, was occupied monthly between January 1990 and March 1995. Annual cycles of dissolved inorganic carbon (DIC), total alkalinity (TALK), oxygen (O2) and nutrients (nitrate, silicate, phosphate and ammonia) in the upper ocean are presented for this site. From seasonal drawdown of nutrients and DIC, we estimate a spring–summer net community production of 3.2±0.5 mol m−2 and C/N/P ratios of 100/16/1. The Si/N ratio varies between 1.8 and 3, suggesting low iron concentrations. The spring–summer biogenic silicon export derived from silicate drawdown is 1.18 mol m−2, consistent with model estimates of silicate export at this site. Seasonal and interannual variations of oxygen, nitrate and DIC due to physical and biological processes are quantified using a simple month-to-month budget formulation. From these budgets, an annual net community production of 5.7±3.3 mol m−2 yr−1 is estimated, about twice the averaged spring–summer production, indicating that, at KERFIX, there is a positive net community production throughout the year. Air–sea CO2 fluxes show that KERFIX is a strong CO2 sink for the atmosphere of 2.4–5.1 mol m−2 yr−1 in 1993, depending on the gas exchange formulation used. A 2.1–3.3 mol m−2 yr−1 outgassing of O2 is observed at KERFIX except in 1993 and 1994 where a decreasing trend of temperature induces an increase of O2 solubility.  相似文献   

7.
Solid sediment, pore and epibenthic waters were collected from the Thau lagoon (France) in order to study the post-depositional partition and mobility of mercury in organic rich sediment. Total Hg (HgT) and monomethylmercury (MMHg) profiles were produced in both dissolved and solid phases. The distribution of HgT in the solid phase appeared to be related to the historical changes in the Hg inputs into the lagoon. HgT was in equilibrium between solid and solution phases in the sulfidic part of the cores, with a mean log Kd of 4.9 ± 0.2. The solid phase appeared to be a source of HgT for pore water in the upper oxic to suboxic parts of the cores. The MMHg represented a small fraction of HgT: 3–15% and 0.02–0.80% in the dissolved and solid phases, respectively. Its distribution was characterized by a main peak in the superficial sediments, and another deeper in the core within the sulfide-accumulating zone. In addition, high dissolved MMHg concentrations and methylated percentage were found in the epibenthic water. Ascorbate (pH 8) dissolution of the sediments and analyses of the soluble fraction suggest that the amorphous oxyhydroxides played a major role in controlling total and methylmercury mobility throughout the sediment–water interface. These features are discussed in terms of sources, transfer and transformations. Diffusive fluxes of HgT and MMHg from sediment to the water column for the warm period were estimated to be 40 ± 15 and 4 ± 2 pmol m−2 d−1, respectively.  相似文献   

8.
《Marine and Petroleum Geology》2012,29(10):1838-1843
The hydrate-bearing sediments above the bottom simulating reflector (BSR) are associated with low attenuation or high quality factor (Q), whereas underlying gas-bearing sediments exhibit high attenuation. Hence, estimation of Q can be important for qualifying whether a BSR is related to gas hydrates and free-gas. This property is also useful for identifying gas hydrates where detection of BSR is dubious. Here, we calculate the interval Q for three submarine sedimentary layers bounded by seafloor, BSR, one reflector above and another reflector below the BSR at three locations with moderate, strong and no BSR along a seismic line in the Makran accretionary prism, Arabian Sea for studying attenuation (Q−1) characteristics of sediments. Interval Q for hydrate-bearing sediments (layer B) above the BSR are estimated as 191 ± 11, 223 ± 12, and 117 ± 5, whereas interval Q for the underlying gas-bearing sediments (layer C) are calculated as 112 ± 7, 107 ± 8 and 124 ± 11 at moderate, strong and no BSR locations, respectively. The large variation in Q is observed at strong BSR. Thus Q can be used for ascertaining whether the observed BSR is due to gas hydrates, and for identifying gas hydrates at places where detection of BSR is rather doubtful. Interval Q of 98 ± 4, 108 ± 5, and 102 ± 5, respectively, at moderate, strong and no BSR locations for the layer immediately beneath the seafloor (layer A) show almost uniform attenuation.  相似文献   

9.
The hypothesis that benthic foraminifera are useful proxies of local methane emissions from the seafloor has been verified on sediment core KS16 from the headwall of the Ana submarine landslide in the Eivissa Channel, Western Mediterranean Sea. The core MS312 from a nearby location with no known methane emissions is utilised as control. The core was analysed for biostratigraphy, benthic foraminiferal assemblages, Hyalinea balthica and Uvigerina peregrina carbon and oxygen stable isotope composition, and sedimentary structures. The upper part of the core records post-landslide deglacial and Holocene normal marine hemipelagic sediments with highly abundant benthic foraminifera species that are typical of outer neritic to upper bathyal environment. In this interval, the δ13C composition of benthic foraminifera indicates normal marine environment analogous to those found in the control core. Below the sedimentary hiatus caused by the emplacement of the slide, the foraminiferal assemblages are characterised by lower density and higher Shannon Index. Markedly negative δ13C shifts in benthic foraminifera are attributed to the release of methane through the seabed. The mean values of the 13C anomaly in U. peregrina are ? 0.951 ± 0.208 in the pre-landslide sediments, and ? 0.269 ± 0.152 in post-slide reworked sediments deposited immediately above the hiatus. The δ13C anomaly in Hyalinea balthica is ? 2.497 ± 0.080 and ? 2.153 ± 0.087, respectively. To discard the diagenetic effects on the δ13C anomaly, which could have been induced by Ca–Mg replacement and authigenic carbonate overgrowth on foraminifera tests, a benthic foraminifera subsample has been treated following an oxidative and reductive cleaning protocol. The cleaning has resulted, only in some cases, in a slight reduction of the anomaly by 0.95% for δ13C and < 0.80% for δ18O. Therefore, the first conclusion is that the diagenetic alteration is minor and it does not alter significantly the overall carbon isotopic anomaly in the core. Consequently, the pre-landslide sediments have been subject to pervasive methane emissions during a time interval of several thousand years. Methane emissions continued during and immediately after the occurrence of Ana Slide at about 61.5 ka. Subsequently, methane emissions decreased and definitely ceased during the last deglaciation and the Holocene.  相似文献   

10.
Plankton community net and gross production and dark respiration were determined from in vitro changes in dissolved inorganic carbon and dissolved oxygen during September 1994 along a southeast offshore transect in the Arabian Sea. Surface rates of gross production decreased from 17±0.7 mmol C m-3 d-1 at a coastal upwelling station to 3±0.8 mmol C m-3 d-1 at the most offshore station. The euphotic zone at the time of sampling was predominantly heterotrophic, with integrated net community production values ranging from 15±7 mmol C m-2 d-1 inshore to −253±32 mmol C m-2 d-1 offshore. Calculations of the respiration attributable to the major plankton groups could account for 61–87% of the dark community respiration measured at the inshore stations, but only 15–26% of the community respiration determined offshore. Comparison of the fluxes of dissolved inorganic carbon and oxygen revealed a tendency for higher respiratory quotients than those calculated for organic metabolism prevailing at the offshore stations.  相似文献   

11.
《Marine Chemistry》2007,103(1-2):131-145
We have investigated submarine groundwater discharge to Nueces Bay (Texas) using naturally occurring Ra isotopes. Dissolved Ra activities in Nueces Bay are among the highest observed in coastal estuaries; as great as 2600 dpm m 3 for 228Ra and 1000 dpm m 3 for 226Ra. Using a combination of salt and Ra mass balances, we demonstrate that river discharge and bay bottom sediments cannot supply the Ra needed to balance tidal export. In the case of 226Ra there is an additional source of 218 × 106 ± 105% dpm day 1 which is 9 times the maximum supply from bay bottom sediments and 50 times the Ra supplied by the Nueces River. A groundwater flux of 310,000 m3 day 1 is required to supply the needed 226Ra, based on the measured maximum Ra activity of local groundwater. Though as little as 10% of this flux may be advecting terrestrial groundwater this would still represent 160% of the Nueces River discharge. This makes it unlikely that groundwater discharge alone is supplying all of the additional 226Ra. Oil-field brine could potentially account for the remainder. Leakage of 6290 m3 day 1 of oil-field brine from the submerged petroleum wells and pipelines within the bay could supply all of the needed 226Ra. Such large fluxes of brackish groundwater and oil-field brine could significantly affect bay nitrogen budgets, salinities, and dissolved oxygen concentrations and should be considered when determining the freshwater inflow requirements for Nueces Bay and similar estuaries.  相似文献   

12.
《Marine Geology》2007,236(1-2):79-94
Time serial multibeam bathymetry is used to evaluate geomorphic trends and submarine processes in the upper 4 km of Monterey Canyon, California. Seven high-resolution bathymetric surveys conducted between September 2002 to February 2005 show that the upper canyon axis and head grew in volume 1 000 000 m3 ± 700 000 m3, at an average annual rate of 400 000 m3/a ± 300 000 m3/a through lateral erosion and vertical incision. This net loss of substrate during the 29-month period is parsed between local erosion of 1 400 000 m3 and local deposition of 350 000 m3. A submarine landslide with a scar void volume of 70 000 m3 and debris pile of 52 000 m3 occurred between March 2003 and September 2004. During the subsequent months until February 2005, the slide scar grew 40% in volume while the debris pile shrank by 80%. The canyon-head rim adjacent to Moss Landing Harbor prograded seaward and retreated shoreward significantly (up to 50 m) during the study suggesting frequent episodes of sediment build up and subsequent down-canyon failure. A large field of sand waves located in the channel axis was completely reworked in each time series except for a 24 h period where no wave crest movement was noted, and a 32 day period where up-canyon migration of approximately 7 m was recorded in the northern tributary.  相似文献   

13.
Little is known about the types and concentrations of polycyclic aromatic hydrocarbons (PAHs) existing in the deep-sea subsurface environment, which is believed to be cold, oligothrophic and of high static pressure. PAHs in the upper layers of the water column are unavoidably subjected to degradation while they are deposited to the sea floor and become embedded in the deep-sea sediment. In this report, a high concentration of PAHs was discovered in the sediment 2.7 m beneath the bottom surface at a water depth of 3962 m on the Mid-Atlantic Ridge (MAR). The total concentration of PAHs was 445 ng (g dry wt sediment)-1. Among the seven detected PAHs, the concentrations of phenanthrene (222 ng g-1) and fluorene (79 ng g-1) were relatively high. In addition, PAH-degrading bacteria were found within the sediments. As in a previously detected site on the MAR, in the PAH-enriched region of this site, a bacterium of the genus Cycloclasticus was found to be the predominant isolate detected by PCR-DGGE analysis. In addition, bacteria of the Halomonas, Marinobacter, Alcanivorax, Thalassospira and Maricaulis genera, were also included in the PAH-degrading community. In summary, a high concentration of PAHs was detected in the subsurface of the deep-sea sediment, and once again, the Cycloclasticus bacterium was confirmed to be a ubiquitous marine PAH degrader even in the subsurface marine environment. Considering the abundance of PAHs therein, biodegradation is thus thought to be inactive, probably because of the low temperature, limited oxygen and/or limited nutrients.  相似文献   

14.
We investigated the impact of sediment reworking fauna and hydrodynamics on mobilization and transport of organic matter and fine particles in marine sediments. Experiments were conducted in an annular flume using lugworms (Arenicola marina) as model organisms. The impact of lugworms on sediment characteristics and particle transport was followed through time in sediments experimentally enriched with fine particles (< 63 μm) and organic matter. Parallel experiments were run at low and high water current velocity (11 and 25 cm s 1) to evaluate the importance of sediment erosion at the sediment–water interface. There was no impact of fauna on sediment composition and particle transport at current velocity below the sediment erosion threshold. At current velocity above the erosion threshold, sediment reworking by lugworms resulted in dramatic particle transport (12 kg dry matter m 2) to an adjacent particle trap within 56 days. The transported matter was enriched 6–8 times in fine particles and organic matter when compared to the initial sediment. This study suggests that sediment reworking fauna is an important controlling factor for the particle composition of marine sediments. A. marina mediated sediment reworking greatly increases the sediment volume exposed to hydrodynamic forcing at the sediment–water interface, and through sediment resuspension control the content of fine particles and organic matter in the entire reworked sediment layer (> 20 cm depth).  相似文献   

15.
16.
First data on microbial respiration in the Levantine Sea are reported with the aim of assessing the distribution of oxidative processes in association with the main Mediterranean water masses and the changing physical structure determined by the Eastern Mediterranean Transient. Respiratory rates, in terms of metabolic carbon dioxide production, were estimated from measured electron transport system activities in the polygonal area of the Levantine Sea (32.5–36.5 N Latitude, 26.0–30.25 E Longitude) and at Station Geo’95, in the Ionian Sea (35°34.88 N; 17°14.99 E). At the Levantine Sea, the mean carbon dioxide production rate decreased from the upper to the deeper layers and varied from 22.0±12.4 μg C h−1 m−3 in the euphotic layer to 1.30±0.5 μg C h−1 m−3 in the depth range between 1600 and 3000 m. Significant differences were found among upper, intermediate and bottom layers. The euphotic zone supported a daily carbon dioxide production of 96.6 mg C d−1 m−2 while the aphotic zone (between 200 and 3000 m) sustained a 177.1 mg C d−1 m−2 carbon dioxide production. In Station Geo’95, the carbon dioxide production rates amounted to 170.4 and 102.2 mg C d−1 m−2 in the euphotic and aphotic zones, respectively. The rates determined in the identified water masses showed a tight coupling of respiratory processes and Mediterranean circulation patterns. The increasing respiratory rates in the deep layers of the Levantine Sea are explained by the introduction of younger waters recently formed in the Aegean Sea.  相似文献   

17.
The first carbon budget constructed for the Barents Sea to study the fluxes of carbon into, out of, and within the region is presented. The budget is based on modelled volume flows, measured dissolved inorganic carbon (DIC) concentration, and literature values for dissolved organic carbon (DOC) and particulate organic carbon (POC) concentrations. The results of the budget show that ~5600±660×106 t C yr?1 is exchanged through the boundaries of the Barents Sea. If a 40% uncertainty in the volume flows is included in the error calculation it resulted in a total uncertainty of ±1600×106 t C yr?1. The largest part of the total budget flux consists of DIC advection (~95% of the inflow and ~97% of the outflow). The other sources and sinks are, in order of importance, advection of organic carbon (DOC+POC; ~3% of both in- and outflow), total uptake of atmospheric CO2 (~1% of the inflow), river and land sources (~0.2% of the inflow), and burial of organic carbon in the sediments (~0.2% of the outflow). The Barents Sea is a net exporter of carbon to the Arctic Ocean; the net DIC export is ~2500±660×106 t C yr?1 of which ~1700±650×106 t C yr?1 (~70%) is in subsurface water masses and thus sequestered from the atmosphere. The net total organic carbon export to the Arctic Ocean is ~80±20×106 t C yr?1. Shelf pumping in the Barents Sea results in an uptake of ~22±11×106 t C yr?1 from the atmosphere which is exported out of the area in the dense modified Atlantic Waters. The main part of this carbon was channelled through export production (~16±10×106 t C yr?1).  相似文献   

18.
Depth profiles of total 234Th (dissolved+particulate) were collected at Station ALOHA (22°45N, 158°00W) in the North Pacific Subtropical Gyre during 9 cruises from April 1999 to March 2000. Samples were collected and processed by a new 2 L technique that enables more detailed depth resolution then previous 234Th studies. Significant zones of particle export (234Th deficiency) and particle remineralization (234Th excess) were measured both temporally and with depth. 234Th derived particulate carbon (PC) and nitrogen (PN) fluxes were determined with steady-state and non-steady-state models and PC/234Th and PN/234Th ratios measured with both in situ pumps and free-drifting particle interceptor traps deployed at 150 m. 234Th based export estimates of 4.0±2.3 mmol C m−2 d−1 and 0.53±0.19 mmol N m−2 d−1, were approximately 60% higher than those measured in PIT style sediment traps from the same time period, 2.4±0.2 mmol C m−2 d−1 and 0.32±0.08 mmol N m−2 d−1. Most of this difference is attributable to two large export events that occurred during October and December 1999, when traps undercollected for 234Th by a factor of 2 to 4. 234Th export (ThE) ratios based on 234Th derived PC flux/14C based primary production ranged from 4% to 22% (average=8.8%). Our results confirm the recent estimates of C export by Emerson et al. (Nature 389 (1997) 951) and Sonnerup et al. (Deep-Sea Research I 46 (1999) 777) and indicate that C export from the oligotrophic ocean must be considered when discussing C sequestration in global climate change.  相似文献   

19.
In order to study temporal variations of the genetic material in the continental shelf and deep-sea sediments of the extremely oligotrophic Cretan Sea, samples were collected on seasonal basis from August 1994 to September 1995, with a multiple corer, at seven stations (from 40 to 1540 m depth). Surface sediments (0–1 cm) were sub-sampled and analyzed for nucleic acid content (DNA, RNA) and bacterial density. DNA concentrations in the sediments were high (on annual average, 25.0 μg g-1) and declined with increasing water depth, ranging from 3.5 to 55.2 μg g-1. DNA concentrations displayed wide temporal changes also at bathyal depths confirming the recent view of the large variability of the deep-sea environments. Also RNA concentrations decreased with increasing water depth (range: 0.4–29.9 μg g-1). The ratio of RNA to DNA did not show a clear spatial pattern but was characterized by significant changes between sampling periods. DNA concentrations were significantly correlated with protein and phytopigment concentrations in the sediment, indicating a possible relationship with the inputs of primary organic matter from the photic layer. Bacterial densities were generally high (range: 0.9–4.6×108 cells g-1) compared to other deep-sea environments and decreased with increasing water depth. Estimates of the bacterial contribution to the sedimentary genetic material indicated that bacterial-DNA accounted, on annual average, for a small fraction of the total DNA pool (4.3%) but that bacterial-RNA represented a significant fraction of the total sedimentary RNA (26%). Bacterial contribution to nucleic acids increased, even though irregularly, with increasing depth. In deep-sea sediments, changes in RNA concentrations appear to be largely dependent upon bacterial dynamics. Estimates of the overall living contribution to the DNA pools (i.e. microbial plus meiofaunal DNA) indicated that the large majority (about 90%) of the DNA in continental and deep-sea sediments of the eastern Mediterranean was detrital. The non-living DNA pools reach extremely high concentrations up to 0.41 g DNA m-2 cm-1. Thus, especially in deep benthic habitats, characterized by low inputs of labile organic compounds, detrital DNA could represent a suitable and high quality food source or a significant reservoir of nucleic acid precursors for benthic metabolism.  相似文献   

20.
Hydrographic, geochemical, and direct velocity measurements along two zonal (7.5°N and 4.5°S) and two meridional (35°W and 4°W) lines occupied in January–March, 1993 in the Atlantic are combined in an inverse model to estimate the circulation. At 4.5°S, the Warm Water (potential temperature θ>4.5°C) originating from the South Atlantic enters the equatorial Atlantic, principally at the western boundary, in the thermocline-intensified North Brazil Undercurrent (33±2.7×106 m3 s−1 northward) and in the surface-intensified South Equatorial Current (8×106 m3 s−1 northward) located to the east of the North Brazil Undercurrent. The Ekman transport at 4.5°S is southward (10.7±1.5×106 m3 s−1). At 7.5°N, the Western Boundary Current (WBC) (17.9±2×106 m3 s−1) is weaker than at 4.5°S, and the northward flow of Warm Water in the WBC is complemented by the basin-wide Ekman flow (12.3±1.0×106 m3 s−1), the net contribution of the geostrophic interior flow of Warm Water being southward. The equatorial Ekman divergence drives a conversion of Thermocline Water (24.58⩽σ0<26.75) into Surface Water (σ0<24.58) of 7.5±0.5×106 m3 s−1, mostly occurring west of 35°W. The Deep Water of northern origin flows southward at 7.5°N in an energetic (48±3×106 m3 s−1) Deep Western Boundary Current (DWBC), whose transport is in part compensated by a northward recirculation (21±4.5×106 m3 s−1) in the Guiana Basin. At 4.5°S, the DWBC is much less energetic (27±7×106 m3 s−1 southward) than at 7.5°N. It is in part balanced by a deep northward recirculation east of which alternate circulation patterns suggest the existence of an anticyclonic gyre in the central Brazil Basin and a cyclonic gyre further east. The deep equatorial Atlantic is characterized by a convergence of Lower Deep Water (45.90⩽σ4<45.83), which creates an upward diapycnal transport of 11.0×106 m3 s−1 across σ4=45.83. The amplitude of this diapycnal transport is quite sensitive to the a priori hypotheses made in the inverse model. The amplitude of the meridional overturning cell is estimated to be 22×106 m3 s−1 at 7.5°N and 24×106 m3 s−1 at 4.5°S. Northward heat transports are in the range 1.26–1.50 PW at 7.5°N and 0.97–1.29 PW at 4.5°S with best estimates of 1.35 and 1.09 PW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号