首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We use the extended Press–Schechter formalism to investigate the rate at which cold dark matter haloes accrete mass. We discuss the shortcomings of previous methods that have been used to compute the mass accretion histories of dark matter haloes, and present an improved method based on the N -branch merger tree algorithm of Somerville & Kolatt. We show that this method no longer suffers from inconsistencies in halo formation times, and compare its predictions with high-resolution N -body simulations. Although the overall agreement is reasonable, there are slight inconsistencies which are most easily interpreted as a reflection of ellipsoidal collapse (as opposed to spherical collapse assumed in the Press–Schechter formalism). We show that the average mass accretion histories follow a simple, universal profile, and we present a simple recipe for computing the two scale-parameters which is applicable to a wide range of halo masses and cosmologies. Together with the universal profiles for the density and angular momentum distributions of cold dark matter haloes, these universal mass accretion histories provide a simple but accurate framework for modelling the structure and formation of dark matter haloes. In particular, they can be used as a backbone for modelling various aspects of galaxy formation where one is not interested in the detailed effects of merging. As an example we use the universal mass accretion history to compute the rate at which dark matter haloes accrete mass, which we compare with the cosmic star formation history of the Universe.  相似文献   

2.
We explore a possible origin for the puzzling anti-correlation between the formation epoch of galactic dark-matter haloes and their environment density. This correlation has been revealed from cosmological N -body simulations and is in conflict with the extended Press–Schechter model of halo clustering. Using similar simulations, we first quantify the straightforward association of an early formation epoch with a reduced mass-growth rate at late times. We then find that a primary driver of suppressed growth, by accretion and mergers, is tidal effects dominated by a neighbouring massive halo. The tidal effects range from a slowdown of the assembly of haloes due to the shear along the large-scale filaments that feed the massive halo to actual mass loss in haloes that pass through the massive halo. Using the restricted three-body problem, we show that haloes are prone to tidal mass loss within 1.5 virial radii of a larger halo. Our results suggest that the dependence of the formation epoch on environment density is a secondary effect induced by the enhanced density of haloes in filaments near massive haloes where the tides are strong. Our measures of assembly rate are particularly correlated with the tidal field at high redshifts   z ∼ 1  .  相似文献   

3.
An inside–out model for the formation of haloes in a hierarchical clustering scenario is studied. The method combines the picture of the spherical infall model and a modification of the extended Press–Schechter theory. The mass accretion rate of a halo is defined to be the rate of its mass increase due to minor mergers. The accreted mass is deposited at the outer shells without changing the density profile of the halo inside its current virial radius. We applied the method to a flat Λ-cold dark matter universe. The resulting density profiles are compared with analytical models proposed in the literature, and a very good agreement is found. A trend is found of the inner density profile to become steeper for larger halo mass, which also results from recent N -body simulations. Additionally, present-day concentrations as well as their time evolution are derived and it is shown that they reproduce the results of large cosmological N -body simulations.  相似文献   

4.
In hierarchical models of structure formation, the time derivative of the halo mass function may be thought of as the difference of two terms – a creation term, which describes the increase in the number of haloes of mass m from mergers of less massive objects, and a destruction term, which describes the decrease in the number of m -haloes as these merge with other haloes, creating more massive haloes as a result. The first part of this paper focuses on estimating the distribution of times when these creation events take place. In models where haloes form from a spherical collapse, this distribution can be estimated from the same formalism which is used to estimate halo abundances: the constant-barrier excursion-set approach. In the excursion-set approach, moving rather than constant barriers are necessary for estimating halo abundances when the collapse is triaxial. First, we generalize the excursion-set estimate of the creation time distribution by incorporating ellipsoidal collapse. Then, we show that these moving barrier based predictions are in better agreement with measurements in numerical simulations than are the corresponding predictions of the spherical collapse model. In the second part of the paper, we link the creation time distribution to the creation term mentioned above. For this quantity, the improvement provided by the ellipsoidal collapse model is more evident. These results should be useful for studies of merger-driven star formation rates and active galactic nucleus activity. We also present a similar study of the creation of haloes conditioned on belonging to an object of a certain mass today, and reach similar conclusions – the moving barrier based estimates are in substantially better agreement with the simulations. This part of the study may be useful for understanding the tendency for the oldest stars to exist in the most massive objects, and for star formation to only occur in lower mass objects at late times.  相似文献   

5.
6.
A modified version of the extended Press–Schechter model for the growth of dark-matter haloes was introduced in two previous papers, with the aim of explaining the mass–density relation shown by haloes in high-resolution cosmological simulations. In this model, major mergers are well separated from accretion, thereby allowing a natural definition of halo formation and destruction. This makes it possible to derive analytic expressions for halo formation and destruction rates, the mass accretion rate and the probability distribution functions of halo formation times and progenitor masses. The stochastic merger histories of haloes can be readily derived and easily incorporated into semi-analytical models of galaxy formation, thus avoiding the usual problems encountered in the construction of Monte Carlo merger trees from the original extended Press–Schechter formalism. Here we show that the predictions of the modified Press–Schechter model are in good agreement with the results of N -body simulations for several scale-free cosmologies.  相似文献   

7.
We model the acquisition of spin by dark-matter haloes in semi-analytic merger trees. We explore two different algorithms: one in which halo spin is acquired from the orbital angular momentum of merging satellites, and another in which halo spin is gained via tidal torquing on shells of material while still in the linear regime. We find that both scenarios produce the characteristic spin distribution of haloes found in N -body simulations, namely, a log-normal distribution with mean ≈ 0.04 and standard deviation ≈ 0.5 in the log. A perfect match requires fine-tuning of two free parameters. Both algorithms also reproduce the general insensitivity of the spin distribution to halo mass, redshift and cosmology seen in N -body simulations. The spin distribution can be made strictly constant by physically motivated scalings of the free parameters. In addition, both schemes predict that haloes that have had recent major mergers have systematically larger spin values. These algorithms can be implemented within semi-analytic models of galaxy formation based on merger trees. They yield detailed predictions of galaxy properties that strongly depend on angular momentum (such as size and surface brightness) as a function of merger history and environment.  相似文献   

8.
I propose a modification of the spherical infall model for the evolution of density fluctuations with initially Gaussian probability distribution and scale-free power spectra in the Einsteinde Sitter universe as developed by Hoffman & Shaham. I introduce a generalized form of the initial density distribution around an overdense region and cut it off at half the interpeak separation, accounting in this way for the presence of the neighbouring fluctuations. Contrary to the original predictions of Hoffman & Shaham, the resulting density profiles within virial radii no longer have a power-law shape, but their steepness increases with distance. The profiles of haloes of galactic mass are well fitted by the universal profile formula of changing slope obtained as a result of N -body simulations by Navarro, Frenk & White. The trend of steeper profiles for smaller masses and higher spectral indices is also reproduced. The agreement between the model and simulations is better for smaller masses and lower spectral indices, which suggests that galaxies form mainly by accretion, while formation of clusters involves merging.  相似文献   

9.
10.
The merging history of dark matter haloes is computed with the Merging Cell Model proposed by Rodrigues & Thomas. While originally discussed in the case of scale-free power spectra, it is developed and tested here in the framework of the cold dark matter cosmology. The halo mass function, the mass distribution of progenitors and child haloes, as well as the probability distribution of formation times, have been computed and compared with the available analytic predictions. The halo autocorrelation function has also been obtained (a first for a semi-analytic merging tree), and tested against analytic formulae. An overall good agreement is found between results of the model, and the predictions derived from the Press & Schechter theory and its extensions. More severe discrepancies appear when formulae that better describe N -body simulations are used for comparison. In many instances, the model can be a useful tool for following the hierarchical growth of structures. In particular, it is suitable for addressing the issue of the formation and evolution of galaxy clusters, as well as the population of Lyman-break galaxies at high redshift, and their clustering properties.  相似文献   

11.
An analytical model is presented for the post-collapse equilibrium structure of virialized objects that condense out of a low-density cosmological background universe, either matter-dominated or flat with a cosmological constant. This generalizes the model we derived previously for an Einstein–de Sitter (EdS) universe. The model is based upon the assumption that cosmological haloes form from the collapse and virialization of 'top-hat' density perturbations, and are spherical, isotropic and isothermal. This leads to the prediction of a unique, non-singular, truncated isothermal sphere (TIS), a particular solution of the Lane–Emden equation (suitably modified when Λ≠0) . The size and virial temperature are unique functions of the mass and redshift of formation of the object for a given background universe. The central density is roughly proportional to the critical density of the universe at the epoch of collapse. This TIS model is in good agreement with observations of the internal structure of dark-matter-dominated haloes on scales ranging from dwarf galaxies to X-ray clusters. It also reproduces many of the average properties of haloes in simulations of the cold dark matter (CDM) model to good accuracy, suggesting that it is a useful analytical approximation for haloes that form from realistic initial conditions. Our TIS model matches the density profiles of haloes in CDM N -body simulations outside the innermost region, while avoiding the steep central cusp of the latter which is in apparent conflict with observations. The TIS model may also be relevant to non-standard CDM models, such as that for self-interacting dark matter, recently proposed to resolve this conflict.  相似文献   

12.
We study the merging history of dark matter haloes in N -body simulations and semi-analytical 'merger trees' based on the extended Press–Schechter (EPS) formalism. The main focus of our study is the joint distribution of progenitor number and mass as a function of redshift and parent halo mass. We begin by investigating the mean quantities predicted directly by the Press–Schechter (PS) and EPS formalism, such as the halo mass and conditional mass functions, and compare these predictions with the results of the simulations. The higher moments of this distribution are not predicted by the EPS formalism alone and must be obtained from the merger trees. We find that the Press–Schechter model deviates from the simulations at the level of 30–50 per cent on certain mass scales, and that the sense of the discrepancy changes as a function of redshift. We show that this discrepancy is reflected in the higher moments of the distribution of progenitor mass and number. We investigate some related statistics such as the accretion rate and the mass ratio of the largest two progenitors. For galaxy sized haloes ( M ∼1012 M), we find that the merging history of haloes, as represented by these statistics, is well reproduced in the merger trees compared with the simulations. The agreement deteriorates for larger mass haloes. We conclude that merger trees based on the extended Press–Schechter formalism provide a reasonably reliable framework for semi-analytical models of galaxy formation.  相似文献   

13.
We explore the dependence of the central logarithmic slope of dark matter halo density profiles α on the spectral index n of the linear matter power spectrum P ( k ) using cosmological N -body simulations of scale-free models [i.e. P ( k ) ∝ k n ]. These simulations are based on a set of clear, reproducible and physically motivated criteria that fix the appropriate starting and stopping times for runs, and allow one to compare haloes across models with different spectral indices and mass resolutions. For each of our simulations we identify samples of well-resolved haloes in dynamical equilibrium and we analyse their mass profiles. By parametrizing the mass profile using a 'generalized' Navarro, Frenk & White profile in which the central logarithmic slope α is allowed to vary while preserving the r −3 asymptotic form at large radii, we obtain preferred central slopes for haloes in each of our models. There is a strong correlation between α and n , such that α becomes shallower as n becomes steeper. However, if we normalize our mass profiles by r −2, the radius at which the logarithmic slope of the density profile is −2, we find that these differences are no longer present. This is apparent if we plot the maximum slope     as a function of r / r −2– we find that the profiles are similar for haloes forming in different n models. This reflects the importance of concentration, and reveals that the concentrations of haloes forming in steep- n cosmologies tend to be smaller than those of haloes forming in shallow- n cosmologies. We conclude that there is no evidence for convergence to a unique central asymptotic slope, at least on the scales that we can resolve.  相似文献   

14.
In this paper we describe the Bayesian link between the cosmological mass function and the distribution of times at which isolated haloes of a given mass exist. By assuming that clumps of dark matter undergo monotonic growth on the time-scales of interest, this distribution of times is also the distribution of 'creation' times of the haloes. This monotonic growth is an inevitable aspect of gravitational instability. The spherical top-hat collapse model is used to estimate the rate at which clumps of dark matter collapse. This gives the prior for the creation time given no information about halo mass. Applying Bayes' theorem then allows any mass function to be converted into a distribution of times at which haloes of a given mass are created. This general result covers both Gaussian and non-Gaussian models. We also demonstrate how the mass function and the creation time distribution can be combined to give a joint density function, and discuss the relation between the time distribution of major merger events and the formula calculated. Finally, we determine the creation time of haloes within three N -body simulations, and compare the link between the mass function and creation rate with the analytic theory.  相似文献   

15.
N -body simulations predict that cold dark matter (CDM) halo-assembly occurs in two phases: (i) a fast-accretion phase with a rapidly deepening potential well; and (ii) a slow-accretion phase characterized by a gentle addition of mass to the outer halo with little change in the inner potential well. We demonstrate, using one-dimensional simulations, that this two-phase accretion leads to CDM haloes of the Navarro, Frenk & White (NFW) form and provides physical insight into the properties of the mass-accretion history that influence the final profile. Assuming that the velocities of CDM particles are effectively isotropized by fluctuations in the gravitational potential during the fast-accretion phase, we show that gravitational collapse in this phase leads to an inner profile  ρ( r ) ∝ r −1  . Slow accretion on to an established potential well leads to an outer profile with  ρ( r ) ∝ r −3  . The concentration of a halo is determined by the fraction of mass that is accreted during the fast-accretion phase. Using an ensemble of realistic mass-accretion histories, we show that the model predictions of the dependence of halo concentration on halo formation time and, hence, the dependence of halo concentration on halo mass, and the distribution of halo concentrations all match those found in cosmological N -body simulations. Using a simple analytic model that captures much of the important physics, we show that the inner   r −1  profile of CDM haloes is a natural result of hierarchical mass assembly with an initial phase of rapid accretion.  相似文献   

16.
We study the mass assembly history (MAH) of dark matter haloes. We compare MAHs obtained using (i) merger trees constructed with the extended Press–Schechter (EPS) formalism, (ii) numerical simulations and (iii) the Lagrangian perturbation code pinocchio . We show that the pinocchio MAHs are in excellent agreement with those obtained using numerical simulations, while the EPS formalism predicts MAHs that occur too late. pinocchio , which is much less CPU intensive than N -body simulation, can be run on a simple personal computer, and does not require any labour intensive post-simulation analysis, therefore provides a unique and powerful tool to investigate the growth history of dark matter haloes. Using a suite of 55 pinocchio simulations, with 2563 particles each, we study the MAHs of 12 924 cold dark matter (CDM) haloes in a ΛCDM concordance cosmology. This is by far the largest set of haloes used for any such analysis. For each MAH we derive four different formation redshifts, which characterize different epochs during the assembly history of a dark matter halo. We show that haloes less massive than the characteristic non-linear mass scale establish their potential wells much before they acquire most of their mass. The time when a halo reaches its maximum virial velocity roughly divides its mass assembly into two phases, a fast-accretion phase which is dominated by major mergers, and a slow-accretion phase dominated by minor mergers. Each halo experiences about 3 ± 2 major mergers since its main progenitor had a mass equal to 1 per cent of the final halo mass. This major merger statistic is found to be virtually independent of halo mass. However, the average redshift at which these major mergers occur is strongly mass dependent, with more massive haloes experiencing their major mergers later.  相似文献   

17.
18.
The time-scale for galaxies within merging dark matter haloes to merge with each other is an important ingredient in galaxy formation models. Accurate estimates of merging time-scales are required for predictions of astrophysical quantities such as black hole binary merger rates, the build-up of stellar mass in central galaxies and the statistical properties of satellite galaxies within dark matter haloes. In this paper, we study the merging time-scales of extended dark matter haloes using N -body simulations. We compare these results to standard estimates based on the Chandrasekhar theory of dynamical friction. We find that these standard predictions for merging time-scales, which are often used in semi-analytic galaxy formation models, are systematically shorter than those found in simulations. The discrepancy is approximately a factor of 1.7 for M sat/ M host≈ 0.1 and becomes larger for more disparate satellite-to-host mass ratios, reaching a factor of ∼3.3 for M sat/ M host≈ 0.01. Based on our simulations, we propose a new, easily implementable fitting formula that accurately predicts the time-scale for an extended satellite to sink from the virial radius of a host halo down to the halo's centre for a wide range of M sat/ M host and orbits. Including a central bulge in each galaxy changes the merging time-scale by ≲10 per cent. To highlight one concrete application of our results, we show that merging time-scales often used in the literature overestimate the growth of stellar mass by satellite accretion by ≈40 per cent, with the extra mass gained in low mass ratio mergers.  相似文献   

19.
We present predictions for the line-of-sight velocity dispersion profiles of dwarf spheroidal galaxies and compare them to observations in the case of the Fornax dwarf. The predictions are made in the framework of standard dynamical theory of spherical systems with different velocity distributions. The stars are assumed to be distributed according to Sérsic laws with parameters fitted to observations. We compare predictions obtained assuming the presence of dark matter haloes (with density profiles adopted from N -body simulations) with those resulting from Modified Newtonian Dynamics (MOND). If the anisotropy of velocity distribution is treated as a free parameter, observational data for Fornax are reproduced equally well by models with dark matter and with MOND. If stellar mass-to-light ratio of 1 M/L is assumed, the required mass of the dark halo is     , two orders of magnitude larger than the mass in stars. The derived MOND acceleration scale is     . In both cases a certain amount of tangential anisotropy in the velocity distribution is needed to reproduce the shape of the velocity dispersion profile in Fornax.  相似文献   

20.
Observations on galactic scales seem to be in contradiction with recent high resolution N-body simulations. This so-called cold dark matter (CDM) crisis has been addressed in several ways, ranging from a change in fundamental physics by introducing self-interacting cold dark matter particles to a tuning of complex astrophysical processes such as global and/or local feedback. All these efforts attempt to soften density profiles and reduce the abundance of satellites in simulated galaxy halos. In this contribution we are exploring the differences between a Warm Dark Matter model and a CDM model where the power on a certain scale is reduced by introducing a narrow negative feature (`dip'). This dip is placed in a way so as to mimic the loss of power in the WDM model: both models have the same integrated power out to the scale where the power of the Dip model rises to the level of the unperturbed CDM spectrum again. Using N-body simulations we show that that the new Dip model appears to be a viable alternative to WDM while being based on different physics: where WDM requires the introduction of a new particle species the Dip stems from anon-standard inflationary period. If we are looking for an alternative to the currently challenged standard ΛCDM structure formation scenario, neither the ΛWDM nor the new Dip model can be ruled out with respect to the analysis presented in this contribution. They both make very similar predictions and the degeneracy between them can only be broken with observations yet to come. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号