首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The determination of the depth of daytime and nighttime mixing layers must be known very accurately to relate boundary-layer concentrations of gases or particles to upstream fluxes. The mixing-height is parametrized in numerical weather prediction models, so improving the determination of the mixing height will improve the quality of the estimated gas and particle budgets. Datasets of mixing-height diurnal cycles with high temporal and spatial resolutions are sought by various end users. Lidars and ceilometers provide vertical profiles of backscatter from aerosol particles. As aerosols are predominantly concentrated in the mixing layer, lidar backscatter profiles can be used to trace the depth of the mixing layer. Large numbers of automatic profiling lidars and ceilometers are deployed by meteorological services and other agencies in several European countries providing systems to monitor the mixing height on temporal and spatial scales of unprecedented density. We investigate limitations and capabilities of existing mixing height retrieval algorithms by applying five different retrieval techniques to three different lidars and ceilometers deployed during two 1-month campaigns. We studied three important steps in the mixing height retrieval process, namely the lidar/ceilometer pre-processing to reach sufficient signal-to-noise ratio, gradient detection techniques to find the significant aerosol gradients, and finally quality control and layer attribution to identify the actual mixing height from multiple possible layer detections. We found that layer attribution is by far the most uncertain step. We tested different gradient detection techniques, and found no evidence that the first derivative, wavelet transform, and two-dimensional derivative techniques have different skills to detect one or multiple significant aerosol gradients from lidar and ceilometer attenuated backscatter. However, our study shows that, when mixing height retrievals from a ultraviolet lidar and a near-infrared ceilometer agreed, they were 25?C40% more likely to agree with an independent radiosonde mixing height retrieval than when each lidar or ceilometer was used alone. Furthermore, we point to directions that may assist the layer attribution step, for instance using commonly available surface measurements of radiation and temperature to derive surface sensible heat fluxes as a proxy for the intensity of convective mixing. It is a worthwhile effort to pursue such studies so that within a few years automatic profiling lidar and ceilometer networks can be utilized efficiently to monitor mixing heights at the European scale.  相似文献   

2.
Since 2006 different remote monitoring methods for determining mixing-layer height have been operated in parallel in Augsburg (Germany). One method is based on the operation of eye-safe commercial mini-lidar systems (ceilometers). The optical backscatter intensities recorded with ceilometers provide information about the range-dependent aerosol concentration; gradient minima within this profile mark the tops of mixed layers. Special software for these ceilometers provides routine retrievals of lower atmospheric layering. A second method, based on sodar observations, detects the height of a turbulent layer characterized by high acoustic backscatter intensities due to thermal fluctuations and a high variance of the vertical velocity component. This information is extended by measurements with a radio-acoustic sounding system (RASS) that directly provides the vertical temperature profile from the detection of acoustic signal propagation and thus temperature inversions that mark atmospheric layers. Ceilometer backscatter information is evaluated by comparison with parallel measurements. Data are presented from 2 years of combined ceilometer and RASS measurements at the same site and from comparison with a nearby (60 km) radiosonde for larger-scale humidity information. This evaluation is designed to ensure mixing-layer height monitoring from ceilometer data more reliable.  相似文献   

3.
A Comparison Between Modelled and Measured Mixing-Layer Height Over Munich   总被引:1,自引:0,他引:1  
An attempt is made to correlate the mixing heights, derived from ceilometer and Sodar measurements, to those simulated by different atmospheric boundary-layer parameterization schemes. The comparison is performed at two sites (one suburban and one rural) close to Munich, Germany for two spring and two winter days. It is found that, under convective conditions, the mixing height determined, by both Sodar and ceilometer, corresponds to the middle or the top of the entrainment zone, respectively, as calculated from the eddy-viscosity profiles. Under stable conditions, the measured mixing height is related to the height where eddy viscosities attain their minimum values (Sodar) or to the height of residual mechanical turbulence (ceilometer). During a foehn case with weak turbulence, the measured mixing height from both Sodar and ceilometer is better inferred by considering the eddy-viscosity profiles during daytime and the height of the low-level jet during nighttime.  相似文献   

4.
Twenty-six months of continuous ceilometer data are used to estimate the convective mixed-layer height for 710 days by identifying backscatter gradients associated with the entrainment zone. To accomplish this, a semi-automatic procedure is developed that removes all non-applicable data before applying a mixed-layer height algorithm to the backscatter profiles. Two different algorithms for estimating the mixed-layer height are assessed: the minimum-gradient method and the ideal-profile method. The latter of these two algorithms is found to be more robust. Comparisons of mixed-layer height values estimated from the ceilometer agree with previous observations with slightly higher estimates in the mornings and evenings. For clear days with no cumulus cloud formation, the seasonal cycle in mixed-layer heights peaks in late June to early July. Daily maximum values are suppressed by the site’s coastal location, remaining below 800 m for all but a few days. The mean daily maximum mixed-layer height increases by 384 m for days with boundary-layer clouds. The mean summer diurnal trend is found not to differ greatly from that in spring on clear days, while days with boundary-layer clouds have higher spring values than in summer. Net surface heat flux and synoptic stability likely have the largest influence on the mixed-layer heights. Additionally, large intra-monthly variability suggests a strong influence from regional dynamics.  相似文献   

5.
激光云高仪试验数据对比分析   总被引:3,自引:1,他引:2  
李肖霞  王柏林  郭伟  涂满红  张鑫  袁静 《气象》2016,42(6):764-769
文章介绍了2014年6-10月在北京市观象台和长沙气象局开展的激光云高仪的对比观测试验和结果。参与此次为期3个多月试验的仪器来自4个厂家、共5种型号的15台仪器参加了对比试验,试验采用了HY-CL51型激光云高仪与CYY-2B型激光云高仪的测量结果作为标准云高,人工观测结果辅助判断,提出了云高标准值的确定方法和云高有效观测样本的选取方法,测试了不同型号激光云高仪的各项性能。结果表明:不同型号的激光云高仪均存在漏判和误判现象,雾、霾天气对仪器的漏判和误判会造成较大的影响,部分型号的仪器样本准确率整体较高,各项性能指标能够达到业务要求。  相似文献   

6.
利用2016年10月~2017年2月激光云高仪资料,分析了霾、雾、轻霾、轻雾、晴空等天气后向散射强度廓线特征,通过统计各高度层后向散射强度、后向散射强度垂直梯度的概率分布,分析了多种天气的气溶胶光学特性。结果表明:雾天气后向散射强度较霾天气大,雾厚度一般不超过300m。霾天气后向散射强度随着高度的增加减小缓慢,霾的厚度大于500m。与雾和轻雾相比,霾和轻霾天气垂直梯度绝对值取小值的概率较大。雾和轻雾天气400m高度以上垂直梯度绝对值较小,400m高度以下数值较大。由于霾区内粒子分布较均匀,雾区粒子分布起伏明显,雾区内后向散射强度忽大忽小,所以雾天气垂直梯度绝对值出现大值的概率较霾天气高。  相似文献   

7.
地基双波段测云系统及其对比试验   总被引:2,自引:0,他引:2       下载免费PDF全文
针对地基测云系统中云在可见光波段与红外波段中表现出的不同特性,用双站数字式云高仪所测云高进行标校,结合地面实时观测天顶红外辐射亮温及地面环境参数,分析地面到云层底大气对红外辐射亮温的影响,从中发现利用天空红外辐射亮温来遥感云底高度的可行性,研发地基双波段测云系统。该系统以对流层大气的垂直温度递减率为理论基础,建立云层底到地面的温度递减梯度参数K,根据递减梯度参数反演天顶方向的云高。该算法不依赖于探空数据,通过实时定标形式得出符合仪器所在地的云底高反演公式。通过与维萨拉激光云高仪CL31进行数据对比分析得出,地基双波段测云系统反演结果具有较高的准确性。  相似文献   

8.
In this study,cloud base height(CBH) and cloud top height(CTH) observed by the Ka-band(33.44 GHz) cloud radar at the Boseong National Center for Intensive Observation of Severe Weather during fall 2013(September-November) were verified and corrected.For comparative verification,CBH and CTH were obtained using a ceilometer(CL51) and the Communication,Ocean and Meteorological Satellite(COMS).During rainfall,the CBH and CTH observed by the cloud radar were lower than observed by the ceilometer and COMS because of signal attenuation due to raindrops,and this difference increased with rainfall intensity.During dry periods,however,the CBH and CTH observed by the cloud radar,ceilometer,and COMS were similar.Thin and low-density clouds were observed more effectively by the cloud radar compared with the ceilometer and COMS.In cases of rainfall or missing cloud radar data,the ceilometer and COMS data were proven effective in correcting or compensating the cloud radar data.These corrected cloud data were used to classify cloud types,which revealed that low clouds occurred most frequently.  相似文献   

9.
毫米波云雷达与激光云高仪观测数据对比分析   总被引:3,自引:2,他引:1  
李思腾  马舒庆  高玉春  杨玲  蒲晓虎  陶法 《气象》2015,41(2):212-218
2013年5月1日至6月8日,中国气象局气象探测中心在中国气象局大气探测综合试验基地进行了云高观测试验,试验仪器包括:(1)毫米波云雷达(35 GHz),观测数据为回波功率值,时间分辨率1 min;(2)激光云高仪,观测数据为后向散射光强度,时间分辨率为1 min;本工作对39天试验数据进行对比分析,结果表明:毫米波云雷达数据获取率要比激光云高仪的数据获取率高26%;在雾霾天气时激光云高仪的数据获取率比毫米波云雷达低51%;降水天气对激光云高仪测量云底高度的结果影响较大,对云雷达的测量的结果影响较小;毫米波云雷达和激光云高仪测得云底高度平均相差不超过300 m,比较接近。  相似文献   

10.
Models of the diabatic wind profile over homogeneous terrain for the entire atmospheric boundary layer are developed using mixing-length theory and are compared to wind speed observations up to 300 m at the National Test Station for Wind Turbines at Høvsøre, Denmark. The measurements are performed within a wide range of atmospheric stability conditions, which allows a comparison of the models with the average wind profile computed in seven stability classes, showing a better agreement than compared to the traditional surface-layer wind profile. The wind profile is measured by combining cup anemometer and lidar observations, showing good agreement at the overlapping heights. The height of the boundary layer, a parameter required for the wind profile models, is estimated under neutral and stable conditions using surface-layer turbulence measurements, and under unstable conditions based on the aerosol backscatter profile from ceilometer observations.  相似文献   

11.
吴翀  刘黎平  翟晓春 《大气科学》2017,41(4):659-672
激光云高仪和云雷达是探测云底的两种设备,但其探测能力和探测结果有一定的差异,对比分析两种设备的测云效果有助于正确认识它们的探测优势,推进我国云雷达在云探测中的应用。本文提出了基于云雷达数据的云底和云顶高度分析方法,利用2014年夏季第三次青藏高原大气科学试验云雷达、激光雷达和激光云高仪数据,统计了三种设备探测青藏高原低云、中云和高云的云底高度偏差、探测率,分析了激光云高仪探测云底偏高的原因,根据探测结果提出了固态发射机体制雷达探测青藏高原低云的优化观测模式,模拟分析了探测效果。结果表明:(1)云雷达对高云的探测能力要明显优于激光云高仪,但其对低云的探测能力有待改进,激光云高仪探测云底下部的边界层内的云雷达回波信号可能是非云降水回波;低层云的遮挡作用明显降低了激光云高仪对多层云的观测能力;与激光云高仪相比,云雷达仍然会漏掉一些高云和中云。(2)激光云高仪探测的中云和高云的云底很多在云雷达回波内部,云雷达和激光云高仪观测的云底的时空对应关系比较差。(3)增大激光发射功率和优化固态发射机体制云雷达观测模式可提高云的观测能力,微波和激光雷达数据融合可全面了解不同类型云的宏观特征。这一工作为云雷达和激光雷达数据的应用,评估激光云高仪和云雷达探测青藏高原云的能力,讨论设计优化的云观测方案,为推进我国云观测技术的发展提供了重要参考依据。  相似文献   

12.
郭伟  刘磊 《气象科技》2016,44(6):860-866
利用地基红外测云仪(WSIRCMS)在2011年11月北京观象台的连续观测数据,从总云量、云底高和天空类型3个方面初步分析其探测能力。结果表明:1该仪器能够不分昼夜同时实现云高、云量(高、中、低和总云量)和天空类型的连续自动探测;2与参考标准云量的差值在±10%以内的样本数占总样本数的72.5%,有霾存在时,对中高云的观测能力较弱,造成云量观测结果差异较大;3与激光云高仪的天顶方向的无云一致率达94.9%;在中低云情况下,云高观测结果一致性较好,高云时存在较大差异,WSIRCMS观测云高偏高;4与人工分类的天空类型一致的样本数占总样本数的82.63%,对波状云、积状云和混合云的识别能力稍低。  相似文献   

13.
To study the wind field within the atmospheric boundary layer over the Tokyo metropolitan area, Doppler lidar observations were made 45 km north of Sagami Bay and 30 km west of Tokyo Bay, from 14 May to 15 June 2008. Doppler lidar on 27 May 2008 observed the vertical and horizontal wind structure of a well-developed sea-breeze front (SBF) penetrating from Sagami Bay. At the SBF, a strong updraft (maximum w approximately equal to 5 m s−1) was formed with a horizontal scale of about 500 m and vertical scale of 2 km. The spatial relationship between the strong updraft over the nose of the SBF and prefrontal thermal suggests that the strong updraft was triggered by interaction between the SBF and the thermal. After the updraft commenced, a collocated ceilometer observed an intense aerosol backscatter up to 2 km above ground level. The observational results suggest that the near-surface denser aerosols trapped in the head region of the SBF escaped from the nose of the SBF and were then vertically transported up to the mixing height by the strong updraft at the SBF. This implies that these phenomena occurred not continuously but intermittently. The interaction situations between the SBF and prefrontal thermal can affect the wind structure at the SBF and the regional air quality.  相似文献   

14.
雷孝恩  张时禹 《大气科学》1992,16(2):228-236
本文设计了一冠层(CL)和大气边界层(ABL)之间物质和动量交换的耦合模式,并对CL内风速、物质随高度分布和日变化作了数值模拟.结果表明,由大尺度扩散引起冠层低层的第二个风速极大和多极值的浓度分布,CL内湍流通量和物质浓度随高度减小而迅速降低,以及CL动量减小对浓度分布的重要影响,模式都能很好地描述,模拟结果与观测事实有好的一致性.利用浓度和温度廓线相似假设,导出了质量汇的经验关系.  相似文献   

15.
The spatial variability of both turbulent flow statistics in the roughness sublayer (RSL) and temperature profiles within and above the canopy layer (CL) were investigated experimentally in a densely built-up residential area in Tokyo, Japan. Using five towers with measuring devices, each tower isolated from the others by at least 200 m, we collected high-frequency measurements of velocity and temperature at a height z=1.8 z H, where z H, the mean building height in the area, is 7.3 m. Also, temperature profiles were measured from z=0.4 to 1.8 z H. The ‘areal mean’ geometric parameters that were obtained for the areas within 200 m of each tower were fairly homogeneous among the tower sites. The main results are as follows: (1) The spatial variability of all RSL turbulent statistics, except the sensible heat flux, was comparable to that reported in a pine forest. Also, the variability decreased with increasing friction velocity. (2) The spatial variability of the RSL sensible heat flux was larger than that reported in a pine forest. Also, the variability depended on the time of the day and became larger in the morning. The difference among the sites was well related to the areal fraction of vegetation. (3) The spatial variability of the CL temperature profile depended on the time of the day and became larger in the morning. Nevertheless, the spatial standard deviation of CL temperature was always below 0.7 K. (4) It is suggested that the “warming-up” process in the morning when heat storage is dominant increases the spatial variation of RSL sensible heat flux and CL temperature according to the local properties around each tower and the variation decreases once there is further convective mixing in the midday  相似文献   

16.
基于双目成像云底高度测量方法   总被引:4,自引:0,他引:4       下载免费PDF全文
采用基线长为60 m的一对数字摄像机,构成双目成像云底高度测量系统,随着数字摄像技术和立体视觉传感器的发展,尤其是双目成像视觉传感器以结构简单、使用方便、测量精度高等诸多优点而被广泛应用。通过直方图均衡化方法对图像进行增强,利用亚像素角点检测器检测角点提高测量精度,并采用归一化互相关方法进行区域相关检测寻找同名点,将外极线约束引入图像匹配过程中进行同名点粗差去除,提高测量准确度;再根据匹配特征点得到相对视差,利用摄影测量原理计算云底高度;建立三维实验室标校场对相机进行内外方位元素标校,利用星星相对位置与相机姿态角的关系对相机进行现场标校,简化标校系统提高测量精度。利用2011年5月1日—6月30日采集的样本,在北京市观象台与维萨拉生产的CL31激光云高仪进行对比试验,并对产生云底高度测量系统误差的可能原因做出具体分析。  相似文献   

17.
Mixing heights calculated by the Danish OML meteorological pre-processor are compared to those diagnosed from radio- and tether-sonde vertical potential temperature profiles. All methods give reliable estimates of noon mixing heights deduced from radiosoundings, especially when the boundary layer is fully convective. Differences are larger during convective conditions without a well-defined capping inversion in the radiosonde potential temperature profile or when OML calculates a mechanical mixing height. The OML model is also able to calculate the daily course of the mixing height as expected. The tethersonde-derived mixing heights are especially valuable during the morning rise of the elevated inversion. Modifications to all three methods to improve mixing-height predictions are discussed.  相似文献   

18.
The diurnal and seasonal variability of the mixed-layer height in urban areas has implications for ground-level air pollution and the meteorological conditions. Measurements of the backscatter of light pulses with a commercial lidar system were performed for a continuous period of almost six years between 2011 and 2016 in the southern part of Mexico City. The profiles were temporally and vertically smoothed, clouds were filtered out, and the mixed-layer height was determined with an ad hoc treatment of both the filtered and unfiltered profiles. The results are in agreement when compared with values of mixed-layer height reconstructed from, (i) radiosonde data, and (ii) surface and vertical column densities of a trace gas. The daily maxima of the mean mixed-layer height reach values \(> 3\hbox { km}\) above ground level in the months of March–April, and are clearly lower (\(< 2.7\hbox { km}\)) during the colder months from September–December. Mean daily minima are typically observed at 0700 local time (UTC ? 6h), and are lowest during the winter months with values on average below 500 m. The data presented here show an anti-correlation between high-pollution episodes and the height of the mixed layer. The growth rate of the convective mixed-layer height has a seasonal behaviour, which is characterized together with the mixed-layer-height anomalies. A clear residual layer is evident from the backscattered signals recorded in days with specific atmospheric conditions, but also from the cloud-filtered mean diurnal profiles. The occasional presence of a residual layer results in an overestimation of the reported mixed-layer height during the night and early morning hours.  相似文献   

19.
Different methods to determine the height of the convective boundary layer from lidar measurements are described and compared. The differences in either aerosol backscatter or in humidity between the boundary layer and the free troposphere are used, and either the variance or the gradient profile of the parameter under study is evaluated. On average the different methods are in very good agreement. Temporal resolution of the gradient methods is very high, on the order of seconds, but often there is an ambiguity in the choice of the “relevant” minimum in the gradient that corresponds to the boundary-layer height. This is avoided by combining the variance and the gradient methods, using the result of the variance analysis as an indicator for the region where the minimum of the gradient is sought. The combined method is useful for automated determination of the boundary-layer height at least under convective conditions. Aerosol backscatter is found to be as good an indicator for boundary-layer air as humidity, so a relatively simple backscatter lidar is sufficient for determination of the boundary-layer height.  相似文献   

20.
The vertical distribution of single scattering albedos (SSAs) of Asian dust mixed with pollutants was derived using the multi-wavelength Raman lidar observation system at Gwangju (35.10°N,126.53°E).Vertical profiles of both backscatter and extinction coefficients for dust and non-dust aerosols were extracted from a mixed Asian dust plume using the depolarization ratio from lidar observations.Vertical profiles of backscatter and extinction coefficients of non-dust particles were input into an inversion algorithm to retrieve the SSAs of non-dust aerosols.Atmospheric aerosol layers at different heights had different light-absorbing characteristics.The SSAs of non-dust particles at each height varied with aerosol type,which was either urban/industrial pollutants from China transported over long distances at high altitude,or regional/local pollutants from the Korean peninsula.Taking advantage of independent profiles of SSAs of non-dust particles,vertical profiles of SSAs of Asian dust mixed with pollutants were estimated for the first time,with a new approach suggested in this study using an empirical determination of the SSA of pure dust.The SSAs of the Asian dust-pollutants mixture within the planetary boundary layer (PBL) were in the range 0.88-0.91,while the values above the PBL were in the range 0.76-0.87,with a very low mean value of 0.76 ± 0.05.The total mixed dust plume SSAs in each aerosol layer were integrated over height for comparison with results from the Aerosol Robotics Network (AERONET) measurements.Values of SSA retrieved from lidar observations of 0.92 ± 0.01 were in good agreement with the results from AERONET measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号