首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用2012—2021年海南岛323个地面气象观测站逐小时降水资料及ERA5高分辨率资料,统计分析了海南岛近10 a的极端短时强降水时空分布特征,利用合成分析法探讨了产生极端短时强降水的环流背景。结果表明:海南岛极端短时强降水每年约为422.3次,占短时强降水的8%。极端短时强降水的季节和日变化明显,多发生在4—10月的午后(14:00—19:00),8月站次最多,近10 a发生极端短时强降水的站次最多为11次,出现在海南岛西北部。极端短时强降水日变化呈单峰型,峰值出现在17:00,为每年62.1次。午后发生极端短时强降水的平均降水强度较大,均值为67.8 mm·h-1,峰值为111.5 mm·h-1。海南岛极端短时强降水年、暖季(4—9月)的空间分布有两个高发地区,为海南岛西北部和东部沿海地区,暖季的天气系统是影响海南岛极端短时强降水的主要天气系统。海南岛极端短时强降水逐月空间分布差异与海陆风、地形均有密切关系,各月触发条件不同,7—8月极端短时强降水相对较多。  相似文献   

2.
利用陕西省99个国家级气象站逐小时降水量资料,分析了2005—2018年5—10月陕西短时强降水时空分布特征,结果表明:(1)2005—2018年陕西极值雨强呈振荡减小趋势,7月出现的强降水累计频次最多,而8月极值雨强最大;短时强降水主要发生在午后到夜间,日变化呈单峰分布,强降水频次峰值出现在17—00时,但极值雨强易出现在22—00时。(2)陕南为陕西短时强降水高发区,极值雨强可达40~80 mm/h,镇巴、平利雨强可达90 mm/h;榆林北部特别是西北部短时强降水日数少,极值雨强小,最大不超过50 mm/h;关中平原地区短时强降水日数少,但极值强,最大可达1015 mm/h。5—10月陕西各地区短时强降水日、极值雨强有明显月际差异,7—8月短时强降水出现的范围广,日数多,强度大;5、6和9月范围、日数及强度均较小。(3)陕西各区域短时强降水日变化差异明显,陕北西部、关中西部呈单峰型,陕北东部、关中东部双峰明显,陕南日变化相对较小。陕西极值雨强主要出现在17—23时,关中东部、安康极值雨强多出现在19时,商洛极值雨强多出现在18时。  相似文献   

3.
利用1998-2020年三峡库区35个测站的小时降水资料,围绕近23年三峡库区小时强降水(≥20 mm·h-1)和小时极端强降水(≥50 mm·h-1)的总降水量、频次、强度等指标,分析极端降水发生的时空变化特征,并对比分析2010年前后三峡小时极端降水变化特征。结果表明:1998年三峡库区小时强降水与极端强降水发生次数与强度均异常偏多。若剔除该年,1999-2020年小时强降水与极端强降水发生总频次均无显著变化趋势。近23年,小时强降水平均每年每站发生3.8次,大部分站点年均发生3.0~5.0次;小时极端强降水年均发生5.5次,大部分站点年均发生<0.25次,中部山区的建始-宣恩一带年均发生次数较多。2010年后年平均小时强降水量减小了10.4 mm,减小的区域主要发生在三峡库区西部的重庆地区,该区域年平均减小15.5 mm;总体有31.4%的站点年平均小时强降水量与发生次数均有所增加,湖北中部的建始-来凤一带增幅较为明显,邻近5站的年强降水雨量平均增加16.1 mm;强降水小时雨强显示增加特征站点占48.6%,强降水小时雨强增加的范...  相似文献   

4.
选取2010—2014年广东省86个国家气象站和2 300多个区域中尺度气象站的小时雨量数据,分析了广东短时强降水的时空分布特征,结果表明:(1)广东的短时强降水多发区集中在3大暴雨中心以及珠三角城市群和西南部的湛江、茂名地区;短时强降水的空间分布与地形关系密切,多产生于河谷、湖泊和喇叭口地形区。(2)短时强降水有明显的月变化,5月份短时强降水次数爆发性增长,次数可占全年总次数的25%,其次是6和8月。(3)短时强降水的日变化总体表现为双峰型,主峰在午后至傍晚时段(14:00—20:00),次峰在早晨前后(04:00—09:00),而午夜(22:00—02:00)是短时强降水发生最少的时段。  相似文献   

5.
西南地区短时强降水的气候特征分析   总被引:5,自引:2,他引:3  
毛冬艳  曹艳察  朱文剑  田付友  郝丽萍  康岚  张涛 《气象》2018,44(8):1042-1050
利用国家级地面气象站逐小时和日降水数据集资料,对西南地区短时强降水的气候特征进行了分析,并对近30年来强短时强降水和强暴雨的变化趋势进行了分析。结果表明:西南地区短时强降水主要集中在4-10月;三个高发区分别位于贵州东南部、四川盆地西南部和云南东南部,年均发生次数约5~6次;强度一般为20~30 mm·h~(-1),其中贵州30 mm·h~(-1)以上的小时降水强度所占比例最高,四川盆地西部边缘地区小时降水最强,超过80 mm·h~(-1),极端小时降水达123.1 mm·h~(-1);短时强降水具有明显的夜发性,02时左右为发生频次的峰值时段。从近30年西南地区超过第90百分位的强短时强降水与强暴雨的长期变化趋势来看,强短时强降水呈现频次增加、强度增强的变化趋势,强暴雨则变化不明显。  相似文献   

6.
《湖北气象》2021,40(4)
利用2005—2018年贵州省84个国家气象站逐小时降水量资料,采用统计诊断分析方法,在区分量级前提下,结合地形特征,分析贵州1 h短时强降水和逐3 h降水的时空分布特征。结果表明:(1) 14 a中短时强降水共出现5 981站次,年均427.2站次,其空间分布与地形特征密切相关,整体呈现南多北少、东多西少的特征,贵州西南部“喇叭口”地形和东南部雷公山南侧“喇叭口”地形与河谷地形重叠区域为短时强降水高发区。短时强降水分级统计显示,99%的短时强降水集中在前两个雨强较小的等级,而R1h≥80 mm的短时强降水14 a只出现过5站次。各站点最大雨强空间分布与短时强降水的总站次数分布趋势较为一致,一般南部大于北部、中东部大于西部,局部存在差异。平均雨强整体呈现南强北弱的特征。(2)在2005—2013年期间,短时强降水站次数大多处于年均值(427.2站次)之下,2011年达到最低值275站次,2014年站次数骤然增加至564站次,2015年继续增加到最大值662站次,其后迅速回落到比年均值略高的位置小幅变化。各站点短时强降水的年际变化在高发区离散度较大,在贵州西北部低发区离散度较小;月际变化曲线呈单峰型,5—8月份是降水高发时段,6月达到峰值。短时强降水主要以单站出现的局地性降水为主,同一时次出现3站以上的情况很少,以6月最多;短时强降水最早出现旬数呈东早西晚、南早北晚的特征,结束旬数西早东晚,北早南晚;各站点短时强降水出现概率最大旬多数集中在第16—18旬(即6月);短时强降水日变化的时间曲线呈单峰型,21时至次日07时为高发时段,中午12时前后出现较少。短时强降水日变化的空间分布特征为傍晚到前半夜主要集中在贵州西部,而后半夜多出现在东部和南部地区,中午前后全省均较少出现。(3)逐3 h降水时空分布特征与R1h大体一致,局部存在一些差异。  相似文献   

7.
基于甘肃省81个自动气象站2002—2012年逐小时降水数据,分析了甘肃省近11 a来短时强降水的时空变化特征。结果表明:短时强降水频次自甘肃省西北向东南逐步递增,陇东南地区是甘肃省短时强降水发生频次最多、强度最强的地区。短时强降水存在2个高发中心,一个在以合水为中心的陇东地区,另一个在以徽县为中心的徽成盆地。短时强降水主要发生在午后至前半夜,出现时段集中在16:00—00:00,17时前后是短时强降水天气高发时段。短时强降水主要出现在5—9月,其中7—8月是一年中出现最多的月份,其次是6月。近11 a来,短时强降水频次呈上升趋势,2006年和2010年出现了2个峰值,其中2010年最多,发生52次,2004年最少只有17次。  相似文献   

8.
杨学斌  代玉田  王宁  周成 《山东气象》2018,38(2):103-109
利用山东2006—2015年5—9月123个国家级气象观测站10 a逐小时降水量资料,统计分析了山东短时强降水的时空分布特征,结果表明:1)站次时空分布不均。鲁南易出现短时强降水,2013年最多,达到了564站次,7月最多,平均207站次,多出现在傍晚前后和凌晨。2)极值时空分布差异较大。10 a单站极值大值区分布在鲁西北、鲁南和半岛东部,2009年最多,为17站,且多夜间发生;10 a中年度极值均出现在13:00—次日02:00,8月最多,为7次。3)5、6、9月局地和小范围短时强降水天气过程所占比例较大,7—8月大范围短时强降水过程明显增加。  相似文献   

9.
2008-2012年南京短时强降水特征分析   总被引:4,自引:0,他引:4  
利用2008-2012年南京自动气象观测站逐时降水量的观测资料,分析南京短时强降水的发生规律,包括短时强降水的年变化、月变化、日变化和空间分布等特征。结果表明:2008-2012年南京雨强大于50 mm/h-1的致灾性短时强降水过程的发生次数呈显著增长趋势;短时强降水天气主要出现在6-9月,其中7-8月出现日数最多,雨强最大;春雨期短时强降水最易发生在凌晨,梅雨期短时强降水最易发生在上午和傍晚,台汛期短时强降水最易发生在上午;下半夜-凌晨短时强降水出现次数较少,傍晚前后是短时强降水多发时段;短时强降水天气的空间分布具有明显的城郊差异;城市化效应不能引起城区的局地降雨,但在大尺度天气系统过境时,会使城区的对流活动较郊区更活跃,且城市下风向地区的降水也因此增强。  相似文献   

10.
利用甘肃兰州地区144个区域自动站和国家站2010—2018年4—9月逐小时降水资料和地理信息数据,详细分析了兰州市短时强降水的时空分布特征,探讨短时强降水频次与地形因子的关系。结果表明:兰州市短时强降水的阈值为10 mm·h~(-1),短时强降水事件主要发生在7月下旬至8月,21:00—22:00是集中高发时段;短时强降水频次空间分布不均,总体呈南多北少的分布格局,各站虽有显著差异,但未发生明显离散,符合正态分布,且与海拔高度、迎风坡向及坡度等地形因子显著相关,短时强降水高发区主要集中在山谷喇叭口、南风迎风坡、城市热岛区、高寒山区。  相似文献   

11.
利用2010—2018年夏季阿勒泰地区112个自动气象站逐时降水资料,采用常规统计方法分析了阿勒泰地区夏季短时强降水时空分布特征。结果表明,2010—2018年夏季阿勒泰地区短时强降水的空间分布极不均匀,主要发生在阿尔泰山和沙吾尔山迎风坡、地形陡升区、喇叭口地形、戈壁和乌伦古湖交界区等复杂地形附近;发生次数年际变化大,2017年出现最多达95次,2010年出现最少为10次;极大值出现在2017年6月30日15:00哈巴河县合孜勒哈克村(37.5 mm/h),极小值出现在2015年8月9日17:00福海县工业园区(22.5 mm/h)。旬、日发生频次变化均呈单峰型,旬峰值出现在7月上旬,日高峰值时段出现在午后至傍晚(19时左右);各站短时强降水持续时间为1—2 h,区域性短时强降水最长持续时间为5 h; 2017年短时强降水出现最多、持续时间最长、范围最广、强度最强。  相似文献   

12.
利用2011—2015年安徽省自动气象站的降水观测资料和静止气象卫星FY-2E的黑体辐射温度(Black Body Temperature,TBB)资料,分析了安徽省不同地形条件下汛期短时强降水的时空分布特征及其与中尺度对流活动的关系,并对短时极端强降水的时空特征进行了初步探讨。结果表明:2011—2015年不同地形条件下皖南山区为安徽省汛期短时强降水集中出现的区域,其次为大别山区和中东部丘陵地区,淮北平原发生最少。安徽省不同地形条件下汛期短时强降水发生次数月变化呈显著的单峰型,7月短时强降水发生最频繁,其他月份有所不同;候变化具有显著的多峰值—间断性发展的特点,主要集中出现在6月第1候至8月第6候之间,淮北平原变化最大,皖南山区则较均匀;日变化总体呈单峰型特征,午后15—19时最集中;皖南山区和中东部丘陵最明显;淮北平原和大别山区虽然仍以午后居多,但具有多峰值的特点,其中淮北平原除午后外,06—07时短时强降水发生较多;大别山区除午后外,02—03时和10时也为短时强降水发生的峰值。安徽省不同地形条件下汛期短时极端强降水分布较零散,没有明显的高发区,时间变化与短时强降水类似,具有一定的统计规律:皖南山区7月短时极端强降水发生最多,尤其是7月第5候;淮北平原8月短时极端强降水发生最多,尤其是8月第6候;中东部丘陵7月短时极端强降水发生最多,候变化相对均匀。皖南山区和中东部丘陵短时极端强降水集中出现在午后16—19时,其中大别山区02时还有一个峰值,淮北平原短时极端强降水日变化无显著峰值。  相似文献   

13.
利用呼伦贝尔市CIMISS系统实况资料,统计分析了2010—2021年5—9月东北冷涡背景下的强对流天气时空分布及物理量参数特征。结果表明:(1)5月雷暴大风次数最多,6月冰雹次数最多,6—8月是短时强降水集中发生期,尤以8月次数最多。(2)强对流天气主要出现在12:00—20:00,其中短时强降水每个时次均有发生,但雷暴大风与冰雹天气在21:00—次日08:00基本没有发生过。(3)大兴安岭西部雷暴大风站次较多;大兴安岭东北部、岭上及岭西北的冰雹站次较多;短时强降水与强对流天气空间分布特征较为一致,均是大兴安岭岭上南段与岭东的站次较多。(4)雷暴大风天气的风速多以17.2~20.7 m·s-1为主;短时强降水量级为20.0~29.9 mm的站次占总站次的74.3%;持续时间小于5 min冰雹居多,直径小于5 mm冰雹的站次占总站次的49.1%。(5)短时强降水850 hPa的比湿、水汽通量、水汽通量散度的物理量参数均值均大于冰雹、雷暴大风;短时强降水K指数均值大于冰雹、雷暴大风,T850-T500均值大于26℃,短时强...  相似文献   

14.
利用1991—2017年夏季(6—8月)内蒙古地区111个国家站逐时降雨量资料和1971—2017年夏季(6—8月)内蒙古地区115个国家站日降雨量资料,分别对内蒙古地区短时强降水过程和日降雨(小雨、中雨、大雨、暴雨、大暴雨和特大暴雨)过程持续性特征进行研究。结果表明:(1)内蒙古地区短时强降水过程持续最长时间为38 h,其中持续3 h所占比例最大。持续时间在12 h内的短时强降水过程在16:00(北京时,下同)—18:00降雨量偏离程度最大,但持续时间超过12 h的短时强降水过程在03:00降雨量偏离程度最大,短时强降水过程持续时间越长,降雨量极值越低。自2010年以来内蒙古地区短时强降水过程发生次数开始增多,其中持续时间在4~6 h和7~12 h的短时强降水过程增加显著,但持续时间在1~3 h短时强降水过程明显减少。(2)内蒙古地区小雨过程和暴雨过程发生次数呈现递减趋势,但近年来持续长时间的小雨过程、中雨过程和暴雨过程偏多。在2017年出现首场特大暴雨过程。内蒙古地区特大暴雨过程最长持续日数2天,其余日降雨过程最长持续日数在10~15天,其中大雨过程持续日数最长可达15天,小雨过程和中雨过程(大雨过程和暴雨过程)持续1天(2天)所占比例最高,日降雨过程降雨量极值易发生在前3天。(3)内蒙古地区降雨过程发生次数、持续小时(日)数极值和累计降雨量极值空间分布特征都表现为自内蒙古西部地区向中部偏南和东部地区递增,高值区易发生在内蒙古东部地区。  相似文献   

15.
利用2010-2019年浙江省暖季(5-9月)1426个国家站和区域站小时雨量数据和NCEP 1° X 1°逐日4次再分析资料,分析了浙江省暖季短时强降水、极端短时强降水时空分布特征及区域性短时强降水事件,结果表明:①近10年暖季短时强降水频次呈增多趋势,降水强度变化平稳;8月(上旬)降水频次最多,9月(中旬)强度最强...  相似文献   

16.
利用2008—2016年5—9月中国气象局陆面数据同化系统(CLDAS)格点融合分析降水资料以及降水观测资料,在对CLDAS格点降水融合资料进行验证的基础上,对贺兰山区降水时空分布特征以及与地形的关系进行了分析。结果表明:贺兰山区降水呈“东多西少、南多北少”的分布特征,贺兰山主峰偏西0.1°存在一个超过240 mm的降水高值中心,日降水量极值西侧高于东侧。8月降水量和短时强降水次数最多,11:00—18:00降水次数最多,午后到前半夜短时强降水次数最多。贺兰山区降水以小雨为主,其次是中雨,中雨和小雨雨量占区域总雨量的比例高达85%。贺兰山区降水量随海拔高度的增加而增加,西坡降水随高度的增加率为5.1 mm/hm,东坡降水随高度的增加率为2.1 mm/hm,西坡明显高于东坡。中雨日数与地形高度的相关性较好,其它级别降雨日数与地形相关性不强。  相似文献   

17.
利用2013-2019年暖季(4-9月)小时降水资料,分析了甘肃省强降水极值及频率的时空分布特征。结果表明:(1)甘肃省小时强降水频次呈现东高西低分布,在陇南地区东南部及陇东地区北部有2个高中心,达到29次。(2)小时强降水极值在陇中地区及以南地区高,向西北递减,陇南地区降水极值最高,超过40 mm/h。(3)小时强降水频次主要出现在7-8月,同期的雨强也最大;小时强降水频次和小时雨强均在17-24时最强,峰值为21时。(4)不同区域的降水日内变化存在明显差异,河西地区小时降水频次的峰值出现在18时,陇中和陇南地区均出现在21时,陇东地区和甘南高原分别出现在22时和19时。  相似文献   

18.
近32年长沙市短时强降水的气候变化研究   总被引:1,自引:0,他引:1  
利用长沙市近32 a的1 h、3 h雨量资料,分析了长沙短时强降水年发生次数、月际分布、时段分布、极值分布等气候特征及1 h、3 h雨量极值趋势分析、突变检验。结果表明,长沙市1 h、3 h短时强降水年发生次数的多年平均值为4.4、3.7次,雨强平均为29.2 mm/h、14.8 mm/h。长沙发生1 h短时强降水高峰期为6-8月,3 h短时强降水高峰期为6-7月。1 h短时强降水容易发生在15-17时及20时等时段,3 h短时强降水容易发生在04-08时及01时等时段。1 h、3 h短时强降水年雨量极值大多出现在主汛期。年1 h雨量极值发生在7月最多,6、8月次之;年3h雨量极值发生在6月最多,7月次之。长沙市1 h、3 h短时强降水年雨量极值整体呈弱增加趋势,其长期趋势变化存在明显年代际变化特征和阶段性特征,无突变现象。  相似文献   

19.
短时强降水、雷暴大风、冰雹等不同类型强对流天气的预报预警准确性亟待提高,对不同类型强对流天气环境特征异同的准确了解是提供准确预报预警的基础。本研究针对我国海拔低于2500 m地区超过20 mm·h-1的短时强降水、最大阵风风力大于17.2 m·s-1的对流性大风和直径大于5 mm的冰雹三类强对流天气,基于2002-2010年4-9月小时降水和冰雹实况、2010-2014年4-9月的雷暴大风实况及2002-2014年4-9月的1°×1°NCEP FNL(National Center for Environmental Prediction,Global Final Analysis)资料,以NCEP FNL一天4次的时刻(02:00、08:00、14:00、20:00,北京时)为中心,通过时空匹配处理,对三类强对流天气的绝对水汽含量、相对水汽含量、静力稳定度参数、低层抬升触发与垂直风切变条件、特性层高度及部分物理量的联合分布等环境气候特征进行了研究。结果表明,华南是短时强降水的高发区域,华北中北部和华南南部是雷暴大风的两个高发区域,华北中北部...  相似文献   

20.
利用丽水地区2004—2014年的加密气象观测站的逐小时降水观测资料,统计分析了丽水地区短时强降水的时空分布特征,同时结合当地地理环境特征,对时空分布特征的成因进行了分析。结果表明:空间上,丽水地区短时强降水主要存在两个活跃区,分别位于东南部地区与西南部高山地区,地形陡峭区、喇叭口等特殊地形有助于短时强降水的发生;小时雨量最大的站点紧邻水库。时间上,从月分布特征来看,丽水地区短时强降水主要发生在5—9月,受汛期降水与热带天气系统影响,峰值分别出现在6月与8月;从日变化特征来看,丽水地区短时强降水主要呈现三峰分布特征,包括一个显著峰值与另外两个不显著峰值,其中主峰发生在午后14:00—22:00,次峰分别在03:00和08:00,不同季节日变化峰值略有不同。此外,小时雨量最大值出现在日落前后,地形导致的局地热力环流对短时强降水有增幅作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号