首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have compiled infrared photometric data from the literature of practically all T Tauri stars found up to date including 444 classical T Tauri stars (CTTSs), 1698 weak-line T Tauri stars (WTTSs) and 1258 not classified T Tauri stars (3400 in total) in addition to 196 post-T Tauri stars (PTTSs). From this data bank we extract the infrared characteristics of the different groups and discuss different origins of the infrared radiation. The observational data are taken from the AKARI, IRAS, WISE and 2MASS missions. We show that in the wavelength range 1–140 μm, all T Tauri stars have infrared excesses. CTTSs have more infrared excess than WTTSs, while PTTSs have little or no infrared excess. We found that in the 1–3 μm wavelength range the infrared emission of T Tauri stars is mainly due to thermal radiation from the photosphere and hot dust grains from circumstellar envelopes. In the 3–140 μm wavelength range the infrared emission of T Tauri stars is mainly due to radiation from dusty/gaseous disks surrounding the stars. In addition, we also make a comparison between T Tauri stars and Herbig AeBe stars (HAeBe). There are some differences between these two kinds of objects in that for HAeBe stars the infrared radiation as a rule originates in dusty/gaseous disks in the 1–3 μm wavelength range, while in the range 3–12 μm it is possibly due to PAH emission for about half of HAeBe stars. In other wavelength ranges both kinds of stars have similar infrared characteristics indicating emission from dusty/gaseous disks.  相似文献   

2.
This paper is based on 2MASS photometry (J H Ks magnitudes) of 1172 Be stars. The observed mean intrinsic colours have been derived with aid of two‐colour diagrams for Be stars of luminosity classes Ie‐IIe, IIIe and IVe‐Ve. The obtained results are the first determinations of their intrinsic colours in the astronomical literature. The smoothed infrared colours are compared with those obtained for “normal” B stars. Several two‐colour diagrams and plots of observed and smoothed intrinsic colour versus spectral type of luminosity classes Ie‐IIe, IIIe and IVe‐Ve are presented. Generally the determined infrared intrinsic colours of Be stars (VJ)0, (VH)0, and (VKs)o differ substantially from those of “normal” B stars. It is found that the intrinsic colours of B stars are generally bluer than Be stars of corresponding spectral type and luminosity class. The mean absolute visual magnitude Mv of 528 Be stars for luminosity classes Iae, Ibe‐Iabe, IIe, IIIe and IVe‐Ve is derived from HIPPARCOS parallaxes. The Mv calibration is compared with the existing ones. The Be stars are generally brighter than “normal” B stars of corresponding spectral types. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We propose a spectroscopic criterion based on Hα equivalent width and spectral type to classify classical T Tauri stars and substellar analogs. We argue that accreting objects can be identified from low-resolution optical spectroscopy, when their Hα flux is stronger than the saturation limit at Log {Lum(Hα)/Lum(bol)} = ?3.3. Additional criteria, such as the relation between HeI5876 or HeI6678 and Hα, or the ratios between the components of the CaII infrared triplet, are also discussed. We have tested the reliability of these criteria by applying them to several objects with masses in the range 0.11–0.025 M, which belong to nearby star forming regions and the TW Hya association.  相似文献   

4.
Because of the intense brightness of the OB‐type multiple star system σ Ori, the low‐mass stellar and substellar populations close to the centre of the very young σ Orionis cluster is poorly know. I present an IJHKs survey in the cluster centre, able to detect from the massive early‐type stars down to cluster members below the deuterium burning mass limit. The near‐infrared and optical data have been complemented with X‐ray imaging. Ten objects have been found for the first time to display high‐energy emission. Previously known stars with clear spectroscopic youth indicators and/or X‐ray emission define a clear sequence in the I vs. IKs diagram. I have found six new candidate cluster members that follow this sequence. One of them, in the magnitude interval of the brown dwarfs in the cluster, displays X‐ray emission and a very red JKs colour, indicative of a disc. Other three low‐mass stars have excesses in the Ks band as well. The frequency of X‐ray emitters in the area is 80±20 %. The spatial density of stars is very high, of up to 1.6±0.1 arcmin–2. There is no indication of lower abundance of substellar objects in the cluster centre. Finally, I also report two cluster stars with X‐ray emission located at only 8000–11000 AU to σ Ori AB, two sources with peculiar colours and an object with X‐ray emission and near‐infrared magnitudes similar to those of previously‐known substellar objects in the cluster. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
T Tauri stars are young stars usually surrounded by dusty disks similar to the one from which we believe our own Solar System formed. Most T Tauri stars exhibit a broad emission or absorption band between 7.5 and 13.5µm which is attributed to silicate grains in the circumstellar environment. We imaged three spatially resolved T Tauri binaries through a set of broadband filters which include the spectral region occupied by the silicate band. Two of these objects (T Tauri and Haro 6–10) are infrared companion systems in which one component is optically much fainter but contributes strongly in the infrared. Both infrared companions exhibit a deep silicate absorption which is not present in their primaries, indicating that they suffer very strong local extinction which may be due to an edge-on circumstellar disk or to a dense shell. We also took low resolution spectra of the silicate feature of two unresolved T Tauris to look for narrow features in the silicate band which would indicate the presence of specific minerals such as olivine. We observed GK Tau, for which Cohen and Witteborn (1985) reported a narrow emission feature at 9.7µm, but do not find evidence for this feature, and conclude that it is either time-dependent or an artifact of absorption by telluric ozone.Paper presented at the Conference onPlanetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

6.
Applying a color index selection the Point Source Catalog of the Two Micron All Sky Survey (2MASS PSC) has been searched for Classical T Tauri (CTT) stars in the 2nd and 3rd Galactic quadrant based on their apparent KS excess. The selection resulted in 3872 reliable CTT candidates. The obtained CTT sample is extended enough for statistical examination of the inhomogeneities in their distribution due to correlation with structures in the ISM, like infrared loops. A correlation was observed between the presence of dust loops and the CTT density. The latter shows an excess on loops with respect to that expected from random fluctuation in a homogeneous distribution matching with the observed overall distribution. Monte Carlo simulations were used to show the significance of the excess. The results imply that the formation of a fraction of CTTs was triggered during the loop formation. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
We collected almost all Galactic Wolf-Rayet (hereafter WR) stars found so far from the literature. 578 WR stars are gathered in this paper. 2MASS counterparts with good quality magnitudes in all JHK bands are listed for 364 WR stars. In addition, WISE counterparts for these sources are also identified. It is found that free-free emission is the main dominant source for the infrared excess in most WR stars up to 3.4 μm. However at the longer wavelengths the thermal radiation is dominant. In addition, WR stars in Clusters of the Galactic center region have the strong infrared excess in the near infrared due to the dust thermal emission from the strong star forming activity in the Galactic center region. For some WR stars with the WC spectral type, in particular, with WCd type, the dust thermal emission is important radiation source while many WR stars with the WC spectral type have the near infrared flux enhancement from the broad line emission in the K band. It is also shown that many single WC stars with different spectral sub-types have different locations in the near infrared two-color diagram, in particular, WC6 and WC9d stars can be separated respectively from other spectral type stars while single WN stars with different spectral sub-types can not be separated in the near infrared two-color diagram.  相似文献   

8.
《New Astronomy》2007,12(6):441-445
The discovery of optical jets immersed in the strong UV radiation field of the Rosette Nebula sheds new light on, but meanwhile poses challenges to, the study of externally irradiated jets. The jet systems in the Rosette are found to have a high state of ionization and show unique features. In this paper, we investigate the evolutionary status of the jet-driving sources for young solar-like stars. To our surprise, these jet sources indicate unexpected near infrared properties with no excess emission. They are bathed in harsh external UV radiation such that evaporation leads to a fast dissipation of their circumstellar material. This could represent a transient phase of evolution of young solar-like stars between classical and weak lined T Tauri stars. Naked T Tauri stars formed in this way have indistinguishable evolutionary ages from those of classical T Tauri stars resulting from the same episode of star formation. However, it would be hard for such sources to be identified if they are not driving an irradiated jet in a photoionized medium.  相似文献   

9.
An attempt is made to explain the infrared radiation observed for several quasars and Seyfert galaxies as thermal radiation of a dust envelope surrounding the cores of these objects. Two kinds of dust particles (graphite and silica) are taken into consideration. It is shown that the observed spectral behaviour and the luminosity in the infrared can be introduced as thermal radiation of silica grains. In the case of 3C 273 one finds that the radius of the dust envelope is about 50 pc and the total mass of dust is about 600M .  相似文献   

10.
Linsky  Jeffrey L. 《Solar physics》1985,100(1-2):333-362
Major advances in our understanding of nonradiatively heated outer atmospheric layers (coronae, transition regions, and chromospheres) and other solar-like activity in stars has occurred in the past few years primarily as a result of ultraviolet spectroscopy from IUE, X-ray imaging from the Einstein Observatory, microwave detections by the VLA, and new optical observing techniques. I critically review the observational evidence and comment upon the trends with spectral type, gravity, age, and rotational velocity that are now becoming apparent. I define a solar-like star as one which has a turbulent magnetic field sufficiently strong to control the dynamics and energetics in its outer atmospheric regions. The best indicator of a solar-like star is the direct measurement of a strong, variable magnetic field and such data are now becoming available, but good indirect indicators include photometric variability on a rotational time scale indicating dark starspots and nonthermal microwave emission. X-rays and ultraviolet emission lines produced by plasma hotter than 104 K imply nonradiative heating processes that are likely magnetic in character, except for the hot stars where the heating is likely by shocks in the wind resulting from radiative instabilities. I conclude that dwarf stars of spectral type G-M and rapidly rotating subgiants and giants of spectral type F-K in spectroscopic binary systems are definitely solar-like. Dwarf stars of spectral type A7-F7 are almost certainly solar-like, and T Tauri and other pre-Main-Sequence stars are probably solar-like. Slowly rotating single giants of spectral type F to early K are also probably solar-like, and the helium-strong hottest Bp stars are interesting candidates for being solar-like. The O and B stars exhibit some aspects of activity but probably have weak fields and are not solar-like. Finally, the A dwarfs and the cool giants and supergiants show no evidence of being solar-like.Staff Member, Quantum Physics Division, National Bureau of Standards.  相似文献   

11.
We present a new survey for Hα emission objects in the Circinus cloud complex and introduce an efficient photometric method for detecting Hα emission via observations in a narrow‐band filter. The observed flux is compared to a blackbody fit of the continuum. Our search strategy reveals 20 stars with strong Hα emission (EW > 10 Å), eight of them being new detections. All Hα stars display infrared excess corroborating their youth. On the other hand, the region contains a number of infrared excess objects that do not show Hα emission. Our results support the picture that accretion – as witnessed by Hα emission – is a highly variable phenomenon. Therefore, Hα surveys can only trace the temporarily active objects. In contrast, infrared excess is a more robust tracer that reveals most of the population of young stellar objects in a star forming region. Our analysis of the general stellar content of the region yields a reliable distance of 450 pc for the Circinus cloud. Moreover, we find a ratio of total‐to‐selective extinction of RV = 2.8 suggesting that smaller‐than‐normal dust grains may be present. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
We consider the problem of dust grain survival in the disk winds from T Tauri and Herbig Ae stars. For our analysis, we have chosen a disk wind model in which the gas component of the wind is heated through ambipolar diffusion to a temperature of ~104 K. We show that the heating of dust grains through their collisions with gas atoms is inefficient compared to their heating by stellar radiation and, hence, the grains survive even in the hot wind component. As a result, the disk wind can be opaque to the ultraviolet and optical stellar radiation and is capable of absorbing an appreciable fraction of it. Calculations show that the fraction of the wind-absorbed radiation for T Tauri stars can be from 20 to 40% of the total stellar luminosity at an accretion rate ? a = 10?8-10?6 M yr?1. This means that the disk winds from T Tauri stars can play the same role as the puffed-up inner rim in current accretion disk models. In Herbig Ae stars, the inner layers of the disk wind (r ≤ 0.5 AU) are dust-free, since the dust in this region sublimates under the effect of stellar radiation. Therefore, the fraction of the radiation absorbed by the disk wind in this case is considerably smaller and can be comparable to the effect from the puffed-up inner rim only at an accretion rate of the order of or higher than 10?6 M yr?1. Since the disk wind is structurally inhomogeneous, its optical depth toward the observer can be variable, which should be reflected in the photometric activity of young stars. For the same reason, moving shadows from gas and dust streams with a spiral-like shape can be observed in high-angular-resolution circumstellar disk images.  相似文献   

13.
A detailed study was performed for a sample of low-mass pre-main-sequence (PMS) stars, previously identified as weak-line T Tauri stars, which are compared to members of the Tucanae and Horologium Associations. Aiming to verify if there is any pattern of abundances when comparing the young stars at different phases, we selected objects in the range from 1 to 100 Myr, which covers most of PMS evolution. High-resolution optical spectra were acquired at European Southern Observatory and Observatório do Pico dos Dias . The stellar fundamental parameters effective temperature and gravity were calculated by excitation and ionization equilibria of iron absorption lines. Chemical abundances were obtained via equivalent width calculations and spectral synthesis for 44 per cent of the sample, which shows metallicities within 0.5 dex solar. A classification was developed based on equivalent width of Li  i 6708 Å and Hα lines and spectral types of the studied stars. This classification allowed a separation of the sample into categories that correspond to different evolutive stages in the PMS. The position of these stars in the Hertzsprung–Russell diagram was also inspected in order to estimate their ages and masses. Among the studied objects, it was verified that our sample actually contains seven weak-line T Tauri stars, three are Classical T Tauri, 12 are Fe/Ge PMS stars and 21 are post-T Tauri or young main-sequence stars. An estimation of circumstellar luminosity was obtained using a disc model to reproduce the observed spectral energy distribution. Most of the stars show low levels of circumstellar emission, corresponding to less than 30 per cent of the total emission.  相似文献   

14.
The Nobeyama Millimeter Array Survey for protoplanetary disks has been made for 19 protostellar IRAS sources in Taurus; 13 of them were optically invisible protostars and 6 were young T Tauri stars. We observed 98-GHz continuum and CS(J = 2 – 1) line emissions simultaneously with spatial resolutions of 2 . 8-8 . 8 (360-1,200 AU). The continuum emission was detected from 5 out of 6 T Tauri stars and 2 out of 13 protostar candidates: the emission was not spatially resolved and was consistent with being originated from compact circumstellar disks. Extended CS emission was detected around 2 T Tauri stars and 11 protostar candidates. There is a remarkable tendency for the detectability of the 98-GHz continuum emission to be small for protostar candidates. This tendency is explained if the mass of protoplanetary disks around protostars is not as large as that around T Tauri stars; the disk mass may increase with the increase of central stellar mass by dynamical accretion in the course of evolution from protostars to T Tauri stars.Paper presented at the Conference onPlanetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

15.
We present the results of our observations of eight magnetic Herbig Ae/Be stars obtained with the X‐shooter spectrograph mounted on UT2 at the VLT. X‐shooter provides a simultaneous, medium‐resolution and high‐sensitivity spectrum over the entire wavelength range from 300 to 2500 nm. We estimate the mass accretion rates (acc) of the targets from 13 different spectral diagnostics using empiric calibrations derived previously for T Tauri‐type stars and brown dwarfs. We have estimated the mass accretion rates of our targets, which range from 2 × 10–9 to 2 × 10–7 M yr–1. Furthermore, we have found accretion rate variability with amplitudes of 0.10–0.40 dex taking place on time scales from one day to tens of days. Additional future night‐to‐night observations need to be carried out to investigate the character of acc variability in details. Our study shows that the majority of the calibration relations can be applied to Herbig Ae/Be stars, but several of them need to be re‐calibrated on the basis of new spectral data for a larger number of Herbig Ae/Be stars (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Parallaxes of W UMa stars in the Hipparcos catalogue have been analyzed. 31 W UMa stars, which have the most accurate parallaxes (σπ /π < 0.15) which are neither associated with a photometric tertiary nor with evidence of a visual companion, were selected for re‐calibrating the Period‐Luminosity‐Color (PLC) relation of W UMa stars. Using the Lutz‐Kelker (LK) bias corrected (most probable) parallaxes, periods (0.26 < P < 0.87, P in days), and colors (0.04 < (BV)0 < 1.28) of the 31 selected W UMa, the PLC relation have been revised and re‐calibrated. The difference between the old (revised but not bias corrected) and the new (LK bias corrected) relations are almost negligible in predicting the distances of W UMa stars up to about 100 pc. But, it increases and may become intolerable as distances of stars increase. Additionally, using (JH)0 and (HKs)0 colors from 2MASS (TwoMicron All Sky Survey) data, a PLC relation working with infrared data was derived. It can be used with infrared colors in the range –0.01 < (JH)0 < 0.58, and –0.10 < (HKs)0 < 0.18. Despite of the fact that the 2MASS data refer to single epoch observations which are not guaranteed to be taken at maximum brightness of theWUMa stars, the established relation has been found surprisingly consistent and reliable in predicting LK corrected distances of W UMa stars (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The IRAS and 2MASS associations for 193 T Tauri stars are identified in this paper. From the color–color diagrams and spectral index, it is found that the IR excesses for most samples are due to thermal emission from the circumstellar material, as suggested previously. It is also found that the IR excesses at IRAS region for few T Tauri stars and the near-IR excesses for some T Tauri stars are likely attributed to free-free emission or free-bound emission from the circumstellar ionized gas. Moreover, It is found in deredened J–H versus H–K color–color diagram that there is a slight separation in different spectral groups. The T Tauri stars locus equation in J–H versus H–K color–color diagram for our sample is also presented.  相似文献   

18.
I discuss recent observational results on the X-ray properties of young stellar objects, based mostly on Chandra and XMM-Newton observations. The sensitive X-ray data on large, well characterized samples of T Tauri stars (and a number of protostars) allow to study in detail the dependence of magnetic activity on the bulk properties of the young objects and to draw important clues towards the origin of the X-ray emission. The absence of a relation between X-ray activity and rotation for T Tauri stars clearly suggests that their magnetic activity cannot be simply explained by the action of a scaled-up solar-like dynamo. I discuss alternative models for the generation of magnetic fields and also consider the long standing question whether the X-ray properties of the T Tauri stars are related to the presence/absence of circumstellar disks or active accretion.  相似文献   

19.
We have collected almost all HdC, RCB and EHe stars up to date to investigate their infrared properties, in particular, their radiation mechanisms in the infrared, using the observational data from 2MASS, WISE and IRAS missions. Because HdC stars, RCB stars and EHe stars all belong to the category of extremely hydrogen-deficient stars and they definitely have some evolutionary connections.It is found from this paper that all RCB stars have infrared excesse in the wavelength region from the near infrared to the far infrared covered by 2MASS, WISE and IRAS due to dust while almost all HdC stars and EHe stars have no or little infrared excess.From 2MASS, WISE and IRAS two-color diagrams, it is also found that the majority of these three kinds of stars are around the power law distributions in the near infrared possibly indicative of their infrared radiations from the warm dust in the disk-like envelope. It is also found that in the mid- and far infrared regions some stars are around the power law distribution perhaps due to dust from disk-like envelope while some stars are around the blackbody distribution maybe due to the cold and extended nebulosity nearby.  相似文献   

20.
Data with the 2MASS prototype camera were obtained in a 2.3 sq. deg region in Taurus containing Heiles Cloud 2, a region known from IRAS observations to contain a number of very young solar type stars. Data at 1.25 (J), 1.65 (H), and 2.2 (K s )µm are presented. These data are representative of the type and quality of data expected from the planned near-IR surveys, 2MASS and DENIS. Near-IR surveys will be useful for determining the large scale variation of extinction with clouds, for determining the luminosity function in nearby clouds down to ranges of 0.1–1.0 L, and for finding highly extincted T Tauri stars missed by IRAS because the bulk of their luminosity is emitted shortward of 12µm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号