首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of arsenic (As) in shallow groundwater of eastern Chancheng District in Foshan City as a function of season and water table was investigated, and the influence of hydrochemical factors on the As distribution was discussed. The groundwater samples were collected from 20 sites in dry season and 9 sites in wet season. As concentrations in 20% groundwater samples exceeded value of the WHO guideline (10 μg/L), and the highest As concentration of 23.5 μg/L occurred in dry season. It is observed that groundwater As concentration decreased with the increase of depth of water table in dry season, and were generally higher in wet season than that in dry season, indicating that ground surface As might be one of the main sources for shallow groundwater As in study area, especially in wet season. Groundwater As concentration in study area had significantly positive correlation with the concentration of Fe, Mn, NH4, F, and COD, and was positively correlated to pH, but negatively correlated to Eh and K, indicating that reductive dissolution of Fe and Mn (oxy)hydroxides might be one of the main control mechanisms for groundwater As mobilization, while pH and F also played an important role in controlling the groundwater As mobilization in study area.  相似文献   

2.
To study arsenic(As) content and distribution patterns as well as the genesis of different kinds of water, especially the different sources of drinking water in Guanzhong Basin, Shaanxi province, China, 139 water samples were collected at 62 sampling points from wells of different depths, from hot springs, and rivers. The As content of these samples was measured by the intermittent flowhydride generation atomic fluorescence spectrometry method(HG-AFS). The As concentrations in the drinking water in Guanzhong Basin vary greatly(0.00–68.08 μg/L), and the As concentration of groundwater in southern Guanzhong Basin is different from that in the northern Guanzhong Basin. Even within the same location in southern Guanzhong Basin, the As concentrations at different depths vary greatly. As concentration of groundwater from the shallow wells(50 m deep, 0.56–3.87 μg/L) is much lower than from deep wells(110–360 m deep, 19.34–62.91 μg/L), whereas As concentration in water of any depth in northern Guanzhong Basin is 10 μg/L. Southern Guanzhong Basin is a newly discovered high-As groundwater area in China. The high-As groundwater is mainly distributed in areas between the Qinling Mountains and Weihe River; it has only been found at depths ranging from 110 to 360 m in confined aquifers, which store water in the Lishi and Wucheng Loess(Lower and Middle Pleistocene) in the southern Guanzhong Basin. As concentration of hot spring water is 6.47–11.94 μg/L; that of geothermal water between 1000 and 1500 m deep is 43.68–68.08 μg/L. The high-As well water at depths from 110 to 360 m in southern Guanzhong Basin has a very low fluorine(F) value, which is generally 0.10 mg/L. Otherwise, the hot springs of Lintong and Tangyu and the geothermal water in southern Guanzhong Basin have very high F values(8.07–14.96 mg/L). The results indicate that highAs groundwater in depths from 110 to 360 m is unlikely to have a direct relationship with the geothermal water in the same area. As concentration of all reservoirs and rivers(both contaminated and uncontaminated) in the Guanzhong Basin is 10 μg/L. This shows that pollution in the surface water is not the source of the high-As in the southern Guanzhong Basin. The partition boundaries of the high- and low-As groundwater area corresponds to the partition boundaries of the tectonic units in the Guanzhong Basin. This probably indicates that the high-As groundwater areas can be correlated to their geological underpinning and structural framework. In southern Guanzhong Basin, the main sources of drinking water for villages and small towns today are wells between 110–360 m deep. All of their As contents exceed the limit of the Chinese National Standard and the International Standard(10 μg/L) and so local residents should use other sources of clean water that are 50 m deep, instead of deep groundwater(110 to 360 m) for their drinking water supply.  相似文献   

3.
高碘地下水(碘浓度大于100μg/L)广泛分布于我国沿海地区和干旱内陆盆地,威胁近千万人口的饮水安全,但目前对湿润区河湖平原地下水中碘的分布与成因机制的认识还十分薄弱.通过采集长江中游故道区75组浅层地下水样品和7组地表水样品进行了水化学分析,查明了地下水中碘的空间分布特征,并运用主成分分析识别了碘富集的水环境要素和水...  相似文献   

4.
Interaction of various physical, chemical and biological transport processes plays an important role in deciding the fate and migration of contaminants in groundwater systems. In this study, a numerical investigation on the interaction of various transport processes of BTEX in a saturated groundwater system is carried out. In addition, the multi-component dissolution from a residual BTEX source under unsteady flow conditions is incorporated in the modeling framework. The model considers Benzene, Toluene, Ethyl Benzene and Xylene dissolving from the residual BTEX source zone to undergo sorption and aerobic biodegradation within the groundwater aquifer. Spatial concentration profiles of dissolved BTEX components under the interaction of various sorption and biodegradation conditions have been studied. Subsequently, a spatial moment analysis is carried out to analyze the effect of interaction of various transport processes on the total dissolved mass and the mobility of dissolved BTEX components. Results from the present numerical study suggest that the interaction of dissolution, sorption and biodegradation significantly influence the spatial distribution of dissolved BTEX components within the saturated groundwater system. Mobility of dissolved BTEX components is also found to be affected by the interaction of these transport processes.  相似文献   

5.
李典  邓娅敏  杜尧  颜港归  孙晓梁  范红晨 《地球科学》2021,46(12):4492-4502
近年来陆续有报道发现长江中游河湖平原广泛分布着高砷地下水,鄱阳湖平原与江北平原(古彭蠡泽)作为长江中游南北两岸典型的河湖平原,其地下水资源丰富,但砷的空间分布规律尚不清楚,区域供水安全存在风险.本研究在两个区域系统采集98个浅层地下水(< 40 m)样品和8个地表水样品,通过水化学、氢氧稳定同位素分析,查明地下水中砷的空间分布异质性及其影响因素.研究发现江北平原浅层地下水砷含量为0.65~956.72 μg/L(平均值210.78 μg/L),高砷地下水集中分布于长江古河道;鄱阳湖平原浅层地下水砷含量为0.09~267.45 μg/L(平均值11.85 μg/L),高砷地下水仅分布于赣江三角洲局部地区.江北平原地下水δD与δ18O值相对鄱阳湖平原更偏负,且与地表水的差异更大.地下水化学及主成分分析结果表明物源和含水层结构差异是影响鄱阳湖平原和江北平原砷空间分布异质性的关键因素,来自长江物源的古彭蠡泽区域沉积物为高砷含水层的形成提供了物质来源,湖相含水层中含砷铁氧化物的还原性溶解是地下水砷富集的主要过程.地下水氢氧稳定同位素指示江北平原较鄱阳湖平原地下水赋存环境更封闭,地下水循环交替速度缓慢,有利于砷的富集.   相似文献   

6.
超高效液相色谱法直接快速测定环境水样中硝基苯和苯胺   总被引:2,自引:1,他引:1  
黄毅  饶竹  刘艳  刘晨  郭晓辰 《岩矿测试》2012,31(4):666-671
建立了超高效液相色谱直接快速测定环境水样中硝基苯和苯胺的分析方法。取900μL水样与100μL乙腈混匀,用微孔滤膜(0.2μm,有机系)过滤。采用1.7μm小颗粒填料的BEH phenyl柱,以乙腈/醋酸铵溶液为流动相,硝基苯和苯胺分别用紫外和荧光检测器检测,分析时间仅1.1 min。硝基苯和苯胺的线性范围分别是0.485~4850μg/L和0.495~1978μg/L,方法检出限分别是0.194μg/L和0.099μg/L,相关系数均在0.995以上。硝基苯9.70μg/L、194μg/L、1940μg/L三个浓度水平回收率在98.3%~101%,相对标准偏差在1.11%~2.03%。苯胺9.89μg/L、198μg/L、1978μg/L三个浓度水平回收率在98.6%~104%,相对标准偏差在0.75%~5.85%。与传统液相分析方法相比,本方法线性范围更宽,灵敏度更高;直接进样简化了前处理环节,减少采样体积和有机试剂的使用;分析效率高,适用于地下水、地表水等多种水质样品中痕量到常量范围的硝基苯和苯胺快速测定。  相似文献   

7.
This thesis focuses Arsenic(As) distribution and occurrence in groundwater of Yangtze River Delta economic region, East China. 2019 groundwater samples were collected to analyze 26 chemical compositions, including As. The Principal Component Analysis(PCA) was used to find out As source in groundwater. The results show that average As concentration in groundwater of this study is 9.33 μg/l, and maximum As concentration is up to 510 μg/l. The variation coefficient is 314.34%. High arsenic phreatic water(10 μg/l) distributes along the Yangtze River and its estuary. Weak hydrodynamic conditions, wide p H value variation range and deteriorating environment are dominating factors, especially in Yangtze River Delta. The PCA suggests that arsenic in phreatic water is mainly of natural origin. Part of arsenic may directly originate from sediment organics and be related to organics decomposition.  相似文献   

8.
孙英  周金龙  梁杏  周殷竹  曾妍妍  林丽 《地球科学》2021,46(8):2999-3011
塔里木盆地位于欧亚大陆腹地,远离海洋,地下水是塔里木盆地南缘重要的供水水源,查明该区浅层地下水中碘(I-)的分布及成因至关重要.基于新疆塔里木盆地南缘的民丰县平原区44组浅层地下水水样,综合运用水化学图解法、数理统计法和GIS技术,分析潜水和浅层承压水水化学特征、碘的空间分布及高碘地下水的成因.结果表明:民丰县平原区浅层地下水中碘的富集和贫乏共存;潜水和浅层承压水I-含量范围分别为≤730 μg/L和≤183μg/L,潜水水样中缺碘水、适碘水、高碘水和超高碘水占比分别为19.4%、69.4%、5.6%和5.6%,浅层承压水水样中缺碘水、适碘水和高碘水占比分别为12.5%、75.0%和12.5%,潜水中缺碘水和超高碘水均高于承压水.从山前倾斜平原到细土平原,地下水中I-含量呈明显上升趋势.高碘水和超高碘水水化学类型主要为Cl·SO4-Na型和Cl-Na型.除水文地质条件和偏碱性的地下水环境外,研究区潜水碘主要受强烈的蒸发浓缩作用、第四系全新统沼泽堆积物和矿物溶解沉淀的影响,浅层承压水碘主要受矿物溶解沉淀及还原环境的影响.   相似文献   

9.
高碘地下水是继高砷、高氟地下水之后的又一全球性饮水安全问题,但对地下水系统中碘的赋存形态及迁移富集机理研究尚显不足.为了解华北平原地下水系统中碘的空间分布特征及迁移富集规律,选取石家庄-衡水-沧州典型水文地质剖面,完成地下水样品采集,分析其水化学组成、总碘含量及碘形态组成特征,同时运用phreeqc完成水文地质剖面地球化学反向模拟及相关矿物饱和指数计算,定性定量表征水流场内所发生的水文地球化学过程,进而深入探讨上述过程对地下水系统碘迁移富集的影响.结果表明,区域内地下水中碘含量变化范围为3.35~1 106.00 μg/L,其中,41.86%样品碘含量超过《水源性高碘地区和地方性高碘甲状腺肿病区的规定(GB/T19380-2003)》所界定的150 μg/L国家标准;空间上,高碘地下水主要分布于渤海湾区;地下水中碘的主要赋存形态为碘离子及碘酸根离子,其分布受氧化还原环境控制,碘酸根离子主要出现于氧化环境中;沿地下水流向,地下水环境朝利于液相碘迁移富集的方向演变;渤海湾区,海水入侵影响下形成的偏碱性、(弱)还原环境,利于碘从沉积物中迁移释放至地下水中;碘在不同铁矿物相上的搭载能力及氧化还原环境演化导致的铁矿物相转化,是造成华北平原地下水系统中碘迁移富集的主要水文地球化学过程.   相似文献   

10.
This study was carried out to assess the distribution of uranium in groundwater by using LED fluorimeter LF-2a and chemical and radiological risks associated with its consumption in Sirsa district, Haryana, India. Uranium concentration ranged between 0.93 and 290μg l-1 with an average value of 49 μg l-1. About 44% of the groundwater samples had uranium concentration above the maximum contamination level of 30 μg l-1 prescribed by the World Health Organization and United States Environmental Protection Agency and 22% of the samples exceeded the permissible limit of 60 μgl-1 prescribed by the Atomic Energy Regulatory Board, India. The average cancer morbidity and mortality risks are determined to be 1.10 × 10-4 and 7.17 × 10-5 respectively, indicating the negligible carcinogenic risk. Hazard quotient for 44% samples is greater than unity which indicates health risk due to chemical toxicity of uranium in groundwater. The associated age-dependent annual effective dose is estimated by taking the prescribed water intake values of different age groups.  相似文献   

11.
More than 30 organic contaminants were detected in shallow groundwaters at Wuhan, the largest city in central China. Seriously contaminated groundwaters were from densely populated, industrial and commercial areas. Abnormal concentrations were found in groundwater from Hankou, downtown Wuhan: trimethylbenzene up to 29 μg/L, tetramethylbenzene up to 866 μg/L, and trichloroethene up to 9.5 μg/L. Benzene, Toluene, Ethylene and Xylene (BTEX) contamination of groundwater is serious and widespread at Wuhan, ranging between 0.14 and 25.0 μg/L. Considering the hydrogeological conditions of most Chinese cities, DRAMIC, a modified version of the widely used DRASTIC model, was proposed by the authors for assessing vulnerability of groundwater to contamination. The factors D, R, A and I in DRAMIC model are the same as in DRASTIC. The factor topography is ignored. The factor soil media is substituted by a new factor aquifer thickness (M) and the factor hydraulic conductivity of the aquifer by a new factor impact of contaminant (C). The equation for determining the DRAMIC Index is: DRAMIC = 5D R + 3R R + 4A R + 2M R + 5I R + 1C R. The calculated DRAMIC Index can be used to identify areas that are more likely to be susceptible to groundwater contamination relative to each other. The higher the DRAMIC Index is, the greater the groundwater pollution potential. Applying DRAMIC, a GIS-based vulnerability map for Wuhan city was prepared. Interestingly, places such as downtown Hankou, where enhanced concentrations of BTEX have been detected, correspond quite well with those with higher DRAMIC ratings.  相似文献   

12.
曹攽  马军  李云木子 《岩矿测试》2010,29(5):539-542
应用荧光-紫外检测器联用的高效液相色谱法分析地下水中16种多环芳烃。对高效液相色谱条件进行优化,建立了分析方法,并用于实际水样分析。在较佳的实验条件下,加标回收率为86.3%~105%,方法精密度(RSD,n=7)为0.39%~2.55%,检出限为0.001~0.010μg/L。分析16种PAHs仅用20min,比EPA8310方法中采用的液相色谱法缩短了17min。方法灵简便、准确,灵敏度高,分析时间短,适用于大批量地下水中痕量多环芳烃的分析。  相似文献   

13.
通过对高砷地下水典型区完整地质单元不同深度含水层地下水进行监测,分析了与砷释放、迁移和富集有关的敏感因素(水位、Eh、总铁、亚铁等)的时间和空间变化规律,探讨了高砷地下水的形成机理。结果发现,地下水灌溉区和黄河水灌溉区,地下水水位均受人为灌溉活动的影响。地下水砷含量在空间和时间尺度上发生有规律的变化。在空间尺度上,地下水中砷含量随着深度的增加而升高,井深小于10 m的地下水砷含量在1.88~2.58 μg/L;井深在10~15 m之间的地下水中砷含量在18.2~217 μg/L;井深在15~25 m之间的地下水中砷含量在38.3~226 μg/L。受人为灌溉影响,地下水中砷的含量会随着地下水位的抬升而升高。地下水砷含量随时间变化的原因是水位抬升使水位变化造成氧化还原环境改变。地下水系统中含砷铁氧化物矿物的还原性溶解、脱硫酸作用等是控制地下水砷含量的主要水文地球化学过程。  相似文献   

14.
由于地表水资源稀缺,地下水是塔里木盆地南缘绿洲带重要用水水源,因此,系统查明该区地下水砷氟碘的分布及成因至关重要。基于塔里木盆地南缘绿洲带233组地下水水样检测结果,分析不同含水层中高砷、高氟和高碘地下水的空间分布及水化学特征,结合研究区地质、水文地质条件和地下水赋存环境进一步揭示影响地下水砷氟碘的来源、迁移与富集的水文地球化学过程。结果表明:地下水砷、氟、碘浓度变化范围分别为1.091.2 μg/L、0.0128.31 mg/L、10.02 637.0 μg/L。地下水高砷、高氟和高碘水样分别占总水样的7.3%、47.2%和11.6%,砷氟碘共富集占比为3.0%。砷氟碘共富集地下水主要分布于研究区中部的民丰县,水化学类型主要为Cl·SO4-Na型。自补给区至过渡区再至蒸发区,地下水氟、碘浓度明显增大,砷浓度在过渡区和蒸发区均较大;砷氟碘共富集地下水取样点主要分布于36.060.0 m深度的浅层承压含水层中。浅层地下水受蒸发作用和矿物溶解沉淀作用的影响,随砷氟碘富集项的增多而增大。第四纪成因类型中风积物对氟浓度的影响较大,洪积-湖积物对砷和碘浓度的影响较大。细粒岩性、平缓的地形、地下水浅埋条件、偏碱性的地下水环境、微生物降解作用下有机质介导的矿物溶解是利于砷氟碘共富集的主要机制。  相似文献   

15.
地下水中钙和镁的离子色谱法同时测定   总被引:2,自引:0,他引:2  
改进了离子色谱分析地下水中钙和镁的方法。以IonPac CS12A为分离柱,稀盐酸为淋洗液,电导检测器检测,对地下水中的锂、钾、钠、钙和镁进行同时测定。方法具有较宽的线性范围和较高的灵敏度,钙、镁的浓度分别在0~500mg/L和0~250mg/L内呈良好的线性关系;钙的检出限为1.50μg/L,镁的检出限为0.89μg/L。对不同浓度钙、镁水质标准样品进行分析测定,同时对实际样品进行不同稀释倍数分析验证,方法精密度(RSD,n=8)为0.19%~1.89%,无显著的基体效应影响。方法可满足全国地下水调查评价规范要求,适于地下水样品中锂、钾、钠、钙和镁离子的同时测定。  相似文献   

16.
《China Geology》2022,5(3):402-410
This study investigated water samples collected from the surface water and groundwater in Wuhan City, Hubei Province, China in different stages of the outbreak of the coronavirus disease 2019 (hereinafter referred to as COVID-19) in the city, aiming to determine the distribution characteristics of antiviral drugs in the city’s waters. The results are as follows. The main hydrochemical type of surface water and groundwater in Wuhan was Ca-HCO3. The major chemical components in the groundwater had higher concentrations and spatial variability than those in the surface water. Two antiviral drugs and two glucocorticoids were detected in the surface water, groundwater, and sewage during the COVID-19 outbreak. Among them, chloroquine phosphate and cortisone had higher detection rates of 32.26% and 25.80%, respectively in all samples. The concentrations of residual drugs in East Lake were higher than those in other waters. The main drug detected in the waters in the later stage of the COVID-19 outbreak in Wuhan was chloroquine phosphate, whose detection rates in the surface water and the groundwater were 53.85% and 28.57%, respectively. Moreover, the detection rate and concentration of chloroquine phosphate were higher in East Lake than in Huangjia Lake. The groundwater containing chloroquine phosphate was mainly distributed along the river areas where the groundwater was highly vulnerable. The residual drugs in the surface water and the groundwater had lower concentrations in the late stage of the COVID-19 outbreak than in the middle of the outbreak, and they have not yet caused any negative impacts on the ecological environment.©2022 China Geology Editorial Office.  相似文献   

17.
某城市工业区浅层地下水CAHs污染特征   总被引:3,自引:0,他引:3  
李海明  陈鸿汉  郑西来 《地学前缘》2005,12(Z1):132-138
2000—2002年采用气相色谱法对某市工业区浅层地下水中氯代脂肪烃(CAHs)含量进行了分析,在综合分析CAH污染的原因和途径的基础上,着重探讨了CAH在地下水系统中的迁移转化规律。结果表明,地下水中CAH检出率48 15%~85 19%,检出值质量浓度为0 1~71 89μg/L,与美国“EPA”标准5μg/L 相比,三氯乙烯、四氯乙烯超标率分别为59 26%和25 93%,超标倍数分别可达14 38 和9 128;三氯乙烯(TCE)和四氯乙烯(PCE)是主要污染物,重现性好;CAH对地下水的污染与其本身的物理性质、包气带的结构和地下水动力条件等因素有关,防污性能差的工业区CAH容易污染地下水;CAH在砂土中的迟后因子R值很小,很容易在地下环境中迁移;地下水流场是决定CAH分布的一个重要因素,沿着地下水流向,CAH浓度呈逐渐降低的趋势;地下水动态变化是引起CAH呈现季节性变化的主要原因。  相似文献   

18.
稀土的开发和广泛应用使得人们倍加关注其在环境中的分布及其环境地球化学行为。赣江作为鄱阳湖流域五大入湖河之一,发源于稀土资源富集的赣南地区,而其下游水体及周边地下水中稀土元素的含量和分异特征目前尚不完全清楚。以赣江北支水体及沉积物为研究对象,开展了稀土元素地球化学研究。结果表明,赣江北支水体中稀土元素总量在地表水中为230~1 146 ng/L(均值458.85 ng/L),地下水中为284~1 498 ng/L(均值634.94 ng/L),沉积物中稀土元素总量为177.9~270.7 mg/kg(均值226.99 mg/kg)。PHREEQC模拟计算表明,水体中的稀土元素主要以碳酸根络合物(REEC03+)的形式存在。地表水和地下水总体上均表现为重稀土元素相较于轻、中稀土元素富集,沉积物未表现出明显的富集特性;水体具有Ce、Eu负异常特点,而沉积物表现为Ce正异常和Eu负异常,指示氧化还原环境和水岩相互作用对稀土元素在水-沉积物系统中迁移转化的影响。地下水中稀土元素的含量沿流向具有上升趋势,而水体中重稀土元素的富集程度不断减弱,同时碳酸根络合物(REEC03+)的占比不断降低,反映水体中稀土元素的含量受到pH、胶体吸附、络合作用以及地下水-地表水相互作用的影响。水体中重稀土元素的富集受到碳酸根络合反应的影响,Ce、Eu负异常与Ce氧化沉淀和母岩特性相关。Gd异常值表明,研究区中下游水体中的Gd元素受到人为输入的影响。  相似文献   

19.
    岩溶含水系统遭受石油烃污染的环境问题十分普遍。相对于多孔含水介质,石油烃BTEX在石灰岩含水介质中的生 物可降解性还不确定。为此,本研究开展了BTEX在石灰石和岩溶地下水介质中的静态微元体实验。经过77天的实验检测 分析,结果表明:(1) BTEX化合物在可利用电子受体溶解氧或硝酸盐存在条件下具有生物可降解性;(2) 向系统中补充 电子受体硝酸盐,具有促进生物降解的作用,其对BTEX的去除率可高达94%;(3) 未发现补充硫酸盐能够促进BTEX生物 可降解性;(4) 甲苯和二甲苯容易被生物降解,但苯的去除具有一定的难度。  相似文献   

20.
Systematic investigations on seasonal variations in arsenic (As) concentrations in groundwater in both space and time are scarce for most parts of West Bengal (India). Hence, this study has been undertaken to investigate the extent of As pollution and its temporal variability in parts of Murshidabad district (West Bengal, India). Water samples from 35 wells were collected during pre-monsoon, monsoon and post-monsoon seasons and analyzed for various elements. Based on the Indian permissible limit for As (50 μg/L) in the drinking water, water samples were classified into contaminated and uncontaminated category. 18 wells were reported as uncontaminated (on average 12 μg/L As) and 12 wells were found contaminated (129 μg/L As) throughout the year, while 5 wells could be classified as either contaminated or uncontaminated depending on when they were sampled. Although the number of wells that alternate between the contaminated and uncontaminated classification is relatively small (14%), distinct seasonal variation in As concentrations occur in all wells. This suggests that investigations conducted within the study area for the purpose of assessing the health risk posed by As in groundwater should not rely on a single round of water samples. In comparison to other areas, As is mainly released to the groundwater due to reductive dissolution of Fe-oxyhydroxides, a process, which is probably enhanced by anthropogenic input of organic carbon. The seasonal variation in As concentrations appear to be caused mainly by dilution effects during monsoon and post-monsoon. The relatively high concentrations of Mn (mean 0.9 mg/L), well above the WHO limit (0.4 mg/L), also cause great concern and necessitate further investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号