首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 874 毫秒
1.
The distribution of chlorophyll a(Chl a) and its relationships with physical and chemical parameters in different regions of the Bering Sea were discussed in July 2010. The results showed the seawater column Chl a concentrations were 13.41–553.89 mg/m2 and the average value was 118.15 mg/m2 in the study areas. The horizontal distribution of Chl a varied remarkably from basin to shelf in the Bering Sea. The regional order of Chl a concentrations from low to high was basin, slope, outer shelf, inner shelf, and middle shelf. The vertical distribution of Chl a was grouped mainly from single-peak type in basin, slope, outer shelf, and middle shelf, where the deep Chl a maxima(DCM) layer was observed at 25–50 m, 30–35 m, 36–44 m, and 37–47 m, respectively. The vertical distribution of Chl a mainly had three basic patterns: standard single-peak type, surface maximum type, and bottom maximum type in the inner shelf. The analysis also showed that the transportation of ocean currents may control the distribution of Chl a, and the effects were not simple in the basin of the Bering Sea. There was a positive correlation between Chl a and temperature, but no significant correlation between Chl a and nutrients. The Bering Sea slope was an area deeply influenced by slope current. Silicate was the factor that controlled the distribution of Chl a within parts of the water in the slope. Light intensity was an important environmental factor in controlling seawater column Chl a in the shelf, where Chl a was limited by nitrate rather than phosphate within the upper water. Meanwhile, there was a positive relationship between Chl a and salinity. Algal blooms broke out at Sta. B6 of the southwestern St. Lawrence Island and Stas F6 and F11 in the middle of the Bering Strait.  相似文献   

2.
On the basis of the analysis of the sea temperature data that are observed from the three automatic temperature line acquisition sysem mooring buoys deployed in the central South China Sea (SCS) during South China Sea monsoon experiment, vertical features of biweekly and synoptic variability are discussed. There are five vertical modes, that is, subsurface temperature variability is in phase with,out of phase with, leads to, lags the surface temperature variability, and at depths within the subsurface layer the upper and lower temperature variations are out of phase. The formation of these vertical modes is related to the property of low-level atmospheric forcing and to the background in atmosphere and ocean. Wind stress curl is the main driving factor in forming Modes 1 and 3, and wind stresses in forming Modes 2 and 4.  相似文献   

3.
On the basis of the data obtained from the comprehensive Kuroshio surveys in 1987-1988,this paper analyses the oceanographic characteristics in the area (125°-130° E,27°-31° N) of the continental shelf edge of the East China Sea (E. C. S. ) and its adjacent waters and discusses the effects of the Kuroshio front,thermocline and upwelling of the Kuroshio subsurface water on the distribution of standing stock of phytoplankton (chlorophyll-a). The distribution of high content of chlorophylly-a has been detected at 20-50 in depth in the water body on the left side of the Kuroshio front in the continental shelf edge waters of the E. C. S. The high content of chlorophyll-a spreads from the shelf area to the Kuroshio area in the form of a tongue and connects with the maximum layer of subsurface chlorophyll-a of the Kuroshio and pelagic sea. The author considers that the formation of the distribution of high content chlorophyll-a in this area results from the bottom topography and oceanic environment and the  相似文献   

4.
Multi-scale variability of subsurface temperature in the South China Sea   总被引:4,自引:0,他引:4  
Using Morlet wavelet transform and harmonic analysis the multi-scale variability of subsurface temperature in the South China Sea is studied by analyzing one-year (from April 1998 to April 1999) ATLAS mooring data. By wavelet transform, annual and semi-annual cycle as well as intrasea-sonal variations are found, with different dominance, in subsurface temperature. For annual harmonic cycle, both the downward net surface heat flux and thermocline vertical movement partially control the subsurface temperature variability. For semi-annual cycle and intraseasonal variability, the subsurface temperature variability is mainly linked to the vertical displacement of thermocline.  相似文献   

5.
The potential suppression of copepods on appendicularians was found in field and experimental conditions. The abundance and distribution of appendicularians and planktonic copepods were studied with reference to their correlations during summer on the northwest continental shelf of the South China Sea (SCS). Based on the topography and water mass of the surveyed region, it was divided into three sub-regions: Region I (inshore waters of the east Leizhou Peninsula) with low temperature, salinity and high chlorophyll a (Chl a) concentration, Region II (inshore waters of the east and southeast Hainan Island) with low temperature, high salinity and moderate Chl a concentration and Region III (offshore waters from the Leizhou Peninsula to Hainan Island) with high temperature, high salinity and low Chl a concentration. The species richness of appendicularians and copepods increased from the inshore to offshore waters, and high values were observed in Region III. The distribution of appendicularian and copepod abundance decreased generally from the inshore to offshore waters, with the highest values at Region I. Our results suggest that the distribution patterns of appendicularians and copepods differed significantly, as a result of the influence of physical and biological factors. The negative impact of pelagic copepods on appendicularians was not found based on in situ data in the northwest continental shelf of SCS.  相似文献   

6.
To understand the response of marine ecosystem to environmental factors, the oceanographic (physical and biochemical) data are analyzed to examine the spatio-temporal distributions of chlorophyll a (Chl a) associated with surface temperature, winds and height anomaly for long periods (1997-2008) in the western South China Sea (SCS). The results indicate that seasonal and spatial distributions of Chl a are primarily influenced by monsoon winds and hydrography. A preliminary Empirical Orthogonal Function (EOF) analysis of remotely sensed data is used to assess basic characteristics of the response process of Chl a to physical changes, which reveals interannual variability of anomalous low Chl a values corresponding to strong El Ni o (1997-1998), high values corresponding to strong La Ni a (1999-2000), low Chl a corresponding to moderate El Ni o (2001-2003), upward Chl a after warm event in 2005 off the east coast of Vietnam. The variability of Chl a in nearshore and the Mekong River Estuary (MER) waters also suggests its response to these warm or cold processes. Considering the evidence for covariabilities between Chl a and sea surface temperature, winds, height anomaly (upwelling or downwelling), cold waters input and strong winds mixing may play important roles in the spatial and temporal variability of high Chl a. Such research activities could be very important to gain a mechanistic understanding of ecosystem responses to the climate change in the SCS.  相似文献   

7.
Effect of Stokes drift on upper ocean mixing   总被引:1,自引:0,他引:1  
Stokes drift is the main source of vertical vorticity in the ocean mixed layer. In the ways of Coriolis - Stokes forcing and Langmuir circulations, Stokes drift can substantially affect the whole mixed layer. A modified Mellor-Yamada 2. 5 level turbulence closure model is used to parameterize its effect on upper ocean mixing conventionally. Results show that comparing surface heating with wave breaking, Stokes drift plays the most important role in the entire ocean mixed layer, especially in the subsurface layer. As expected, Stokes drift elevates both the dissipation rate and the turbulence energy in the upper ocean mixing. Also, ilffluence of the surface heating, wave breaking and wind speed on Stokes drift is investigated respectively. Research shows that it is significant and important to assessing the Stokes drift into ocean mixed layer studying. The laboratory observations are supporting numerical experiments quantitatively.  相似文献   

8.
Luzon Strait is the main channel connecting the South China Sea (SCS) and the western Pacific,with complex atmospheric and oceanic dynamic processes.Based on 44 days of glider measurements and satellite observations,we investigated the temporal and vertical variations of chlorophyll-a (Chl-a) concentration in the Luzon Strait from July 25 to September 6,2019.The Chl a was mainly distributed above 200 m and concentrated in the subsurface chlorophyll maximum (SCM) layer.The depth of SCM ranged bet...  相似文献   

9.
Data from three cruises conducted in the Zhujiang River (ZR), coastal waters of Guangdong (CWGD) and the northern South China Sea (NSCS) during 2003 and 2004 were examined for assessing the relative importance of pigment composition and packaging effect in modifying the specific absorption coefficients of phytoplankton. The three survey regions differ widely in their phytoplankton community with large cells dominating the ZR and CWGD waters and small cells dominating the NSCS region. Variations in the size structure and the accessory pigments have much effect on the chlorophyll a-specific absorption coefficient of phytoplankton. The size index accounted for about 42% and 33% of the variation of the specific absorption coefficient at 440 and 675 nm, respectively. Using the multiple regression analysis approach, pigment concentrations for each sample were calculated. The accessory pigments other than chlorophyll a contribute to absorption mainly in the blue-to-green region of the spectrum and their absorptions account for about 44%, 43% and 53% on the average of the total phytoplankton absorption at 440 nm for the ZR, CWGD and NSCS regions. Among the accessory pigments, the photosynthetic carotenoids (noted PSC) play a dominant role in the ZR and CWGD waters, while in the NSCS the nonphotosynthetic carotenoids (noted PPC) as well as PSC have important contributions. Because the variations of both the size structure and accessory pigments in algal populations contributed to the variability of the specific absorption coefficient in the study regions, these factors may be considered explicitly in future bio-optical algorithms to derive chlorophyll a concentration more accurately.  相似文献   

10.
-During the multi-disciplinary investigations on the waters of Nansa Islands for three cruises respectively in 1985. 1986. 1987. it is found that the dissolved oxygen maximum (DOmax) in its vertical distribution usually exists between 20m and 75m deep. The deep position of O2 maximum is near the thermocline below and above the deep chlorophyll maximum, as well as above the light-beam attenuation coefficient maximum. In the parts of O2 maximum occurring, the minimum of CO2 partial pressure and the maximum of pH value are also found at the same depth. It is still difficult to explain the features exactly by using the published research results about the oxygen maximum in its vertical distribution on the waters of middle and high latitude.In the present paper, the dissolved oxygen maximum in its vertical distribution on the waters of low latitude is described. It is made by an internal wave which holds eddy mixture. The feature appears to arise from the biological photosynthesis with stratification, from t  相似文献   

11.
采用2002—2016年6—9月Aqua/MODIS叶绿素a产品分析珠江冲淡水在南海北部生态效应的季节及年际变化特征。6月来自陆源的营养物质在西南季风作用下向河口以东陆架区输运, 浮游植物增殖, 叶绿素a含量增大; 7月河口以东高浓度叶绿素a覆盖面积达到最大; 8月在减弱的珠江径流和环境风场共同影响下, 口门外海高浓度叶绿素a覆盖面积明显减小; 9月北部陆架区处于东北季风影响之下, 河口以西覆盖面积逐渐增大。通过线性回归分析可知, 珠江径流量是口门外海高浓度叶绿素a覆盖面积的主要影响因素, 且这种影响有一个月左右的滞后效应。显著大于(小于)多年平均的珠江径流量和环境风场等因素共同作用, 导致2008(2004)年表现为高浓度叶绿素a覆盖面积的极大值(极小值)年份。叶绿素a在南海北部陆架区的时空变化特征主要受冲淡水过程影响, 订正过的卫星叶绿素a产品可以用来讨论珠江冲淡水的季节及年际变化。  相似文献   

12.
于2015年6月对南海北部海区5个断面共26个站位海水中溶解态氨基酸(THAA)、溶解有机碳(DOC)和叶绿素a(Chl a)的浓度进行了科学调查。结果表明:夏季南海北部海水中THAA的浓度范围为0.40~1.95 μmol/L,平均值为(0.80±0.40) μmol/L,THAA的水平分布总体上体现出近岸高、远海低的特点,表明陆源输入对南海北部海域表层THAA分布有重要影响。THAA在断面上的垂直分布呈现出由近岸至远岸、由表层至底层逐渐降低的趋势。THAA浓度与两种D型氨基酸(D-谷氨酸:D-Glu和D-丙氨酸:D-Ala)含量之间存在显著负相关性,与天门冬氨酸/β-丙氨酸(Asp/β-Ala)和谷氨酸/γ-氨基丁酸(Glu/γ-Aba)比值之间存在显著正相关性,表明细菌的消耗是影响南海海水中THAA浓度的重要因素。D-Ala作为细菌肽聚糖中相对稳定的氨基酸,根据其占DOC的含量估算南海海水中的细菌源有机碳对DOC的贡献率为(29.32±14.32)%,其水平分布显示出近岸低、远岸高的特点;而其垂直分布则呈现出从表层至底层逐渐增加的趋势。THAA占DOC百分比(THAA-C%)的变化范围为1.02%~5.49%,平均值为(2.97±1.38)%。THAA-C%、活性因子和降解因子的高值均出现在珠江口外围区域。随着海水深度增加3种降解因子的数值均显著降低,这表明底层海水中有机物比表层海水中的有机物降解程度更大。  相似文献   

13.
海洋中光后向散射系数的变化包含了浮游植物生物量的信息, 可应用于卫星遥感和光学剖面观测平台获取海洋中大时空尺度-高分辨率剖面的浮游植物生物量变化特征。本文选取了琼东上升流影响下生物—光学变异性较为显著的海域, 基于2013年航次实测数据, 建立了颗粒物后向散射系数(bbp)与叶绿素a浓度(Chl a)间的区域性关系模型。模型假定颗粒物后向散射系数由不随叶绿素浓度变化的固定背景值, 以及较大粒级(>2μm)和pico级(微微型, <2μm)两类浮游植物的后向散射贡献累加所得。采集的数据集进行了模型检验, 结果表明, 模型能很好地模拟琼东海域水体的bbp与Chl a间的变化趋势, 性能优于常用的幂函数关系模型, 尤其在低叶绿素浓度范围, 很好地解决幂函数显著低估的现象; 琼东海域的bbp和Chl a关系存在显著的水层变化, 底层后向散射固定背景值显著高于上层水体背景值, 表明底层受上升流的影响, 水体中不随Chl a共变的颗粒物浓度增大, 其后向散射相应增强; 叶绿素最大层的后向散射固定背景值显著低于上层其他水体的固定背景值, 后向散射固定背景值的贡献百分比约为21%~35%; 随着叶绿素浓度增大, 较大粒级的浮游植物对颗粒物后向散射系数的贡献也显著增大, 可达到50%以上, pico级浮游植物贡献稳定在40%附近。本研究的结果将为琼东海域浮游植物生物量的光学遥感、生物地球化学过程研究提供更为精确的区域性模型和基础支撑数据。  相似文献   

14.
南海叶绿素a浓度垂直分布的统计估算   总被引:2,自引:0,他引:2  
高姗  王辉  刘桂梅  黄良民 《海洋学报》2010,32(4):168-176
分析整理了1993—2006年近10 a南海北部海域、南沙海域和南海其他海域的叶绿素a浓度历史航次调查资料,基于前人提出的全球叶绿素浓度垂直分布的统计分析模式,根据南海表层叶绿素a浓度大小的不同分级,对南海叶绿素a浓度进行了参数化处理,拟合估算了南海各水层剖面的叶绿素a浓度分布值,并结合不同海区的环境特征,分析了南海叶绿素a浓度垂直分布与其海水物理环境的关系。初步分析结果表明,叶绿素a浓度随深度垂直变化的拟合曲线呈一定倾斜的正态分布特征,当表层叶绿素a浓度较低时,作为南海深水海盆区的代表,拟合值更接近实测平均值的分布,叶绿素a浓度高值集中在次表层剖面上;当表层叶绿素a浓度较高时,作为近岸区和河口区的代表,高值多集中在表层海水,拟合误差偏大。该统计估算模式对于揭示南海叶绿素a浓度垂直分布结构进行了有益的尝试,为发展适合不同海区特点的模式以及校正参数奠定了基础。利用该模式与海洋水色卫星遥感数据有效结合,将对南海叶绿素a浓度时空分布格局的研究具有重要的意义。  相似文献   

15.
Satellite ocean-color imagery and field spectroradiometer observations are used to assess the bio-optical signatures of two mesoscale features, a cyclone C1 and an 18°-water anticyclone A4, in the Sargasso Sea. Field determinations of upper layer bio-optical properties, such as the diffuse attenuation coefficient and remote-sensing reflectance spectra, show little statistically significant variations with distance to the eddy center for either eddy. This contrasts field observations showing many-fold higher phytoplankton pigment biomass at depth (and for A4 higher primary production rates at depth) than is typical for this region. The cyclone C1 does show a significant decrease in the depth of the 1% photosynthetically available radiation (PAR) isolume with increasing distance from eddy center while the anticyclone A4 shows no coherent signal vs. distance. Vertical profiles of bio-optical properties show consistent patterns where subsurface maxima are displaced higher inside the core of the cyclone C1 than in the surrounding waters while the highest values of the diffuse attenuation coefficient at 443 nm are observed within the core of anticyclone A4. Satellite observations of near-surface bio-optical properties show signals consistent with eddy physical characteristics, although the magnitude of these variations is very small, barely detectable by typical field measurement protocols. Mean values of bio-optical properties are higher within the cyclone compared with its periphery but not for the anticyclone. For both eddies, significant inverse correlations are observed between time series of bio-optical properties and eddy center sea-level anomaly. Consistent response to wind speed is also noted: following strong wind events, bio-optical parameters are elevated inside the anticyclone and are reduced inside the cyclone. These observations demonstrate that a combination of physical processes, including vertical eddy uplift, eddy horizontal advection, and eddy-scale Ekman pumping, contribute to the bio-optical imprint of mesoscale eddies. The contributions of these forcing mechanisms change over the period of observation, illustrating the limitations of inferring eddy bio-optical dynamics from short-term, field observations. The present analyses provide insights into the potential as well as the drawbacks of bio-optical techniques for probing the biological and biogeochemical impacts of open-ocean eddies.  相似文献   

16.
在珠江口、广东沿岸及南海北部三个航次生物-光学数据的基础上,研究了色素打包效应和色素成分的变化对浮游植物吸收系数的影响,结果表明,两种因素对吸收系数都有较大的贡献,但在不同的水体它们的影响程度各有不同.对网采浮游植物含量较高的珠江口和广东沿岸的水体而言,色素打包效应较强,对675 nm处比吸收系数的贡献平均分别为40%和20%;对微型浮游植物占主导地位的南海北部航次的水体,打包效应较弱,对675 nm处比吸收系数的影响平均仅为6%.采用多元线性回归的方法对吸收光谱进行分析,发现除叶绿素a之外的辅助色素对吸收系数的贡献主要表现在蓝绿光波段,三个航次440 nm波长处对总吸收的贡献平均分别为44%,43%和53%,其中对珠江口和广东沿岸航次的水体主要是光合类胡萝卜素的吸收贡献,而对南海北部航次的水体除了光合类胡萝卜素以外还要受到光保护类胡萝卜素的影响.由于河口、近岸和外海水体藻类粒级结构和辅助色素成分对浮游植物吸收系数的贡献有明显的差异,在南海北部水体建立比较精确的生物光学模型时,需考虑藻类粒级结构及色素成分对浮游植物吸收系数的影响.  相似文献   

17.
南海北部海洋雾状层特征及影响因素初步研究   总被引:1,自引:0,他引:1  
在粤东上升流区和南海北部陆架陆坡区共选取7条断面,通过分析水体的温度、盐度、密度、浊度、叶绿素浓度特征和悬浮体现场粒度平均粒径、体积浓度特征等,初步研究了南海北部海洋雾状层的特征及其受控机制。研究发现粤东上升流区底部雾状层普遍发育,在个别站位存在表层雾状层,高能的近岸浪流作用和来自港湾、河流的泥沙为表层雾状层和底部雾状层提供物源;南海北部陆架陆坡区底部雾状层也普遍发育,在珠江口外的内陆架和外陆架陆坡区表层雾状层比较常见,陆坡区中层雾状层比较发育,本区雾状层的物源主要来自珠江和台湾岛西南部河流的入海泥沙、海底沉积物以及生源颗粒物。南海北部底部雾状层的强度和扩散范围主要受水动力条件、河流入海物质的扩散和底质再悬浮等控制。  相似文献   

18.
于2014年10月和2015年6月对珠江口、南海北部陆坡区域溶解态铝的分布进行观测,探讨影响其分布及季节差异的主要因素,并以其作为示踪因子探讨潜在的陆源物质跨陆架输送途径。研究结果显示,夏、秋季珠江口盐度为0时溶解态铝的浓度分别为690.0 nmol/L和360.0 nmol/L,在淡咸水混合初期溶解态铝迅速自水体清除,夏季的清除率(55.8%)大于秋季(29.7%)。在南海北部陆坡区域,夏季表层溶解态铝浓度表现为沿纬线方向西高东低的分布特点,秋季则相反;夏、秋季底层溶解态铝浓度均呈现出随着离岸距离增加逐渐降低的分布趋势。秋季溶解态铝浓度的分布与盐度呈现显著的负相关关系,表明其行为近乎保守,陆架混合水及黑潮次表层水等水团混合是影响南海北部陆坡区域溶解态铝分布的主要因素。并且以溶解态铝作为示踪因子发现,在21.6~22.2 kg/m^3密度面区间存在自陆架向陆坡方向的跨陆架输送。而夏季陆坡中部受到珠江冲淡水的影响出现低盐水舌,但溶解态铝的浓度相对较低,表现出明显的不保守行为。浮游植物的清除作用是导致夏季陆坡区域溶解态铝分布异常的重要因素。  相似文献   

19.
东海海水中的溶存甲烷   总被引:1,自引:1,他引:1  
臧家业 《海洋学报》1998,20(2):52-59
基于1994年秋季航次在东海的调查资料,较详细地分析了溶存甲烷在水体中的分布规律、成因和来源.表层水中溶存甲烷呈过饱和状态,饱和度127%~254%,温跃层以上水体中,甲烷的断面分布不同于营养盐的分布,各站测值相近,没有显示出受长江冲淡水的影响,而呈现的舌状分布,在陆架底层水中有明显的高浓度甲烷水体,表明甲烷从沉积物中迅速扩散进入底层水.黑潮次表层水的涌升过程稀释了陆架边缘底层水中的甲烷.在陆架和大洋区测站上,甲烷的垂直分布不同,前者主要受物理混合过程所控制;后者呈大洋区分布特征,在温跃层附近出现甲烷的次表层最大,这可能是陆架底层高浓度甲烷沿等密度面的输送所致.  相似文献   

20.
The hydrographic and bio-optical properties of the Bering Sea shelf were analyzed based on in-situ measurements obtained during four cruises from 2007 to 2009. According to the temperature and salinity of the seawater, the spring water masses on the Bering Sea shelf were classified as the Alaskan Coast Water, Bering Sea Shelf Water, Anadyr Water, Spring Mixed Layer Water, Remnant Winter Water, and Winter Water, each of which had varying chlorophyll a concentrations. Among them, the highest chlorophyll a concentration occurred in the nutrient-rich Anadyr Water ((7.57±6.16) mg/m3 in spring). The spectrum-dependent diffuse attenuation coefficient (Kd(λ)) of the water column for downwelling irradiance was also calculated, exhibiting a decrease at 412–555 nm and then an increase within the range of 0.17–0.48 m–1 in spring. Furthermore, a strong correlation between the chlorophyll a concentration and the attenuation coefficient was found at visible wavelengths on the Bering Sea shelf. Spatially, the chlorophyll a concentration was higher on the northern shelf ((5.18±3.78) mg/m3) than on the southern shelf ((3.64±2.51) mg/m3), which was consistent with the distribution of the attenuation coefficient. Seasonally, the consumption of nutrients by blooms resulted in minimum chlorophyll a concentration ((0.78±0.51) mg/m3) and attenuation coefficient values in summer. In terms of the vertical structure, both the attenuation coefficient and the chlorophyll a concentration tended to reach maximum values at the same depth, and the depth of the maximum values increased as the surface temperature increased in summer. Moreover, an empirical model was fitted with a power function based on the correlation between the chlorophyll a concentration and the attenuation coefficient at 412–555 nm. In addition, a spectral model was constructed according to the relationship between the attenuation coefficients at 490 nm and at other wavelengths, which provides a method for estimating the bio-optical properties of the Bering Sea shelf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号