首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnesian metapelites of probable Archaean age from Forefinger Point, SW Enderby Land, East Antarctica, contain very-high-temperature granulite facies mineral assemblages, which include orthopyroxene (8–9.5 wt% Al2O3)–sillimanite ± garnet ± quartz ± K-feldspar, that formed at 10 ± 1.5 kbar and 950 ± 50°C. These assemblages are overprinted by symplectite and corona reaction textures involving sapphirine, orthopyroxene (6–7 wt% Al2O3), cordierite and sometimes spinel at the expense of porphyroblastic garnet or earlier orthopyroxene–sillimanite. These textures mainly pre-date the development of coarse biotite at the expense of initial mesoperthite, and the subsequent formation of orthopyroxene (4–6 wt% Al2O3)–cordierite–plagioclase rinds on late biotite.
The early reaction textures indicate a period of near-isothermal decompression at temperatures above 900°C. Decompression from 10 ± 1.5 kbar to 7–8 kbar was succeeded by biotite formation at significantly lower temperatures (800–850°C) and further decompression to 4.5 ± 1 kbar at 700–800°C.
The later parts of this P–T evolution can be ascribed to the overprinting and reworking of the Forefinger Point granulites by the Late-Proterozoic ( c . 1000 Ma) Rayner Complex metamorphism, but the age and timing of the early high-temperature decompression is not known. It is speculated that this initial decompression is of Archaean age and therefore records thinning of the crust of the Napier Complex following crustal thickening by tectonic or magmatic mechanisms and preceding the generally wellpreserved post-deformational near-isobaric cooling history of this terrain.  相似文献   

2.
Abstract Metapelitic and charnockitic granulites exposed around Chilka Lake in the northern sector of the Eastern Ghats, India, preserve a multi-stage P—T record. A high-T decompression from above 10 kbar to 8 kbar around 1100°C has been determined from Mg-rich metapelites (XMg>0.60) with quartz-cordierite-orthopyroxene-sillimanite and cordierite—orthopyroxene—sapphirine—spinel assemblages. Between this and a second decompression to 6.0 kbar, isobaric cooling from 830 to 670°C at 8 kbar is evident. These changes are registered by the rim compositions of orthopyroxene and garnet in charnockites and metapelites with an orthopyroxene—quartz—garnet—plagioclase—cordierite assemblage, and are further supported by the garnet + quartz ± orthopyroxene + cordierite and biotite-producing reactions in sapphirine-bearing metapelites. Another indication of isobaric cooling from 800 to 650°C at 6.0 kbar is evident from rim compositions of orthopyroxene and garnet in patchy charnockites. Two sets of P—T values are obtained from metapelites with a quartz—plagioclase—garnet—sillimanite—cordierite assemblage: garnet and plagioclase cores yield 6.2 kbar, 700°C and the rims 5 kbar, 650°C, suggesting a third decompression. The earliest deformation (F1) structures are preserved in the larger charnockite bodies and the metapelites which retain the high P—T record. The effects of post-crystalline F2 deformation are observed in garnet megacrysts formed during or prior to F1 in some metapelites. Fold styles indicate a compressional regime during F1 and an extensional regime during F2. These lines of evidence and two phases of cooling at different pressures point to a discontinuity after the first cooling, and imply reworking. Two segments of the present P—T path replicate parts of the P—T paths suggested for four other granulite terranes in the Eastern Ghats, and the sense of all the paths is the same. This, plus the signature of three phases of deformation identified in the Eastern Ghats, suggests that the Chilka Lake granulites could epitomize the metamorphic evolution of the Eastern Ghats.  相似文献   

3.
Plagioclase rims around metastable kyanite crystals appear during decompression of high-pressure felsic granulites from the high-grade internal zone of the Bohemian Massif (Variscan belt of Central Europe). The development of the plagioclase corona is a manifestation of diffusion-driven transfer of CaO and Na2O from the surrounding matrix and results in isolation of kyanite grains from the quartz- and K-feldspar-bearing matrix. This process establishes Si-undersaturated conditions along the plagioclase–kyanite interface, which allow crystallization of spinel during low-pressure metamorphism. The process of the plagioclase rim development is modeled thermodynamically assuming local equilibrium. The results combined with textural observations enable estimation of equilibration volume and diffusion length for Na and Ca that extends ∼400–450 and ∼450–550 μm, respectively, around each kyanite crystal. Low estimated bulk diffusion coefficients suggest that the diffusion rate of Ca and Na is controlled by low diffusivity of Al across the plagioclase rim.  相似文献   

4.
A detailed investigation of the compositional variation in garnet has been undertaken in a garnet–pyroxene‐bearing granulite from the high‐grade Gföhl Unit, Moldanubian Zone, Lower Austria. Textural observations, together with the interpretation of the preserved garnet chemistry, enables the recognition of both prograde core and peak metamorphic garnet mantle growth stages, an extremely rare feature in high‐P–T granulite facies rocks. Initial thermobarometric calculations undertaken across whole garnet zoning profiles show how correct interpretation of a zoning profile is essential if the maximum peak metamorphic P–T conditions are to be recovered. The effect of retrograde decompression‐ and cooling‐driven reactions on inclusion and host garnet compositions has also been assessed. The results indicate that caution should be exercised when utilizing inclusion and adjacent garnet compositions for the thermobarometric evaluation of peak metamorphic equilibration conditions. Peak P–T conditions were determined by the TWEEQU thermobarometric method, utilizing the core compositions of matrix phases combined with the interpreted high‐P–T garnet mantle composition, to give 15.6 kbar and 1090 °C, consistent with previously determined results for Moldanubian granulites. Similar high‐P–T estimates are also provided by a re‐evaluation of previously published results for a granulite sample from the same lithological unit, using a modified interpretation of garnet and plagioclase compositional data. The new estimates presented confirm the previously disputed idea that the Gföhl Unit underwent a high‐pressure granulite facies stage and is therefore distinctly different from the underlying tectonostratigraphic units. It is emphasized that any interpretation of the peak metamorphic conditions in high‐grade rocks must be based on detailed petrographic observations combined with a thorough understanding of the co‐existing equilibrium mineral compositions.  相似文献   

5.
The Kanskaya formation in the Yenisey range, Eastern Siberia is a newly studied example of retrogression of granulite facies rocks. The formation consists of two stratigraphical units: the lower Kuzeevskaya group and the upper Atamanovskaya group. Rocks from both of these units show rare reaction textures such as replacement of cordierite by garnet, sillimanite and quartz, silimanite coronas around spinel and corundum, and garnet rims around plagioclase in metabasites, while plagioclase rims around garnet can be seen in associated metapelites. The paragenesis quartz + orthopyroxene + sillimanite is a feature of the Kuzeevskaya group. In many samples, chemical zoning of garnet and cordierite shows an increase in Mg from core to rim as well as the reverse.
Biotite-garnet-cordierite-sillimanite-quartz as well as spinel±biotite-garnet°Cordierite±sillimanite-quartz assemblages were studied using geothermometers and geobarometers based on both exchange and net-transfer reactions (Perchuk & Lavrent'eva, 1983; Aranovich & Podlesskii, 1983; Gerya & Perchuk, 1989). Detailed investigation of 10 samples including 1000 microprobe analyses revealed decompression (first stage) followed by the near isobaric cooling of the granulites. From geological studies, the 7 km total thickness of the sequence closely corresponds to the pressure difference (∼ 2.2kbar) measured by geobarometers in the samples taken from different levels in the sequence. Individual samples yield P-T paths ranging from 100°C/kbar to 140°C/kbar depending on their locations with respect to the large Tarakskiy granite pluton. In places the 100°C/kbar path changed to the 140°C/kbar due to the influence of the intrusion. In a P-T diagram these trajectories are subparallel lines, whose P-T maxima define the Archaean geotherm between 3.1 and 2.7 Ga, determined isotopically. A petrological model for P-T evolution of the Kanskaya formation is proposed.  相似文献   

6.
In the central Minto Block of northern Québec, the Lake Minto and Goudalie domains are dominated, respectively, by orthopyroxene-bearing plutonic suites (granite-granodiorite and diatexite) and a tonalitic gneiss complex, both of which contain scattered remnant paragneisses. Two main granulite-grade mineral assemblages are observed in the paragneiss: garnet (Grt)-orthopyroxene (Opx)-plagioclase-quartz (GOPQ) and garnet (Grt)-cordierite (Crd)-sillimanite-plagioclase-quartz (GCSPQ). These show distinct lithological associations, with the GCSPQ assemblages occurring exclusively within the diatexite in the Lake Minto domain. Petrogenetic grid considerations demonstrate that the GOPQ rocks are higher grade than the GCSPQ rocks. Maximum temperatures for GOPQ rocks, obtained from equilibria based on Al solubility in orthopyroxene in equilibrium with garnet, range from 950 to 1000d? C, significantly higher than garnet-orthopyroxene Fe-Mg exchange temperatures of 700 ± 50d? C, the latter probably representing a closure temperature below peak conditions. The Al temperatures were corrected for late cation exchange by adjusting the Fe/(Fe + Mg) ratios in garnet and orthopyroxene, to achieve internal consistency between the GOPQ thermometers and barometers. Grt-Crd thermometry records temperatures of 750±50d? C. Peak P-T conditions range from 5-6 kbar and 750-800d? C in the Goudalie and eastern Lake Minto domains, to 7-10 kbar and 950-1000d? C in the western and central Lake Minto domain. This variability contrasts with the uniform crustal pressures of 5 ± 1 kbar recorded by the GCSPQ assemblages in the diatexites and the hornblende granodiorites (c. 4-5 kbar) across the same area. The GOPQ rocks are inferred to record earlier P-T conditions that prevailed before the formation of GCSPQ assemblages and the intrusion of the granodiorites. Partial P-T paths in GOPQ rocks from both domains, based on net transfer equilibria corrected for Fe-Mg resetting, document cooling of 100-250d? C from thermal-peak conditions, concomitant with a modest pressure decrease of 2-3 kbar. Although textures diagnostic of isobaric cooling are not developed, the paths are consistent with a tectonic model in which granulite metamorphism and crustal thickening in the Minto Block were consequences of magmatic underplating. The progression from higher P-T conditions recorded by GOPQ assemblages to lower P-T conditions recorded by GCSPQ assemblages is attributed to variable amounts of synmagmatic uplift and cooling in a single, continuous thermal event in the Minto crust, associated with protracted crustal magmatism. In the Goudalie and eastern Lake Minto domains, where GOPQ and GCSPQ rocks and Hbl granodiorites have similar P-T conditions of equilibration, the crust may not have been thickened as much as further west, where GOPQ P-T conditions are significantly higher than those of the hornblende granodiorites and the GCSPQ rocks.  相似文献   

7.
In a granulite-facies spinel-bearing quartzite, corundum, orthopyroxene and sapphirine (and rarely cordierite and sillimanite) form partial rims separating spinel from quartz. Textures indicate the reactions:
spinel + quartz = orthopyroxene + corundum, and
spinel + quartz = orthopyroxene + sapphirine.
Thus, corundum and sapphirine are produced by reactions involving quartz. The low Al-content of the orthopyroxene (0.5–2.8 wt %) and low values for Mg–Fe distribution coefficient for spinel–sapphirine and spinel–orthopyroxene reflect low-temperature conditions during formation of the reaction products. Absence of zoning in spinel and a constant Mg–Fe distribution coefficient for spinel–sapphirine and spinel–orthopyroxene, over a compositional range, indicate Mg–Fe equilibration. It is suggested that stable reactions such as spinel + quartz = cordierite or spinel + quartz = garnet + sillimanite were over-stepped and that metastable reactions give rise to the anomalous juxtaposition of corundum + quartz.  相似文献   

8.
东南极格罗夫山镁铁质麻粒岩的变质作用   总被引:9,自引:7,他引:9  
俞良军  赵越等 《岩石学报》2002,18(4):501-516
东南极内陆-格罗夫山存在一套经历了麻粒岩相变质作用的镁铁质麻粒岩和斜长角闪岩。变质反应结构显示该区多为单一的区域性麻粒岩相变质作用。但是,对含石榴石的镁铁质麻粒岩的详细工作则显示了包括3个阶段的近等温降压(ITD)的顺时针PT演化轨迹,M1:0.93GPa>800℃:M2:0.65GPa,733-850℃;M3:0.46-0.61GPa,并有着与拉斯曼丘陵相似的演化历史。根据矿物组合和成分、变质反应结构及温压计算结果,格罗夫山镁铁质麻粒岩可能为高压麻粒岩。  相似文献   

9.
Distinctive lithological associations and geological relationships, and initial geochronological results indicate the presence of an areally extensive region of reworked Archaean basement containing polymetamorphic granulites in the Rauer Group, East Antarctica.
Structurally early metapelites from within this reworked region preserve complex and varied metamorphic histories which largely pre-date and bear no relation to a Late Proterozoic metamorphism generally recognized in this part of East Antarctica. In particular, magnesian metapelite rafts from Long Point record extreme peak P–T conditions of 10–12 kbar and 100–1050°C, and an initial decompression to 8 kbar at temperatures of greater than 900°C. Initial garnet–orthopyroxene–sillimanite assemblages contain the most magnesian (and pyrope-rich) garnets ( X Mg= 0.71) yet found in granulite facies rocks. A high-temperature decompressional P–T history is consistent with reaction textures in which the phase assemblages produced through garnet breakdown vary systematically with the initial garnet X Mg composition, reflecting the intersection of different divariant reactions in rocks of varied composition as pressures decreased. This history is thought to relate to Archaean events, whereas a lower-temperature ( c. 750–800°C) decompression to 5 kbar reflects Late Proterozoic reworking of these relict assemblages.
The major Late Proterozoic ( c. 1000 Ma) granulite facies metamorphism is recorded in a suite of younger Fe-rich metapelites and associated paragneisses in which syn- to post-deformational decompression, through 2–4 kbar from maximum recorded P–T conditions of 7–9 kbar and 800–850°C, is constrained by geothermobarometry and reaction textures. This P–T evolution is thought to reflect rapid tectonic collapse of crust previously thickened through collision.  相似文献   

10.
Abstract A suite of granulites including a meta-ironstone, pyroxenites, and spinel-lherzolites from East Tonagh Island, Enderby Land, Antarctica, preserve exsolution-recry-stallization features consistent with a shared metamorphic evolution that involves marked cooling from initial metamorphic temperatures of nearly 1000°C. Reintegrated pre-exsolution and pre-reaction grain compositions in the meta-ironstone indicate the former coexistence of metamorphic pigeonite (Wo12En38Fs50) and ferroaugite (Wo35En31Fs34) at temperatures in excess of 980°C for pressures of 7 kbar (0.7 GPa) using pyroxene quadrilateral thermometry (Lindsley, 1983). Intra-grain lamellae relationships indicate the exsolution of a second pigeonite (Wo12En35Fs53) from the ferroaugite at temperatures in the range 930–970°C, prior to the c. 720–600°C exsolution of orthopyroxene and clinopyroxene (100) lamellae and later partial recrystallization at similar temperatures. Although pyroxenitic and iherzolitic granulites preserve a much less complete history, reintegrated porphyroclast compositions in these yield temperature estimates which approach those inferred from the metaironstone. Pyroxene thermometry based on neoblast compositions suggests that recrystallization post-dating a late, low intensity, deformation phase (D3) occurred at temperatures greater than 600°C. These results are consistent with the independent evidence obtained from studies of metapelitic and felsic rock types for very high temperature metamorphism throughout the Napier Complex followed by near-isobaric cooling and later deformation under lower-grade granulite facies conditions. Comparison with similar pyroxene data from Fyfe Hills (Sandiford & Powell, 1986) demonstrates further the regional significance of these high temperatures, and implies broadly isothermal metamorphic conditions over a large area (~ 5000 km2) and thickness (6–9 km) of lower crust at c. 3070 Ma.  相似文献   

11.
Abstract Orthopyroxene-bearing migmatites, exposed at the summit of Cone Peak in the Santa Lucia Range, California, offer an opportunity to explore potential links between granulite facies metamorphism and migmatite formation. Geothermobarometry indicates that the metamorphic temperatures and pressures were in the approximate ranges of 700–750° C and 7.0–7.5 kbar. The rocks at the summit comprise three domains: relatively coarse-grained, leucocratic veins; relatively fine-grained, biotite-enriched zones at the margins of the veins; and a biotite–hornblende-bearing host rock. Orthopyroxene is concentrated in the veins, which have also the highest ratio of anhydrous to hydrous minerals of the three rock types. The composition of the veins, together with their textures and modes, suggest that they formed through anatexis involving a dehydration-melting reaction which consumed hornblende and produced orthopyroxene. Variability in mineralogy and composition indicates that there was some local migration of magma along the veins before their final solidification. The biotite-enriched zones formed either by the concentration of residual biotite at the margins of the vein, or through the metasomatic conversion of hornblende (and/or pyroxene) to biotite, or by a combination of the two processes. Significant differences in the chemistry of the neosome (vein + biotite-enriched zone) and the host rock rule out simple dehydration melting in a local closed system. The model that explains best the mineralogical and chemical patterns involves triggering of melting by an influx of a low- a H2O mixed fluid which added K and Si to and removed Ca from the neosome.  相似文献   

12.
The role of volatiles in the stabilization of the lower (granulite facies) crust is contentious. Opposing models invoke infiltration of CO2-rich fluids or generally vapour-absent conditions during granulite facies metamorphism. Stable isotope and petrological studies of granulite facies metacarbonates can provide constraints on these models. In this study data are presented from metre-scale forsteritic marble boudins within Archaean intermediate to felsic orthogneisses from the Rauer Group, East Antarctica. Forsteritic marble layers and associated calcsilicates preserve a range of 13C- and 18O-depleted calcite isotope values (δ13C= -9.9 to -3.0% PDB, δ18O = 4.0 to 12.1% SMOW). A coupled trend of 13C and 18O depletion (~2%, ~5%, respectively) from core to rim across one marble layer is inconsistent with pervasive CO2 infiltration during granulite facies metamorphism, but does indicate localized fluid-rock interaction. At another locality, more pervasive fluid infiltration has resulted in calcite having uniformly low, carbonatite-like δ18O and δ13C values. A favoured mechanism for the low δ18O and δ13C values of the marbles is infiltration by fluids that were derived from, or equilibrated with, a magmatic source. It is likely that this fluid-rock interaction occurred prior to high-grade metamorphism; other fluid-rock histories are not, however, ruled out by the available data. Coupled trends of 13C and 18O depletion are modified to even lower values by the superposed development of small-scale metasomatic reaction zones between marbles and internally folded mafic (?) interlayers. The timing of development of these layers is uncertain, but may be related to Archaean high-temperature (>1000d?C) granulite facies metamorphism.  相似文献   

13.
Sixty-three internally consistent geothermobarometers for mineral equilibria involving sapphirine (2:2:1 and 7:9:3), pyrope, cordierite, enstatite, Mg-tschermak orthopyroxene, quartz, spinel and sillimanite have been calibrated in the MAS system. The updated thermodynamic data of these minerals are consistent, within limits of error, with highP-T experiments on several mineral equilibria and calorimetric data. TheP-T conditions of the granulite facies metamorphism, spanning a range of 700 to more than 1000°C and 4 to more than 10 kbar, can be estimated simultaneously from these geothermobarometers andP-T-t trajectories can be deduced from the reaction coronas well preserved in these rocks because of the refractory nature of aluminous phases. The geothermobarometers have been applied to sapphirine-spinel granulites of Eastern Ghats and Enderby Land. TheP-T conditions of metamorphism (a-prograde/thermal peak and b-retrograde isothermal/isobaric decompression/cooling) estimated for these granulites are: (1) Eastern Ghats (Visakhapatnam): Paderu- (a) 900°C/8.3kbar, (b-1) 900°C/6.8kbar and (b-2) 740°C/5.4 kbar; Anantgiri- (a) prograde anticlockwise 930°C/6.2 kbar and (b) 870°C/6.8 kbar, 820°C/6.1 kbar; Anakapalle- (b) 845°C/8.5-6.2 kbar; and Araku- (b) 840°C/6.2 kbar to 795°C/5.9 kbar. Enderby Land (Napier complex): Spot height 945, Tula Mts.- (a) 970°C/9.1 ± 0.6 kbar, isobaric cooling (b) 885°C/ 7.75 kbar, isothermal decompression (b) 880°C/6.85 kbar; Mt. Hardy, Tula Mts.- (b) 885°C/6.75 kbar; Mt. Riiser-Larsen, Amundsen bay- (a) 1000°C/7.0 kbar prograde anticlockwise; Mt. Sones- (b) 920°C/ 6.8 kbar; Forefinger Point, SW Enderby Land- (b) 840°C/6.7 kbar, 810°C/6.5 kbar and 775°C/5.0 kbar. The estimatedP-T andP-T-t are mostly consistent with those inferred from the granulites of these areas.  相似文献   

14.
大青山-乌拉山变质杂岩立甲子基性麻粒岩主要由角闪二辉麻粒岩、含榴角闪二辉麻粒岩和黑云角闪二辉麻粒岩所组成,并以变形岩墙和不规则透镜体形式赋存于富铝片麻岩和花岗质片麻岩之中.立甲子基性麻粒岩中变质锆石含有单斜辉石(Cpx)+角闪石(Amp)+斜长石(Pl)+磷灰石(Ap)的包体矿物,与寄主岩石——基性麻粒岩矿物组合及其化学成分十分一致,相应的207 pb/206 Pb表面年龄变化于1933±39Ma ~ 1834±40Ma,加权平均年龄为1892±7Ma(MSWD =0.50,n=46),应代表立甲子基性麻粒岩原岩经历中低压麻粒岩相的变质时代.在变质过程中,以大离子亲石元素(K、Na、Sr、Rb)为代表的活动元素发生了显著的改变;而高场强元素(Nb、Zr、Ti)和稀土元素基本无变化,保持稳定.立甲子基性麻粒岩原岩属于拉斑玄武质岩石系列,其SiO2集中变化于45.58% ~51.40%,Mg#值集中介于41 ~54之间;在球粒陨石标准化稀土配分图中,立甲子基性麻粒岩具有平坦型的稀土配分曲线特征((La/Yb)cN=1.30~1.51),Eu异常不明显(Eu/Eu*=0.93~1.04).与显生宙岛孤拉斑玄武岩类似,立甲子基性麻粒岩所有样品皆具有Nb、Zr、Ti负异常特征.综合分析认为,立甲子基性麻粒岩原岩形成于2450~1930Ma,并于~1900Ma经历中低压麻粒岩相变质作用的改造,其主量元素和微量元素组成具有岛弧拉斑玄武质岩石的地球化学特征,其原岩可能是板块汇聚动力学背景下,岛弧构造环境中形成的辉长岩或辉绿岩.  相似文献   

15.
The Shevaroy Hills of northern Tamil Nadu, southern India, expose the highest-grade granulites of a prograde amphibolite facies to granulite facies deep-crustal section of Late Archaean age. These highly oxidized quartzofeldspathic garnet charnockites generally show minor high-TiO2 biotite and amphibole as the only hydrous minerals and are greatly depleted in the incompatible elements Rb and Th. Peak metamorphic temperatures (garnet–orthopyroxene) and pressures (garnet–orthopyroxene–plagioclase–quartz) are near 750 °C and 8 kbar, respectively. Pervasive veinlets of K-feldspar exist throughout dominant plagioclase in each sample and show clean contact with orthopyroxene. They are suggested to have been produced by a low H2O activity, migrating fluid phase under granulite facies conditions, most likely a concentrated chloride/carbonate brine with high alkali mobility accompanied by an immiscible CO2-rich fluid. Silicate, oxide and sulphide mineral assemblages record high oxygen fugacity. Pyroxenes in the felsic rocks have high Mg/(Mg+Fe) (0.5–0.7). The major oxide mineral is ilmenite with up to 60 mole per cent exsolved hematite. Utilizing three independent oxygen barometers (ferrosilite–magnetite–quartz, ferrosilite–hematite–quartz and magnetite–hematite) in conjunction with garnet–orthopyroxene exchange temperatures, samples with XIlmHm>0.1 yield a consistent oxygen fugacity about two log units above fayalite stability. Less oxidized samples (XIlmHm<0.1) show some scatter with indications of having equilibrated under more reducing conditions. Temperature-f (O2 ) arrays result in self consistent conditions ranging from 660 °C and 10?16 bar to 820 °C and 10?11.5 bar. These trends are confirmed by calculations based on the assemblage clinopyroxene–orthopyroxene–magnetite–ilmenite using the QUIlF program. In the most oxidized granulite samples (XIlmHm>0.4) pyrite is the dominant sulphide and pyrrhotite is absent. Pyrite grains in these samples have marginal alteration to magnetite along the rims, signifying a high-temperature oxidation event. Moderately oxidized samples (0.1no coexisting magnetite. Chalcopyrite is a common accessory mineral of pyrite and pyrrhotite in all the samples. Textures in some samples suggest that it formed as an exsolution product from pyrrhotite. Extensive vein networks of magnetite and pyrite, associated principally with the pyroxene and amphibole, give evidence for a pervasive, highly oxidizing fluid phase. Thermodynamic analysis of the assemblage pyrrhotite, pyrite and magnetite yields consistent high oxidation states at 700–800 °C and 8 kbar. The oxygen fugacity in our most oxidized pyrrhotite-bearing sample is 10?12.65 bar at 770 °C. There are strong indications that the Shevaroy Hills granulites recrystallized in the presence of an alkali-rich, low H2O-activity fluid, probably a concentrated brine. It cannot be demonstrated at present whether the high oxidation states were set by initially oxidized protoliths or effected by the postulated fluids. The high correspondence of maximally Rb-depleted samples with the highest recorded oxidation states suggests that the Rb depletion event coincided with the oxidation event, probably during breakdown of biotite to orthopyroxene+K-feldspar. We speculate that these alterations were effected by exhalations from deep-seated alkali basalts, which provided both heat and high oxygen fugacity, low aH2O fluids. It will be of interest to determine whether greatly Rb-depleted granulites in other Precambrian terranes show similar highly-oxidizing signatures.  相似文献   

16.
The ultrahigh-temperature (UHT) metamorphism of the Napier Complex is characterized by the presence of dry mineral assemblages, the stability of which requires anhydrous conditions. Typically, the presence of the index mineral orthopyroxene in more than one lithology indicates that H2O activities were substantially low. In this study, we investigate a suite of UHT rocks comprising quartzo-feldspathic garnet gneiss, sapphirine granulite, garnet-orthopyroxene gneiss, and magnetite-quartz gneiss from Tonagh Island. High Al contents in orthopyroxene from sapphirine granulite, the presence of an equilibrium sapphirine-quartz assemblage, mesoperthite in quartzo-feldspathic garnet gneiss, and an inverted pigeonite-augite assemblage in magnetite-quartz gneiss indicate that the peak temperature conditions were higher than 1,000 °C. Petrology, mineral phase equilibria, and pressure-temperature computations presented in this study indicate that the Tonagh Island granulites experienced maximum P-T conditions of up to 9 kbar and 1,100 °C, which are comparable with previous P-T estimates for Tonagh and East Tonagh Islands. The textures and mineral reactions preserved by these UHT rocks are consistent with an isobaric cooling (IBC) history probably following an counterclockwise P-T path. We document the occurrence of very high-density CO2-rich fluid inclusions in the UHT rocks from Tonagh Island and characterize their nature, composition, and density from systematic petrographic and microthermometric studies. Our study shows the common presence of carbonic fluid inclusions entrapped within sapphirine, quartz, garnet and orthopyroxene. Analysed fluid inclusions in sapphirine, and some in garnet and quartz, were trapped during mineral growth at UHT conditions as 'primary' inclusions. The melting temperatures of fluids in most cases lie in the range of -56.3 to -57.2 °C, close to the triple point for pure CO2 (-56.6 °C). The only exceptions are fluid inclusions in magnetite-quartz gneiss, which show slight depression in their melting temperatures (-56.7 to -57.8 °C) suggesting traces of additional fluid species such as N2 in the dominantly CO2-rich fluid. Homogenization of pure CO2 inclusions in the quartzo-feldspathic garnet gneiss, sapphirine granulite, and garnet-orthopyroxene gneiss occurs into the liquid phase at temperatures in the range of -34.9 to +4.2 °C. This translates into very high CO2 densities in the range of 0.95-1.07 g/cm3. In the garnet-orthopyroxene gneiss, the composition and density of inclusions in the different minerals show systematic variation, with highest homogenization temperatures (lowest density) yielded by inclusions in garnet, as against inclusions with lowest homogenization (high density) in quartz. This could be a reflection of continued recrystallization of quartz with entrapment of late fluids along the IBC path. Very high-density CO2 inclusions in sapphirine associated with quartz in the Tonagh Island rocks provide potential evidence for the involvement of CO2-rich fluids during extreme crustal temperatures associated with UHT metamorphism. The estimated CO2 isochores for sapphirine granulite intersect the counterclockwise P-T trajectory of Tonagh Island rocks at around 6-9 kbar at 1,100 °C, which corresponds to the peak metamorphic conditions of this terrane derived from mineral phase equilibria, and the stability field of sapphirine + quartz. Therefore, we infer that CO2 was the dominant fluid species present during the peak metamorphism in Tonagh Island, and interpret that the fluid inclusions preserve traces of the synmetamorphic fluid from the UHT event. The stability of anhydrous minerals, such as orthopyroxene, in the study area might have been achieved by the lowering of H2O activity through the influx of CO2 at peak metamorphic conditions (>1,100 °C). Our microthermometric data support a counterclockwise P-T path for the Napier Complex.  相似文献   

17.
Based on field investigation of the constituent structure and geological formation of the Maoping landslide, the authors made an in-depth study of the deformation characteristics and triggering mechanism of the reservoir-induced slide through comprehensive analysis of the about 13 years observation data. The Maoping landslide, the largest ancient landslide in Geheyan reservoir, with a volume of 23.5 million m3, is located on the left bank of the Qingjiang River, 66 km upstream of Geheyan dam. In April 1993 reservoir inundation reactivated the landslide, which resulted in relocation of a village of 290 people. Since then the landslide body has been experiencing persistent deformation with an observed maximum displacement of 2841.4 mm up to October 2005. Therefore, further development of deformation of the landslide becomes a great concern for the safety of the reservoir and dam. The analysis results show that the Maoping landslide is an ancient landslide that is an accumulation of several consequent slides along the bank slope and experienced several secondary slumps in its front in later stages. The ongoing deformation of the reactivated landslide is controlled by mechanical properties of materials and hydraulic effects induced by reservoir. The slip process is of creep deformation as a whole, and appears to be attenuating in later stage, which indicates very low possibility of the high-speed slip and integral failure of the slide.  相似文献   

18.
Abstract Small unexploited copper-lead-zinc deposits, characterized by a distinctive wall-rock association of cordierite quartzite, silica-undersaturated rocks, calc-silicate rocks and impure marbles, occur in quartzofeldspathic gneisses and mafic granulites of the Strangways Metamorphic Complex, central Arunta Block, central Australia. Available data support the hypothesis that these are metamorphosed volcanogenic ore bodies. The chemical compositions of the quartzofeldspathic gneisses are comparable with those of less metamorphosed felsic igneous rocks, particularly the felsic igneous rocks emplaced in the North Australian Orogenic Province in the interval 1880–1800 Ma; and the mafic granulites are chemically similar to basalts (olivine-normative tholeiites). The wall-rock suite can be correlated from chemistry and lithological association with the suites of wall rocks found in unmetamorphosed volcanogenic ore deposits. That the protolith of the cordierite quartzites may well have been leached tuff, similar to the illite-chlorite-quartz tuff found in volcanogenic ore deposits, is also shown by retrogression of the granulitefacies assemblage: cordierite-garnet-ortho-pyroxene-biotite-quartz in the cordierite quartzites to cordierite-anthophyllite-bearing assemblages and thence to chlorite-muscovite-quartz assemblages. Lenses of silica-undersaturated rocks with spinel and, less commonly, sapphirine are interpreted as the metamorphosed equivalents of chlorite-rich pods found within leached tuffs in volcanogenic ore deposits. The wall rocks form sheet-like bodies; this suggests that they were deposited in relatively shallow water, thus precluding the formation of massive sulphides.  相似文献   

19.
The spinel–quartz-bearing Al–Fe granulites from Ihouhaouene (In Ouzzal, West Hoggar) have a migmatitic appearance with quartzo-feldspathic layers intercalated with restitic layers. These granulites are characterized by a hercynitic spinel–quartz assemblage typical of high grade terranes. The stability of the spinel–quartz assemblage is attributed to an elevation of temperature (from 800 to >1100 °C) at high pressures (10–11 kbar), followed by an isothermal decompression from 9 to 5 kbar, an evolution typical of the In Ouzzal clockwise PT path. The Al–Fe granulites’ history can be subdivided into different successive crystallisation stages. During the first stage, the spinel–quartz assemblage formed, probably following a prograde event that also produced partial melting. During a second stage, the primary spinel–garnet–sillimanite–quartz paragenesis broke-down to give rise to the secondary assemblage. The metamorphic evolution and phase relations during this stage are shown in PTX pseudosections calculated for the simple FMASH system. These pseudosections show that the orthopyroxene–cordierite–spinel symplectite appeared during a high temperature decompression, as a product of destabilisation of garnet in sillimanite-free microdomains with high XMg values. At the same time, the spinel–quartz association broke-down into cordierite in Fe-rich microdomains. Average pressure and temperature estimates for the orthopyroxene–spinel–garnet–cordierite–quartz association are close to the thermal peak of metamorphism (1000 ± 116 °C at 6.3 ± 0.5 kbar). With decreasing temperatures garnet–sillimanite corona developed from the breakdown of the primary spinel–quartz assemblage in the Fe-rich microdomains, whereas cordierite–spinel formed at the expense of primary sillimanite and garnet in the Mg-rich microdomains.  相似文献   

20.
Interpretations based on quantitative phase diagrams in the system CaO–Na2O–K2O–TiO2–MnO–FeO–MgO–Al2O3–SiO2–H2O indicate that mineral assemblages, zonations and microstructures observed in migmatitic rocks from the Beit Bridge Complex (Messina area, Limpopo Belt) formed along a clockwise P–T path. That path displays a prograde P–T increase from 600 °C/7.0 kbar to 780 °C/9–10 kbar (pressure peak) and 820 °C/8 kbar (thermal peak), followed by a P–T decrease to 600 °C/4 kbar. The data used to construct the P–T path were derived from three samples of migmatitic gneiss from a restricted area, each of which has a distinct bulk composition: (1) a K, Al‐rich garnet–biotite–cordierite–sillimanite–K‐feldspar–plagioclase–quartz–graphite gneiss (2) a K‐poor, Al‐rich garnet–biotite–staurolite–cordierite–kyanite–sillimanite–plagioclase–quartz–rutile gneiss, and (3) a K, Al‐poor, Fe‐rich garnet–orthopyroxene–biotite–chlorite–plagioclase–quartz–rutile–ilmenite gneiss. Preservation of continuous prograde garnet growth zonation demonstrates that the pro‐ and retrograde P–T evolution of the gneisses must have been rapid, occurring during a single orogenic cycle. These petrological findings in combination with existing geochronological and structural data show that granulite facies metamorphism of the Beit Bridge metasedimentary rocks resulted from an orogenic event during the Palaeoproterozoic (c. 2.0 Ga), caused by oblique collision between the Kaapvaal and Zimbabwe Cratons. Abbreviations follow Kretz (1983 ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号