首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A model for Doppler peak spectral shift for low grazing angle sea scatter   总被引:1,自引:0,他引:1  
A model is formulated for Doppler spectral characteristics of radar sea scatter for low grazing angles, and is compared with previous radar measurements reported in the literature. The Doppler model is based upon the two-scale model for radar scatter, with scatterer motions hypothesized as due to the orbital wave velocity of the large-scale waves, Stokes and wind drift currents, and the phase velocity of the small-scale Bragg scatterers. Expressions for Doppler shifts due to these motions are derived, and are given as a function of wave height, wave period, and wind speed. Although this model appears to account for the peak Doppler shift of the sea-scatter Doppler spectrum for vertical polarization, it is insufficient to describe horizontally and cross-polarized data, which have larger mean Doppler shifts. However, these two cases are found to scale very closely with the nearly simultaneous vertically polarized data for the variety of environmental conditions reported. Implications of the extension of these results to higher-angle remote-sensing applications are discussed.  相似文献   

2.
Simultaneously obtainedX- andL-band synthetic aperture radar (SAR) data collected during the Marineland Experiment were spectrally analyzed by fast Fourier transform (FFT) techniques to estimate ocean wavelength and direction. An eight-sided flight pattern was flown over the same ocean area in order to study the sensitivity of the spectral estimate on radar look direction. These spectral estimates were compared with in situ wave measurements made by a pitch-and-roll buoy. The comparison revealed that theX-band SAR detected all gravity waves independent of radar look direction, while theL-band SAR detected all range-traveling gravity waves but failed to detect waves in three of four cases in which the waves were traveling within 25° of the azimuth direction. The analysis also indicates that azimuth-traveling waves appear longer and more range-traveling in the SAR imagery than observed by in situ instrumentation. It is postulated that degraded azimuth resolution due to scatterer motion is responsible for these observations.  相似文献   

3.
Ocean wave parameters retrieved directly from compact polarimetric SAR data   总被引:1,自引:0,他引:1  
We aim to directly invert wave parameters by using the data of a compact polarimetric synthetic aperture radar(CP SAR) and validate the effectiveness of ocean wave parameter retrieval from the circular transmit/linear receive mode and π/4 compact polarimetric mode. Relevant data from the RADARSAT-2 fully polarimetric SAR on the C-band were used to obtain the compact polarimetric SAR images, and a polarimetric SAR wave retrieval algorithm was used to verify the sea surface wave measurements. Usin...  相似文献   

4.
A Physically Consistent Speckle Model for Marine SLC SAR Images   总被引:1,自引:0,他引:1  
A new physically based speckle model for marine single-look complex (SLC) synthetic aperture radar (SAR) images is here presented and investigated. The model allows using full-resolution SAR images instead of multilook SAR images, in which, at the expense of a coarser spatial resolution, the speckle is mitigated. The model is based on the three-parameters generalized-K (GK) probability density function (pdf). GK pdf is a suitable physically-based speckle model for marine SAR images ensuring a continuous and physically consistent transition among different scattering scenarios. This speckle model embodies Rayleigh, K, and Rice scattering scenes which are typical of marine scenes. The use of the three parameters, related to the GK pdf ones, is able to highlight the presence of both low backscattering areas and areas in which a small dominant scatterer is present. This is operationally interesting in SAR oil spill detection procedures.  相似文献   

5.
A calculation procedure using the modulation transfer function approach is presented to estimate the distortions to the values of the peak ocean wavelength and direction derived from SAR images of these waves. The distortions are calculated for ranges of SAR parameters which are typical for aircraft and satellites, and ocean wave parameters which reflect sea states which can be imaged by these SARs. The calculated distortions are discussed in terms of overall trends, effect of particular SAR and wave parameters, and qualitatively compared with observed differences between SAR and in situ measurements.  相似文献   

6.
Extraction of coastal ocean wave fields from SAR images   总被引:3,自引:0,他引:3  
Wave spectra derived from synthetic aperture radar (SAR) images acquired by ENVISATs are compared to in situ measurements by seven sensors, deployed in a field experiment carried out on the French coast of La Manche (English Channel). The wave spectra inversion scheme is adapted for shallow water from the European Space Agency (ESA)'s operational processing techniques used for level 2 ocean wave products. Under the low to moderate wind speed observed conditions, overall good agreement is found between in situ and SAR observations over a wide range of wave heights and directions, including waves propagating in the radar azimuth direction and incidence angles different from the standard imagette products.  相似文献   

7.
Ocean waves are often measured using sub-surface pressure transducers. The transfer function, relating pressure fluctuations to variations in water-surface elevation, is usually based on linear wave theory, with an empirical correction factor being applied to account for non-linearities.This paper is concerned with the determination of surface-elevation spectra from pressures recorded beneath irregular waves travelling on a current. Predicted spectra are compared with spectral densities calculated from measurements using a surface-piercing wave gauge. Results show that significant errors arise if the Doppler effect, associated with the presence of the current, is ignored. The importance of selecting appropriate values of the empirical correction factor is also demonstrated.  相似文献   

8.
This paper proposes two simple models, look-up table(LUT) model and empirical model, to directly retrieve significant wave height(Hs) using synthetic aperture radar(SAR) azimuth cutoff(λc). Both models aim at C-band VV, HH, VH, and HV single-polarization SAR images. The LUT model relates Hs to λc, while the empirical model relates Hs to both λc and SAR range-to-velocity(β). The LUT model coefficients are derived by simulation under different sea states and observation conditions, which depend on incidence angle(θ), wave direction(dw), and βbut are independent of polarization. The empirical model coefficients are obtained by fitting the collocated data,which only depend on polarization. To fit empirical model coefficients and validate the two models, C-band RADARSAT-2 fine quad-polarization(VV+HH+VH+HV) single-look complex(SLC) SAR images and collocated buoy data are collected. Retrieved Hs, using Yang model and the two models proposed in this paper from four kinds of polarization SAR data, are compared with buoy Hs. Results show that both LUT and empirical models have the capacity of retrieving Hs from C-band RADARSAT-2 co-polarization SAR data, while Yang model is not suitable for these kinds of SAR data. Moreover, the empirical model is also valid for cross-polarization SAR data showing clear ocean wave stripes.  相似文献   

9.
欧洲环境卫星-高级合成孔径雷达(EnvironmentalSatellite-AdvancedSyntheticAperture Radar,Envisat-ASAR)波模式数据提供了全球风、浪要素信息,在海浪模式预报与同化方面有重要作用。该数据合成孔径雷达(SyntheticApertureRadar,SAR)图像普遍存在海浪条纹清晰度不同的现象,但是否影响数据精度尚无定论。本文通过比较2010年NODC (the National Oceanographic Date Center)浮标观测数据和波模式数据,发现经过官方修正后的海浪参数反而具有更大误差。进而通过对比不同条纹清晰度的SAR图像反演参数误差,揭示了ASAR产品海浪参数与浮标测量值之间的误差与海浪条纹清晰度的关系。结果表明:海浪条纹清晰的SAR图像的主波波长和主波周期的反演误差更小,而条纹不清晰SAR图像的有效波高和风速的反演误差更小。通过分析海浪参数对海浪条纹清晰度的敏感性,证实了有效波高和方位向截断波长对SAR图像条纹清晰度的响应最好,波陡次之,与卫星飞行方位角和入射角无关。因此,在反演和修正SAR波模式数据时,考虑图像的条纹清晰度,将会有效提高反演数据的精度。该研究可为高分三号等卫星的波模式数据波浪要素反演精度的提升提供有价值的参考。  相似文献   

10.
基于合成孔径雷达交叉极化通道数据的海上目标探测   总被引:1,自引:0,他引:1  
Azimuth ambiguities(ghost targets) discrimination is of great interest with the development of a synthetic aperture radar(SAR). And the azimuth ambiguities are often mistaken as actual targets and cause false alarms. For actual targets, HV channel signals acquired by a fully polarimetric SAR are approximately equal to a VH channel in magnitude and phase, i.e., the reciprocity theorem applies, but shifted in phase about ± for the first-order azimuth ambiguities. Exploiting this physical behavior, the real part of the product of the two cross-polarized channels, i.e.(S S)HV VH, hereafter called A12 r, is employed as a new parameter for a target detection at sea. Compared with other parameters, the contrast of A12 r image between a target and the surrounding sea surface will be obviously increased when A12 r image is processed by mean filtering algorithm. Here, in order to detect target with constant false-alarm rates(CFARs), an analytical expression for the probability density function(pdf) of A12 r is derived based on the complex Wishart-distribution. Because a value of A12 r is greater/less than 0 for real target/its azimuth ambiguities, the first-order azimuth ambiguities can be completely removed by this A12r-based CFAR technology. Experiments accomplished over C-band RADARSAT-2 fully polarimetric imageries confirm the validity.  相似文献   

11.
Ocean currents are a key element in ocean processes and in meteorology, affecting material transport and modulating climate change patterns. The Doppler frequency shift information of the synthetic aperture radar (SAR) echo signal can reflect the dynamic characteristics of the sea surface, and has become an essential sea surface dynamic remote sensing parameter. Studies have verified that the instantaneous Doppler frequency shift can realize the SAR detection of the sea surface current. However, the validation of SAR-derived ocean current data and a thorough analysis of the errors associated with them remain lacking. In this study, we derive high spatial resolution flow measurements for the Kuroshio in the East China Sea from SAR data using a theoretical model of shifts in Doppler frequency driven by ocean surface current. Global ocean multi observation (MOB) products and global surface Lagrangian drifter (GLD) data are used to validate the Kuroshio flow retrieved from the SAR data. Results show that the central flow velocity for the Kuroshio derived from the SAR is 0.4–1.5 m/s. The error distribution between SAR ocean currents and MOB products is an approximate standard normal distribution, with the 90% confidence interval concentrated between –0.1 m/s and 0.1 m/s. Comparative analysis of SAR ocean current and GLD products, the correlation coefficient is 0.803, which shows to be significant at a confidence level of 99%. The cross-validation of different ocean current dataset illustrate that the SAR radial current captures the positions and dynamics of the Kuroshio central flow and the Kuroshio Counter Current, and has the capability to monitor current velocity over a wide range of values.  相似文献   

12.
在SAR与AIS联合探测探测舰船目标实验中,通过对2010-11-05T06:51渤海海峡Radarsat-2影像的和与之时空匹配的AIS数据比较,发现2种手段探测到的静止的舰船目标能够精确的匹配,但是运动的舰船目标存在一定的偏差.分析了偏差产生的原因,其中距离向偏差是由时间误差引起的;方位向偏差主要是由多普勒频移造成的;这与运动舰船目标的航速、航向及SAR与AIS的探测时间误差有关.在此基础上建立了数学模型,分析上述参数对偏差的影响,并对偏差加以修正,从而实现了SAR与AIS探测结果的匹配.  相似文献   

13.
X- andL-band simultaneously obtained synthetic aperture radar (SAR) data of ocean gravity waves collected during the Marineland Experiment were analyzed using wave contrast measurements. The Marineland data collected in 1975 represents a unique historical data set for testing still-evolving theoretical models of the SAR ocean wave imaging process. The wave contrast measurements referred to are direct measurements of the backscatter variation between wave crests and troughs. These modulation depth measurements, which are indicators of wave detectability, were made as a function of: a) the settings used in processing the SAR signal histories to partially account for wave motion; b) wave propagation direction with respect to radar look direction for bothX- andL-band SAR data; c) SAR resolution; and d) number of coherent looks. The contrast measurements indicated that ocean waves imaged by a SAR are most discernible whenX-band frequency is used (as compared toL-band), and when the ocean waves are traveling in the range direction. Ocean waves can be detected by bothX- andL-band SAR, provided that the radar surface resolution is small compared to the ocean wavelength (at least 1/4 of the ocean wavelength is indicated by this work). Finally, wave detection withL-band SAR can be improved by adjusting the focal distance and rotation of the cylindrical telescope in the SAR optical processor to account for wave motion. The latter adjustments are found to be proportional to a value that is near the wave phase velocity.  相似文献   

14.
This work examines ERS-1 (the first European Remote Sensing Satellite) SAR (Synthetic Aperture Radar) water surface wave images over Hualien of Taiwan, indicating that the variation of SAR signals in space domain is similar to in situ wave data's in time domain. Some statistical properties of SAR data are investigated. The Rayleigh distribution function closely corresponds with the histogram of wave heights, but the Gaussian one cannot for water surface displacements. Evidence reveals that SAR wave signals do not respond well to actual ocean waves effectively. As wave spectral analysis of available SAR data reveals, the appropriate sample size of SAR wave image, sampling average, and moving average should be taken carefully to accurately confirm directional power spectra. Moreover, SAR spectra are compared with in situ ones, confirming that peak frequencies correlate well and wave directions approximately agree with each other. Some differences between both spectral shapes remain somewhat unclear and require further study. Nevertheless, in this study, ERS-1 SAR power spectra verified the feasibility of deriving an appropriate dominant wave direction and peak frequency.  相似文献   

15.
船只目标SAR、HFSWR和AIS多手段融合探测的点迹关联分析   总被引:3,自引:1,他引:2  
A space-borne synthetic aperture radar (SAR), a high frequency surface wave radar (HFSWR), and a ship automatic identification system (AIS) are the main remote sensors for vessel monitoring in a wide range. These three sensors have their own advantages and weaknesses, and they can complement each other in some situations. So it would improve the capability of vessel target detection to use multiple sensors including SAR, HFSWR, and A/S to identify non-cooperative vessel targets from the fusion results. During the fusion process of multiple sensors' detection results, point association is one of the key steps, and it can affect the accuracy of the data fusion and the efficiency of a non-cooperative target's recognition. This study investigated the point association analyses of vessel target detection under different conditions: space- borne SAR paired with AIS, as well as HFSWR, paired with AIS, and the characteristics of the SAR and the HFSWR and their capability of vessel target detection. Then a point association method of multiple sensors was proposed. Finally, the thresholds selection of key parameters in the points association (including range threshold, radial velocity threshold, and azimuth threshold) were investigated, and their influences on final association results were analyzed.  相似文献   

16.
许荞晖  张彦敏  王运华 《海洋学报》2021,43(12):111-121
本文首先对合成孔径雷达(SAR)海浪成像中的3种调制(倾斜调制、流体力学调制与速度聚束调制)的影响进行了对比分析,结果显示:速度聚束调制对SAR图像的影响最为显著。另外,由于SAR图像中固有相干斑噪声的存在,较低波数范围的噪声难以滤除或抑制,利用经典MPI方法反演海浪谱会造成低波数范围谱值偏大。基于此,本文借鉴经典MPI海浪谱反演算法,建立了基于速度聚束调制的海浪方位向斜率谱和有效波高的反演算法。通过将经典MPI方法、同极化调制法及本文算法等3种海浪反演方法所得有效波高与浮标数据进行比较,结果显示:本文方法反演得到的海浪有效波高与浮标数据获得的有效波高之间的均方误差为0.79 m,为3种方法中最小。  相似文献   

17.
A new method of treating maximum wave height as a random variable in reliability analysis of breakwater caissons is proposed. The maximum wave height is expressed as the significant wave height multiplied by the so-called wave height ratio.The proposed wave height ratio is a type of transfer function from the significant wave height to the maximum wave height.Under the condition of a breaking wave, the ratio is intrinsically nonlinear. Therefore, the probability density function for the  相似文献   

18.
A new method of treating maximum wave height as a random variable in reliability analysis of breakwater caissons is proposed. The maximum wave height is expressed as the significant wave height multiplied by the so-called wave height ratio. The proposed wave height ratio is a type of transfer function from the significant wave height to the maximum wave height. Under the condition of a breaking wave, the ratio is intrinsically nonlinear. Therefore, the probability density function for the variable cannot be easily defined. In this study, however, it can be derived from the relationship between the maximum and significant waves in a nonbreaking environment. Some examples are shown to validate the derived probability density function for the wave ratio parameter. By introducing the wave height ratio into reliability analysis of caisson breakwater, the maximum wave height can be used as an independent and primary random variable, which means that the risk of caisson failure during its lifetime can be evaluated realistically.  相似文献   

19.
In the satellite synthetic aperture radar (SAR) images of the Bohai Sea and Huanghai Sea, the authors observe sea surface imprints of wave-like patterns with an average wavelength of 3.8 km. Comparing SAR observations with sea surface wind fields and surface weather maps, the authors find that the occurrence of the wave-like phenomena is associated with the passing of atmospheric front. The authors define the waves as atmospheric frontal gravity waves. The dynamical parameters of the wave packets are derived from statistics of 9 satellite SAR images obtained from 2002 to 2008. A two-dimensional linear physical wave model is used to analyze the generation mechanism of the waves. The atmospheric frontal wave induced wind variation across the frontal wave packet is compared with wind retrievals from the SAR images. The CMOD-5 (C-band scatterometer ocean geophysical model function) is used for SAR wind retrievals VV (transmitted vertical and received vertical) for ENVISAT and HH (transmitted horizontally and received horizontally) for RADARSAT-1. A reasonable agreement between the analytical solution and the SAR observation is reached. This new SAR frontal wave observation adds to the school of SAR observations of sea surface imprints of AGWs including island lee waves, coastal lee waves, and upstream Atmospheric Gravity Waves (AGW).  相似文献   

20.
The extreme values of wave climate data are of great interest in a number of different ocean engineering applications, including the design and operation of ships and offshore structures, marine energy generation, aquaculture and coastal installations. Typically, the return values of certain met-ocean parameters such as significant wave height are of particular importance. There exist many methods for estimating such return values, including the initial distribution approach, the block maxima approach and the peaks-over threshold approach. In a climate change perspective, projections of such return values to a future climate are of great importance for risk management and adaptation purposes. However, many approaches to extreme value modelling assume stationary conditions and it is not straightforward how to include non-stationarity of the extremes due to for example climate change. In this paper, various non-stationary GEV-models for significant wave height are developed that account for trends and shifts in the extreme wave climate due to climate change. These models are fitted to block maxima in a particular set of wave data obtained for a historical control period and two future projections for a future period corresponding to different emission scenarios. These models are used to investigate whether there are trends in the data within each period that influence the extreme value analysis and need to be taken into account. Moreover, it will be investigated whether there are significant inter-period shifts or trends in the extreme wave climate from the historical period to the future periods. The results from this study suggest that the intra-period trends are not statistically significant and that it might be reasonable to ignore these in extreme value analyses within each period. However, when it comes to comparing the different data sets, i.e. the historical period and the future projections, statistical significant inter-period changes are detected. Hence, the accumulated effect of a climatic trend may not be negligible over longer time periods. Interestingly enough, such statistically significant shifts are not detected if stationary extreme value models are fitted to each period separately. Therefore, the non-stationary extreme value models with inter-period shifts in the parameters are proposed as an alternative for extreme value modelling in a climate change perspective, in situations where historical data and future projections are available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号