首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A corundum-bearing Type II mafic rock, within the Horoman peridotite,Japan, was petrologically examined in detail to obtain the P–Tpaths of the mafic rock as well as of the host peridotite. Ofall the mafic rocks documented from the Horoman complex, onlythe corundum-bearing mafic rock has preserved, at least partly,its high-pressure mineralogy; all of the others have been completelyrecrystallized at low pressures. The Type II mafic rocks wereinitially formed at <1·0 GPa as cumulates of olivine,plagioclase and clinopyroxene. Corundum was then formed by metamorphismand/or partial melting of the Type II protolith at higher pressures(>1·5 GPa) than the initial condition of formation.Corundum reacted with clinopyroxene during exhumation of theHoroman peridotite down to the plagioclase stability field.The field and petrographical observations of the Type II maficrocks (± corundum) coupled with published isotopic datasuggest a complicated spiral-like P–T trajectory for theHoroman peridotite. The Type II protolith was formed at lowpressure within the peridotite at the time of initial formationof the Horoman peridotite as a residue from primitive mantleat  相似文献   

2.
We report experimental results and whole-rock trace-elementcharacteristics of a corundum-bearing mafic rock from the Horomanperidotite complex, Japan. Coronitic textures around corundumin the sample suggest that corundum was not stable in maficrock compositions during the late-stage PT conditionsrecorded in the complex (P < 1 GPa, T < 800°C). Basedon the experimental results, corundum is stable in aluminousmafic compositions at pressures of 2–3 GPa under dry conditions,suggesting that the corundum-bearing mineral assemblages developedunder upper-mantle conditions, probably within the surroundingperidotite. Variations in the trace-element compositions ofthe corundum-bearing mafic rock and related rocks can be controlledby modal variations of plagioclase, clinopyroxene and olivine,suggesting that they formed as gabbroic rocks at low-pressureconditions, and that the corundum-bearing mafic rock was derivedfrom a plagioclase-rich protolith. A complex PT trajectory,involving metamorphism of the plagioclase-rich protolith ata pressure higher than that at which it was first formed, isneeded to explain the origin of the corundum-bearing mafic rocks.They show no evidence for partial melting after their formationas low-pressure cumulates. The Horoman complex is an exampleof a large peridotite body containing possible remnants of subductedoceanic lithosphere still retaining their original geochemicalsignatures without chemical modification during subduction andexhumation. KEY WORDS: Horoman; mafic rock; corundum; experiment; PT history; recycling  相似文献   

3.
The present article describes, for the first time, petrological and geochemical details of the Mawpyut differentiated complex which is related to the Sylhet trap located at Jaintia Hills district, Meghalaya, northeastern India. The Mawpyut complex occurs as an arcuate body that intrudes into the surrounding Shillong Group rocks. The complex in general contains ‘ultramafic’ and ‘mafic’ rocks, as well as minor syenitic veins that postdate the main units. The lithotypes correspond to cumulate and noncumulate units. The cumulate unit is represented by olivine clinopyroxenite, clinopyroxenite, plagioclase‐bearing ultramafic, olivine gabbronorite, mela‐gabbronorite, melagabbro, orthopyroxene gabbro, and gabbro, all with a pronounced cumulus texture. The noncumulate unit is marked by gabbro, monzonite, monzodiorite, and quartzsyenite. The use of several major and trace element variation diagrams suggests that magmatic differentiation led to the formation of cumulate and noncumulate units. In chondrite‐normalized REE diagrams the cumulate rocks show flat LREE and MREE patterns and a moderate positive Eu anomaly (in plagioclase‐bearing ultramafics) due to plagioclase cumulation. The rocks of the noncumulate unit show a strongly fractionated REE pattern and no Eu anomaly. The noncumulate mafic rocks are geochemically comparable to high‐phosphorous/high‐titanium basalts (HPT) indicative of low pressure fractional crystallization. In a primitive mantle‐normalized multielement diagram some of the cumulate rocks show pronounced negative anomalies for K and P, indicating anorogenic mafic magmatism in a within‐plate setting. The rocks of the noncumulate unit show a slight negative anomaly for Yb and a Nb–Ta trough, indicating a subduction‐related signature that perhaps is inherited from subducted sedimentary rocks incorporated during crustal contamination of the derived magma (left after crystal cumulation) with country rocks. Various trace element ratios for the cumulate mafic rocks indicate parent EMI/EMII/HIMU sources with a very limited crustal signature. The noncumulate mafic rocks (corresponding to the derived evolved magma) indicate EMI/EMII/HIMU sources with a pronounced crustal contamination. The Sr–Nd isotopic compositions of the Mawpyut samples typically plot in the continental flood basalt field, with an affinity to the EMII source. The isotopic compositions of the noncumulate rocks also clearly indicate crustal contamination. We suggest that partial melting (involving garnet in the residue) of the enriched mantle source EMI/EMII/HIMU could have derived the parental melt; this melt, in turn, underwent assimilation and fractional crystallization to produce the variety of cumulate‐noncumulate lithologies of the Mawpyut complex. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
New evidence for ultrahigh‐pressure metamorphism (UHPM) in the Eastern Alps is reported from garnet‐bearing ultramafic rocks from the Pohorje Mountains in Slovenia. The garnet peridotites are closely associated with UHP kyanite eclogites. These rocks belong to the Lower Central Austroalpine basement unit of the Eastern Alps, exposed in the proximity of the Periadriatic fault. Ultramafic rocks have experienced a complex metamorphic history. On the basis of petrochemical data, garnet peridotites could have been derived from depleted mantle rocks that were subsequently metasomatized by melts and/or fluids either in the plagioclase‐peridotite or the spinel‐peridotite field. At least four stages of recrystallization have been identified in the garnet peridotites based on an analysis of reaction textures and mineral compositions. Stage I was most probably a spinel peridotite stage, as inferred from the presence of chromian spinel and aluminous pyroxenes. Stage II is a UHPM stage defined by the assemblage garnet + olivine + low‐Al orthopyroxene + clinopyroxene + Cr‐spinel. Garnet formed as exsolutions from clinopyroxene, coronas around Cr‐spinel, and porphyroblasts. Stage III is a decompression stage, manifested by the formation of kelyphitic rims of high‐Al orthopyroxene, aluminous spinel, diopside and pargasitic hornblende replacing garnet. Stage IV is represented by the formation of tremolitic amphibole, chlorite, serpentine and talc. Geothermobarometric calculations using (i) garnet‐olivine and garnet‐orthopyroxene Fe‐Mg exchange thermometers and (ii) the Al‐in‐orthopyroxene barometer indicate that the peak of metamorphism (stage II) occurred at conditions of around 900 °C and 4 GPa. These results suggest that garnet peridotites in the Pohorje Mountains experienced UHPM during the Cretaceous orogeny. We propose that UHPM resulted from deep subduction of continental crust, which incorporated mantle peridotites from the upper plate, in an intracontinental subduction zone. Sinking of the overlying mantle and lower crustal wedge into the asthenosphere (slab extraction) caused the main stage of unroofing of the UHP rocks during the Upper Cretaceous. Final exhumation was achieved by Miocene extensional core complex formation.  相似文献   

5.
藏北羌塘中部桃形湖早古生代蛇绿岩的岩石学特征   总被引:8,自引:3,他引:5  
桃形湖早古生代蛇绿岩是龙木错-双湖板块缝合带近期的重要发现。通过对桃形湖蛇绿岩进行详细的野外地质调查和岩石学、年代学、地球化学的研究发现,桃形湖早古生代蛇绿岩各单元出露齐全,由下到上分别为变质橄榄岩、超基性堆晶杂岩、堆晶辉长岩、基性岩墙群和枕状玄武岩,在堆晶岩中有不同规模的斜长花岗岩(层)脉体。桃形湖堆晶辉长岩的时代为中奥陶世,并具有大洋中脊型的地球化学特点。桃形湖早古生代蛇绿岩的发现说明龙木错-双湖板块缝合带中存在完整的蛇绿岩组合,同时也是古特提斯洋早期裂解的重要证据。  相似文献   

6.
Equilibrium melt trace element contents are calculated from Proterozoic Nain Plutonic Suite (NPS) mafic and anorthositic cumulates, and from plagioclase and orthopyroxene megacrysts. Assumed trapped melt fractions (TMF) <20% generally eliminate all minor phases in most mafic cumulate rocks, reducing them to mixtures of feldspar, pyroxene and olivine, which would represent the high-temperature cumulus assemblage. In anorthosites, TMF <15% generally reduce the mode to a feldspar-only assemblage. All model melts have trace element profiles enriched in highly incompatible elements relative to normal mid-ocean ridge basalt (NMORB); commonly with negative Nb and Th anomalies. Most mafic cumulates yield similar profiles with constant incompatible element ratios, and can be linked through fractional crystallization. High K-La subtypes probably represent crust-contaminated facies. Mafic cumulates are inferred to belong to a tholeiitic differentiation series, variably contaminated by upper and lower crustal components, and probably related to coeval tholeiitic basaltic dyke swarms and lavas in Labrador. Model melts from anorthosites and megacrysts have normalized trace element profiles with steeper slopes than those calculated from mafic cumulates, indicating that mafic cumulates and anorthosites did not crystallize from the same melts. Orthopyroxene megacrysts yield model melts that are more enriched than typical anorthositic model melts, precluding an origin from parental melts. Jotunites have lower K-Rb-Ba-Y-Yb and higher La-Ce than model residues from fractionation of anorthositic model melts, suggesting they are not cosanguineous with them, but provide reasonable fits to evolved mafic cumulate model melts. Incompatible element profiles of anorthositic model melts closely resemble those of crustal melts such as tonalites, with steep Y-Yb-Lu segments that suggest residual garnet in the source. Inversion models yield protoliths similar to depleted lower crustal granulite xenoliths with aluminous compositions, suggesting that the incompatible trace element budget of the anorthosites are derived from remobilization of the lower crust. The similarity of the highly incompatible trace elements and LILE between anorthositic and mafic cumulate model melts suggests that the basalts parental to the mafic cumulates locally assimilated considerable quantities of the same crust that yielded the anorthosites. The reaction between underplating basalt and aluminous lower crust would have forced crystallization of abundant plagioclase, and remobilization of these hybrid plagioclase-rich mushes then produced the anorthosite massifs.  相似文献   

7.
The Erro-Tobbio peridotites (Voltri Massif, Ligurian Alps) represent subcontinental lithospheric mantle tectonically exhumed during Permo–Mesozoic extension of the Europe–Adria lithosphere. Previous studies have shown that exhumation started during Permian times, and occurred along kilometer-scale lithospheric shear zones which enhanced progressive deformation and recrystallization from spinel- to plagioclase-facies conditions. Ongoing field and petrologic investigations have revealed that the peridotites experienced, during uplift, a composite history of diffuse melt migration and multiple episodes of ultramafic–mafic intrusions. In this paper we present the results of field, structural and petrologic–geochemical investigations into a sector of the Erro-Tobbio peridotite unit that preserves well this multiple intrusion history. Melt impregnation in the peridotites is evidenced by significant plagioclase enrichment and crystallization of unstrained orthopyroxene replacing kinked mantle olivine and clinopyroxene; impregnating melts were thus opx-saturated. Melt–rock interaction caused chemical changes in mantle minerals (e.g. Al decrease and REE increase in cpx; Ti and Cr# enrichment in spinel). Nevertheless, clinopyroxenes still exhibit LREE depletion (CeN/SmN = 0.006–0.011), indicating a depleted signature for the percolating melts. Melt impregnation was thus related to diffuse porous flow migration of depleted MORB-type melt fractions that modified their compositions towards opx saturation by mantle–melt interaction during ascent. The impregnated peridotites are intruded by a hectometer-scale stratified cumulate body, mostly consisting of troctolites and plagioclase wehrlites, showing gradational, interfingered contacts with the host mantle rocks. Subsequent intrusion events are revealed by the occurrence of olivine gabbros as decameter-wide lenses, variably thick (centimeter- to meter-scale) dykes and thin dykelets, which crosscut both the peridotite foliation and the magmatic layering in the cumulates. Overall, major and trace element compositions of minerals in the intrusives indicate that they represent variably differentiated cumulus products crystallized from rather primitive N-MORB-type aggregated melts. Slightly more evolved compositions are shown by olivine gabbros, relative to the troctolites and plagioclase wehrlites of the cumulate body. Mineral chemistry features (e.g. the Fo–An correlation and high Na, Ti, Mg# in cpx) indicate that the studied intrusive rocks crystallized at moderate pressure conditions (3–5 kbar, i.e. 9–15 km depth). Our study thus points to a progressive transition from porous flow melt migration to emplacement of magmas in fractures, presumably related to progressive change of lithospheric mantle rheology during extension-related uplift and cooling.  相似文献   

8.
李旭平  张立飞 《地学前缘》2007,14(1):117-124
超基性岩的地质过程提供了地幔岩在造山带形成过程中所作的贡献,并记录了地质构造以及壳-幔之间相互作用的信息。根据现有的研究,可将俯冲带橄榄岩大致分为陆下地幔橄榄岩、基性-超基性堆晶杂岩和大洋地幔橄榄岩。文中简要评述了不同类型造山带橄榄岩的岩石学和地球化学特征。不同类型的橄榄岩所经历的地质历史不同,而留有不同的岩石学和地球化学特征。大多数造山带橄榄岩经历了高压-超高压变质作用,并受到蛇纹岩化等多期次流体和融体的交代作用,因而俯冲造山带的辉石岩和橄榄岩无论在岩石学的组成、结构和地球化学等特征方面通常表现得复杂多变。  相似文献   

9.
Peridotites (diopside-bearing harzburgites) found at 13°N of the Mid-Atlantic Ridge fall into two compositional groups. Peridotites P1 are plagioclase-free rocks with minerals of uniform composition and Capyroxene strongly depleted in highly incompatible elements. Peridotites P2 bear evidence of interaction with basic melt: mafic veinlets; wide variations in mineral composition; enrichment of minerals in highly incompatible elements (Na, Zr, and LREE); enrichment of minerals in moderately incompatible elements (Ti, Y, and HREE) from P1 level to abundances 4–10 times higher toward the contacts with mafic aggregates; and exotic mineral assemblages Cr-spinel + rutile and Cr-spinel + ilmenite in peridotite and pentlandite + rutile in mafic veinlets. Anomalous incompatible-element enrichment of minerals from peridotites P2 occurred at the spinel-plagioclase facies boundary, which corresponds to a pressure of about 0.8–0.9 GPa. The temperature and oxygen fugacity were estimated from spinel-orthopyroxene-olivine equilibria. Peridotites P1 with an uniform mineral composition record the temperature of the last complete recrystallization at 940–1050°C and FMQ buffer oxygen fugacity within the calculation error. In peridotites P2, local assemblages have different compositions of coexisting minerals, which reflects repeated partial recrystallization during heating to magmatic temperatures (above 1200°C) and subsequent reequilibration at temperatures decreasing to 910°C and an oxygen fugacity significantly higher than FMQ buffer (Δlog $ f_{O_2 } Peridotites (diopside-bearing harzburgites) found at 13°N of the Mid-Atlantic Ridge fall into two compositional groups. Peridotites P1 are plagioclase-free rocks with minerals of uniform composition and Capyroxene strongly depleted in highly incompatible elements. Peridotites P2 bear evidence of interaction with basic melt: mafic veinlets; wide variations in mineral composition; enrichment of minerals in highly incompatible elements (Na, Zr, and LREE); enrichment of minerals in moderately incompatible elements (Ti, Y, and HREE) from P1 level to abundances 4–10 times higher toward the contacts with mafic aggregates; and exotic mineral assemblages Cr-spinel + rutile and Cr-spinel + ilmenite in peridotite and pentlandite + rutile in mafic veinlets. Anomalous incompatible-element enrichment of minerals from peridotites P2 occurred at the spinel-plagioclase facies boundary, which corresponds to a pressure of about 0.8–0.9 GPa. The temperature and oxygen fugacity were estimated from spinel-orthopyroxene-olivine equilibria. Peridotites P1 with an uniform mineral composition record the temperature of the last complete recrystallization at 940–1050°C and FMQ buffer oxygen fugacity within the calculation error. In peridotites P2, local assemblages have different compositions of coexisting minerals, which reflects repeated partial recrystallization during heating to magmatic temperatures (above 1200°C) and subsequent reequilibration at temperatures decreasing to 910°C and an oxygen fugacity significantly higher than FMQ buffer (Δlog = 1.3–1.9). Mafic veins are considered to be a crystallization product from basic melt enriched in Mg and Ni via interaction with peridotite. The geochemical type of the melt reconstructed by the equilibrium with Ca-pyroxene is defined as T-MORB: (La/Sm)N ≈ 1.6 and (Ce/Yb)N ≈ 2.3, which is well consistent with compositional variations of modern basaltic lavas in this segment of Mid-Atlantic Ridge, including new data on quenched basaltic glasses. Original Russian Text ? A.N. Pertsev, N.S. Bortnikov, L.Ya. Aranovich, E.A. Vlasov, V.E. Beltenev, V.N. Ivanov, S.G. Simakin, 2009, published in Petrologiya, 2009, Vol. 17, No. 2, pp. 139–153.  相似文献   

10.
北秦岭松树沟橄榄岩与铬铁矿矿床的成因关系   总被引:2,自引:1,他引:1  
李犇  朱赖民  弓虎军  郭波  杨涛  王飞  王伟  徐奥 《岩石学报》2010,26(5):1487-1502
松树沟橄榄岩体是秦岭造山带中规模最大的赋存铬铁矿床的超基性岩体。松树沟橄榄岩主要由细粒橄榄岩质糜棱岩和中粗粒橄榄岩组成。本文通过对松树沟橄榄岩的岩相学、主微量、稀土元素地球化学的系统研究,认为松树沟细粒方辉橄榄岩为洋脊扩张过程中地幔岩减压-近分离熔融产生的残留体,细粒纯橄岩主要由地幔橄榄岩熔融残留橄榄石、消耗辉石的减压熔融反应:aCpx+bOpx+cSpl=dOl+1Melt生成的橄榄石和少量的地幔方辉橄榄岩残留体组成,但均受到了后期渗滤熔体的再富集作用;中粗粒纯橄岩和方辉橄榄岩主要为上述反应产生的渗滤熔体被圈闭在迁移通道或减压扩容带内在热边界层(TBL)通过反应:MeltA=Ol+MeltB冷凝结晶而成,属堆晶橄榄岩。Pb-Sr-Nd同位素地球化学的证据显示,松树沟橄榄岩与基性岩具有共同的地幔源区,二者同为松树沟蛇绿岩的重要组成部分。通过矿床地质特征及铬铁矿电子探针测试研究,认为松树沟铬铁矿床是产于中粗粒堆晶纯橄岩中的层状铬铁矿床,形成于格林威尔期松树沟洋盆的扩张过程中,是中粗粒纯橄岩在热边界层(TBL)的冷凝结晶过程中岩浆分异作用的产物。  相似文献   

11.
Garnet‐bearing ultramafic rocks including clinopyroxenite, wehrlite and websterite locally crop out in the Higashi‐akaishi peridotite of the Besshi region in the Cretaceous Sanbagawa metamorphic belt. These rock types occur within dunite as lenses, boudins or layers with a thickness ranging from a few centimetres to 1 metre. The wide and systematic variation of bulk‐rock composition and the overall layered structure imply that the ultramafic complex originated as a cumulate sequence. Garnet and other major silicates contain rare inclusions of edenitic amphibole, chlorite and magnetite, implying equilibrium at relatively low P–T conditions during prograde metamorphism. Orthopyroxene coexisting with garnet shows bell‐shaped Al zoning with a continuous decrease of Al from the core towards the rim, consistent with rims recording peak metamorphic conditions. Estimated P–T conditions using core and rim compositions of orthopyroxene are 1.5–2.4 GPa/700–800 °C and 2.9–3.8 GPa/700–810 °C, respectively, implying a high P/T gradient (> 3.1 GPa/100 °C) during prograde metamorphism. The presence of relatively low P–T conditions at an early stage of metamorphism and the steep P/T gradient together trace a concave upwards P–T path that shows increasing P/T with higher T, similar to P–T paths reported from other UHP metamorphic terranes. These results suggest either (1) down dragging of hydrated mantle cumulate parallel to the slab–wedge interface in the subduction zone by mechanical coupling with the subducting slab or (2) ocean floor metamorphism and/or serpentinization at early stage of subduction of oceanic lithosphere and ensuing HP–UHP prograde metamorphism.  相似文献   

12.
桂东北里松花岗岩中暗色包体的岩浆混合成因   总被引:25,自引:0,他引:25  
在桂东北姑婆山地区的里松花岗岩中,暗色包体广泛分布,包体的形貌、结构构造和矿物学特征表明,它们是岩浆快速冷凝结晶产物;主元素和微量元素组成说明它们属钾玄岩系列,其源岩具OIB型微量元素特征;包体与寄主花岗岩中锆石U-Pb年龄的相同性,排除了来源于深部固体岩石熔融残留体或浅部围岩捕虏体的可能性,而两种岩石化学成分、岩石结构暗色包体和寄主花岗岩在岩石结构和全岩Sr-Nd同位素组成方面的明显差别性,又排除了同源包体或析离体、堆积体的可能性。里松花岗岩在很多地质-地球化学特征上都介于里松暗色包体和姑婆山主体花岗岩之间,里松暗色包体的总体特征显示了岩浆混合成因,是里松暗色包体岩浆与姑婆山主体花岗岩岩浆发生混合时不完全混合的残留物。  相似文献   

13.
Garnet peridotites occur as lenses, blocks or layers within granulite–amphibolite facies gneiss in the Dabie-Sulu ultra-high-pressure (UHP) terrane and contain coesite-bearing eclogite. Two distinct types of garnet peridotite were identified based on mode of occurrence and petrochemical characteristics. Type A mantle-derived peridotites originated from either: (1) the mantle wedge above a subduction zone, (2) the footwall mantle of the subducted slab, or (3) were ancient mantle fragments emplaced at crustal depths prior to UHP metamorphism, whereas type B crustal peridotite and pyroxenite are a portion of mafic–ultramafic complexes that were intruded into the continental crust as magmas prior to subduction. Most type A peridotites were derived from a depleted mantle and exhibit petrochemical characteristics of mantle rocks; however, Sr and Nd isotope compositions of some peridotites have been modified by crustal contamination during subduction and/or exhumation. Type B peridotite and pyroxenite show cumulate structure, and some have experienced crustal metasomatism and contamination documented by high 87Sr/86Sr ratios (0.707–0.708), low εNd( t ) values (−6 to −9) and low δ18O values of minerals (+2.92 to +4.52). Garnet peridotites of both types experienced multi-stage recrystallization; some of them record prograde histories. High- P–T  estimates (760–970 °C and 4.0–6.5±0.2 GPa) of peak metamorphism indicate that both mantle-derived and crustal ultramafic rocks were subducted to profound depths >100 km (the deepest may be ≥180–200 km) and experienced UHP metamorphism in a subduction zone with an extremely low geothermal gradient of <5 °C km−1.  相似文献   

14.
High- and Low-Temperature I-type Granites   总被引:4,自引:0,他引:4  
Abstract: I– and S-type granites differ in several distinctive ways, as a consequence of their derivation from contrasting source rocks. The more mafic granites, whose compositions are closest to those of the source rocks, are most readily classified as I– or S–type. As granites become more felsic, compositions of the two types converge towards those of lowest temperature silicate melts. While discrimination of the two is therefore more difficult for such felsic rocks, that in no way invalidates the twofold subdivision. If felsic granite melts undergo fractional crystallisation, the major element compositions are not affected to any significant extent, but the concentrations of trace elements can vary widely. For some trace elements, fractional crystallisation causes the trace element abundances to diverge, so the I– and S– type granites are again easily separated. Such fractionated S-type granites can be distinguished, for example, by high P and low Th and Ce, relative to their I-type analogues. Our observations in the Lachlan Fold Belt show that there is no genetic basis for subdividing peraluminous granites into more mafic and felsic varieties, as has been attempted elsewhere. The subdivision of felsic peraluminous granites into I– and S-types is more appropriate, and mafic peraluminous granites are always S–type. In a given area, associated mafic and felsic S-type granites are likely to be closely related in origin, with the former comprising both restite-rich magmas and cumulate rocks, and the felsic granites corresponding to melts that may have undergone fractional crystallisation after prior restite separation. We propose a subdivision of I-type granites into two groups, formed at high and low temperatures. The high-temperature I–type granites formed from a magma that was completely or largely molten, and in which crystals of zircon were not initially present because the melt was undersaturated in zircon. In comparison with low-temperature I–type granites, the compositions extend to lower SiO2 contents and the abundances of Ba, Zr and the rare earth elements initially increase with increasing SiO2 in the more mafic rocks. While the high-temperature I–type granite magmas were produced by the partial melting of mafic source rocks, their low-temperature analogues resulted from the partial melting of quartzofeldspathic rocks such as older tonalites. In that second case, the melt produced was felsic and the more mafic low-temperature I–type granites have that character because of the presence of entrained and magmatically equilibrated restite. High temperature granites are more prospective for mineralisation, both because of that higher temperature and because they have a greater capacity to undergo extended fractional crystallisation, with consequent concentration of incompatible components, including H2O.  相似文献   

15.
Upper mantle xenoliths from Wikieup, AZ, provide abundant evidence for magmatic modification of the uppermost mantle beneath the Transition Zone between the Colorado Plateau and the southern Basin and Range province. Upper mantle lithologies in this xenolith suite are represented by spinel peridotite, wehrlite, plagioclase peridotite, and Al-augite group pyroxenites. Isotopic data for these xenoliths yield relatively uniform values and suggest a common petrogenesis. Al-augite-bearing gabbro and pyroxenite xenoliths from this locality are interpreted to have formed by crystal fractionation processes from parent alkali basalts similar to the Wikieup host basalt. Mineral and whole rock compositions show consistent trends of increasing incompatible element contents (Fe, Al, Ca, Na, K, LIL, and LREE), and decreasing compatible element contents (Mg, Cr, Ni) from spinel peridotite to wehrlite to plagioclase peridotite to the host basalt composition. These compositional trends are interpreted as resulting from varying degrees of magma-mantle wall rock interaction as ascending mafic magmas infiltrated upper mantle peridotite. Small degrees of melt infiltration resulted in slightly modified spinel peridotite compositions while moderate degrees metasomatized spinel peridotite to wehrlite, and the highest degrees metasomatized it to plagioclase peridotite. Whole rock compositions and clinopyroxene, plagioclase, and whole rock isotopic data suggest that the infiltrating magmas were the same as those from which the gabbros and pyroxenites crystallized, and that they were alkalic in composition, similar to the Wikieup host alkali olivine basalts. Relatively uniform 143Nd/144Nd for the mineral separates and whole rocks in spite of the significantly wide range in their 147Sm/144Nd (0.71–0.23 in clinopyroxene) suggests that the Wikieup xenoliths including gabbro, pyroxenite, peridotite, wehrlite, and plagioclase peridotite, are all relatively young rocks formed or metasomatized by a relatively recent magmatic episode. Received: 21 May 1996 / Accepted: 23 December 1996  相似文献   

16.
Abundant ferroan, metaluminous granitoids (970–950 Ma) emplaced at the end of the Sveconorwegian collisional orogeny (1130–900 Ma) are dominated by intermediate to silicic compositions with rare mafic facies. Both 73% fractional crystallization of an amphibole-bearing gabbroic cumulate substracted from the parent mafic composition and 30% non-modal batch melting of an amphibolitic source equivalent in composition to the mafic facies produce a monzodioritic liquid with appropriate trace element composition. A better fit is obtained for the partial melting process. Both processes could have occurred simultaneously to produce mafic cumulates and restites. As there is no evidence for large volumes of dense mafic rocks in the Sveconorwegian upper crust, these dense mafic rocks were probably produced in the lower crust. Formation of these granitoids, thus, contributed to the vertical stratification of the Proterozoic continental crust and also to the transfer of water from the lower crust to the surface.  相似文献   

17.
Spinellids showing unmixed intergrowths of chromite or chromian spinel (sensu stricto) and magnetite or chromian magnetite are not known in mafic or ultramafic igneous rocks. They do occur within metamorphosed rocks that attained temperatures sufficiently high (upper amphibolite facies) for the formation of homogeneous Al-Cr-Fe3+-Ti spinel phases with compositions not matched in slowly cooled igneous rocks. In the Tugela Rand intrusion complex intergrowths of chromian spinel, chromian magnetite, ulvöspinel, ilmenite and a transparent aluminous spinel are observed and interpreted in terms of the thermal history of the rocks. Compositional differences between the separate areas of chromian spinel and chromian magnetite in complex intergrowths exhibited by the metamorphosed Tugela Rand and Mambulu Complexes confirm the extension of the magnetite-hercynite solvus (Turnock and Eugster 1962) towards magnesium- and chromium-rich compositions. The Tugela Rand spinellids are compared with those from the Carr Boyd Complex (Purvis et al. 1972) and the ultramafic rocks of the Giant Nickel Mine (Muir and Naldrett 1973) and the Red Lodge district (Loferski and Lipin 1983). Significant differences between the spinels from the Red Lodge district compared to the other three occurrences may reflect the different metamorphic histories of these areas.  相似文献   

18.
The metamorphic Raspas Complex of southwest Ecuador consists of high-pressure mafic, ultramafic, and sedimentary rocks. The Lu–Hf ages of a blueschist, a metapelite, and an eclogite overlap at around 130 Ma and date high-pressure garnet growth. Peak metamorphic conditions in the eclogites reached 1.8 GPa at 600°C, corresponding to a maximum burial depth of ~60 km. The geochemical signatures of the eclogites suggest that their protoliths were typical mid-ocean ridge basalts (MORB), whereas the blueschists exhibit seamount-like characteristics, and the eclogite-facies peridotites seem to represent depleted, MORB-source mantle. That these rocks were subjected to similar peak PT conditions contemporaneously suggests that they were subducted together as an essentially complete section within the slab. We suggest that this section became dismembered from the slab during burial at great depth—perhaps as a consequence of scraping off the seamounts. The spatially close association of MORB-type eclogite, seamount-type blueschist, serpentinized peridotite, and metasediments points to an exhumed high-pressure ophiolite sequence.  相似文献   

19.
The whole-rock chemistry of eclogites, partially amphibolitized eclogites, and dyke amphibolites from the metamorphic Kechros complex in the eastern Rhodope Mountains preserves evidence of the geodynamic framework for the origin of their protoliths. Major and trace-element concentrations define two distinct protolith groups for the eclogites. The low-Fe–Ti (LFT) eclogites have low-TiO2 content (<0.67 wt%), negative high field strength element anomalies, and variable enrichments in large ion lithophile elements (LILE). The rare earth element (REE) patterns are characterized by strong light-REE (LREE) enrichment and heavy-REE (HREE) depletion. The high-Fe–Ti (HFT) eclogites have small to moderate LILE enrichment and lack Nb anomalies. The REE patterns of the HFT eclogites are characterized by LREE depletion and relatively flat MREE–HREE patterns. The rock compositions and petrographic features of the LFT eclogites resemble gabbros formed in a continental rift environment with minor to moderate contamination of a mantle-derived mafic magma by continental crust, whereas the HFT eclogites resemble mafic rocks formed in extensional oceanic environments. We interpret the HFT suite to represent a later stage in an evolution from continental rift to open ocean, following the origin of the LFT suite. Dyke amphibolite compositions, except for probable SiO2 loss associated with metamorphic dehydration reactions, appear to represent liquid compositions quenched in conduits through the lower crust. MELTS modeling shows that dyke amphibolite compositions can be related to each other by fractional crystallization under strongly oxidizing conditions at ~0.5 GPa pressure, and all can be derived from a low-degree melt of modified fertile peridotite from around 1.7 GPa. Cumulates crystallized from the parental liquids of the amphibolites under oxidizing conditions may have yielded the protoliths of the HFT suite.  相似文献   

20.
Two Rongcheng eclogite‐bearing peridotite bodies (Chijiadian and Macaokuang) occur as lenses within the country rock gneiss of the northern Sulu terrane. The Chijiadian ultramafic body consists of garnet lherzolite, whereas the Macaokuang body is mainly meta‐dunite. Both ultramafics are characterized by high MgO contents, low fertile element concentrations and total REE contents, which suggests that they were derived from depleted, residual mantle. High FeO contents, an LREE‐enriched pattern and trace‐element contents indicate that the bulk‐rock compositions of these ultramafic rocks were modified by metasomatism. Oxygen‐isotope compositions of analysed garnet, olivine, clinopyroxene and orthopyroxene from these two ultramafic bodies are between +5.2‰ and +6.2‰ (δ18O), in the range of typical mantle values (+5.1 to +6.6‰). The eclogite enclosed within the Chijiadian lherzolite shows an LREE‐enriched pattern and was formed by melts derived from variable degrees (0.005–0.05) of partial melting of peridotite. It has higher δ18O values (+7.6‰ for garnet and +7.7‰ for omphacite) than those of lherzolite. Small O‐isotope fractionations (ΔCpx‐Ol: 0.4‰, ΔCpx‐Grt: 0.1‰, ΔGrt‐Ol: 0.3–0.4‰) in both eclogite and ultramafic rocks suggest isotopic equilibrium at high temperature. The P–T estimates suggest that these rocks experienced subduction‐zone ultrahigh‐pressure (UHP) metamorphism at ~700–800 °C, 5 GPa, with a low geothermal gradient. Zircon from the Macaokuang eclogite contains inclusions of garnet and diopside. The 225 ± 2 Ma U/Pb age obtained from these zircon may date either the prograde conditions just before peak metamorphism or the UHP metamorphic event, and therefore constrains the timing of subduction‐related UHP metamorphism for the Rongcheng mafic–ultramafic bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号