首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Martian meteorite ALH84001 preserves evidence of interaction with aqueous fluids while on Mars in the form of microscopic carbonate disks. These carbonate disks are believed to have precipitated 3.9 Ga ago at beginning of the Noachian epoch on Mars during which both the oldest extant Martian surfaces were formed, and perhaps the earliest global oceans. Intimately associated within and throughout these carbonate disks are nanocrystal magnetites (Fe3O4) with unusual chemical and physical properties, whose origins have become the source of considerable debate. One group of hypotheses argues that these magnetites are the product of partial thermal decomposition of the host carbonate. Alternatively, the origins of magnetite and carbonate may be unrelated; that is, from the perspective of the carbonate the magnetite is allochthonous. For example, the magnetites might have already been present in the aqueous fluids from which the carbonates were believed to have been deposited. We have sought to resolve between these hypotheses through the detailed characterization of the compositional and structural relationships of the carbonate disks and associated magnetites with the orthopyroxene matrix in which they are embedded. Extensive use of focused ion beam milling techniques has been utilized for sample preparation. We then compared our observations with those from experimental thermal decomposition studies of sideritic carbonates under a range of plausible geological heating scenarios. We conclude that the vast majority of the nanocrystal magnetites present in the carbonate disks could not have formed by any of the currently proposed thermal decomposition scenarios. Instead, we find there is considerable evidence in support of an alternative allochthonous origin for the magnetite unrelated to any shock or thermal processing of the carbonates.  相似文献   

2.
Using transmission electron microscopy (TEM), we have analyzed magnetite (Fe3O4) crystals acid-extracted from carbonate globules in Martian meteorite ALH84001. We studied 594 magnetites from ALH84001 and grouped them into three populations on the basis of morphology: 389 were irregularly shaped, 164 were elongated prisms, and 41 were whisker-like. As a possible terrestrial analog for the ALH84001 elongated prisms, we compared these magnetites with those produced by the terrestrial magnetotactic bacteria strain MV-1. By TEM again, we examined 206 magnetites recovered from strain MV-1 cells. Natural (Darwinian) selection in terrestrial magnetotactic bacteria appears to have resulted in the formation of intracellular magnetite crystals having the physical and chemical properties that optimize their magnetic moment. In this study, we describe six properties of magnetite produced by biologically controlled mechanisms (e.g., magnetotactic bacteria), properties that, collectively, are not observed in any known population of inorganic magnetites. These criteria can be used to distinguish one of the modes of origin for magnetites from samples with complex or unknown histories. Of the ALH84001 magnetites that we have examined, the elongated prismatic magnetite particles (similar to 27% of the total) are indistinguishable from the MV-1 magnetites in five of these six characteristics observed for biogenically controlled mineralization of magnetite crystals.  相似文献   

3.
Nanometer-sized magnetite crystals associated with carbonates in fracture zones within Martian meteorite ALH84001 have been examined using analytical transmission electron microscopy. Some of the the crystals exhibit distinctive morphologies: filamentary rods and ribbons, and platelets. The rods and ribbons are elongated along the crystallographic [100] and [111] directions. Some of the rods contain microstructural defects indicating that they grew by spiral growth about screw dislocations. Platelets are flattened along the [100] and [110] directions. These unique morphologies and microstructures constrain the growth conditions of magnetite. The whiskers and platelets most likely formed in the temperature range 500–800°C by direct condensation from a vapor or precipitation from a supercritical fluid, and their properties are inconsistent with a biogenic origin.  相似文献   

4.
Martian meteorite Allan Hills (ALH) 84001 contains sub-micron magnetite grains, suggested to be of biogenic origin, in its globules of Fe-Mg carbonate mineral. There is disagreement on whether the low Mg content of the magnetite could only arise from biological metabolism ( [Treiman, 2003] and [Thomas-Keprta et al., 2009]). However, constraints on the magnetite’s biogenicity are far less certain than had been inferred. The thermochemical bases for the equilibrium calculations are reviewed in detail; there are inconsistencies and gaps in fundamental data for siderite, macromolecular carbons, and magnesioferrite. The calculations of Treiman (2003), assuming formation of magnetite via “siderite = magnetite + CO2 + CO”, are incorrect because of a flaw in the computer code used. The corrected location of this equilibrium (Thomas-Keprta et al., 2009) is no longer crucial, because of recent finds that the magnetite grains are associated with macromolecular carbon; this implies that the dominant magnetite-forming reaction was “siderite = magnetite + CO2 + C”. From the location of this equilibrium, using the corrected computer code and best available thermochemical data, the Mg-poor magnetite grains (and macromolecular carbon) in carbonates in ALH 84001 could have formed by decomposition of the carbonates at geologically reasonable pressures and temperatures. The low-Mg compositions of the magnetite grains remain consistent with an abiotic origin within the known geological history of ALH 84001.  相似文献   

5.
ALH84001, a cataclastic cumulate orthopyroxenite meteorite from Mars, has been dated by Ar-Ar stepped heating and laser probe methods. Both methods give ages close to 3,900 Ma. The age calculated is dependent on assumptions made about 39Ar recoil effects and on whether significant quantities of 40Ar from the Martian atmosphere are trapped in the meteorite. If, as suggested by xenon and nitrogen isotope studies, Martian atmospheric argon is present, then it must reside predominantly in the K-rich phase maskelynite. Independently determined 129Xe abundances in the maskelynite can be used to place limits on the concentration of the atmospheric 40Ar. These indicate a reduction of around 80 Ma to ages calculated on the assumption that no Martian atmosphere is present. After this correction, the nominal ages obtained are: 3940 +/- 50, 3870 +/- 80, and 3970 +/- 100 Ma. by stepped heating, and 3900 +/- 90 Ma by laser probe (1 sigma statistical errors), giving a weighted mean value of 3,920 Ma. Ambiguities in the interpretation of 39Ar recoil effects and in the contribution of Martian atmospheric 40Ar lead to uncertainties in the Ar-Ar age which are difficult to quantify, but we suggest that the true value lies somewhere between 4,050 and 3,800 Ma. This age probably dates a period of annealing of the meteorite subsequent to the shock event which gave it its cataclastic texture. The experiments provide the first evidence of an event occurring on Mars coincident with the time of the late heavy bombardment of the Moon and may reflect a similar period of bombardment in the Southern Highlands of Mars. Whether the age determined bears any relationship to the time of carbonate deposition in ALH84001 is not known. Such a link depends on whether the temperature associated with the metasomatic activity was sufficient to cause argon loss from the maskelynite and/or whether the metasomatism and metamorphism were linked in time through a common heat source.  相似文献   

6.
Small, discoid globules and networks of magnesium-iron-calcium carbonates occur within impact-produced fracture zones in the ALH84001 Martian meteorite. Because these carbonates contain or are associated with the hydrocarbons, single-domain magnetite and iron-sulfide grains, and purported microfossils that collectively have been cited as evidence for ancient Martian life, it is critically important to understand their formation. Previous hypotheses for the origin of the carbonates involve either alteration of the rock by hydrothermal fluids at relatively low temperatures, or formation from a CO2-rich vapor at high temperatures. This paper explores an alternative mechanism–direct precipitation from a ponded evaporating brine infiltrating into fractures in the floor of an impact crater. Such a model can be reconciled with the observed carbonate compositional zoning and extreme stable-isotopic fractionations. If the carbonates formed in this manner, this removes a possible obstacle to the proposed existence of microbial remains in ALH84001; however, the cited evidence for life can be better explained by inorganic processes expected from brines in an evaporating alkaline lake, with an overprint of shock metamorphism and subsequent contamination by organic matter after falling to Earth.  相似文献   

7.
To explore the formation and preservation of biogenic features in igneous rocks, we have examined the organisms in experimental basaltic microcosms using scanning and transmission electron microscopy. Four types of microorganisms were recognized on the basis of size, morphology, and chemical composition. Some of the organisms mineralized rapidly, whereas others show no evidence of mineralization. Many mineralized cells are hollow and do not contain evidence of microstructure. Filaments, either attached or no longer attached to organisms, are common. Unattached filaments are mineralized and are most likely bacterial appendages (e.g., prosthecae). Features similar in size and morphology to unattached, mineralized filaments are recognized in martian meteorite ALH84001.  相似文献   

8.
We present major and trace-element, oxygen isotope, textural, and structural data for carbonates and related phases in the SNC meteorite ALH84001. These data document the existence of at least two distinct carbonate populations: one composed of finely zoned, chemically and isotopically heterogeneous concretions of magnesio-siderite with distinct white magnesite rims, and a second composed of relatively homogeneous, isotopically and compositionally simple domains of ankeritic carbonate and intimately intergrown glass and fine-grained pyroxene. We suggest on the basis of textural evidence and geochemical systematics that the first population consists of low-temperature aqueous precipitates, and the second is produced by shock melting of the first. Values of δ18O and Sr/Ca ratios are correlated with one another in magnesio-siderite concretions; the trend formed by these data is consistent with the predicted relationship for inorganic precipitation of carbonate from a solution of constant composition between temperatures of ∼190°C (for concretion cores) to 20°C (for magnesite-rich concretion rims). Given the assumptions inherent in this temperature estimate, the aqueous fluid parental to carbonate concretions is constrained to have a δ18O of −5‰ VSMOW (significantly mass fractionated compared with expected juvenile martian volatiles) and minor-element abundances broadly similar to terrestrial seawater.  相似文献   

9.
New petrologic and bulk geochemical data for the SNC-related (Martian) meteorite ALH84001 suggest a relatively simple igneous history overprinted by complex shock and hydrothermal processes. ALH84001 is an igneous orthopyroxene cumulate containing penetrative shock deformation textures and a few percent secondary extraterrestrial carbonates. Rare earth element (REE) patterns for several splits of the meteorite reveal substantial heterogeneity in REE abundances and significant fractionation of the REEs between crushed and uncrushed domains within the meteorite. Complex zoning in carbonates indicates nonequilibrium processes were involved in their formation, suggesting that CO2-rich fluids of variable composition infiltrated the rock while on Mars. We interpret petrographic textures to be consistent with an inorganic origin for the carbonate involving dissolution-replacement reactions between CO2-charged fluids and feldspathic glass in the meteorite. Carbonate formation clearly postdated processes that last redistributed the REE in the meteorite.  相似文献   

10.
Oxygen isotope ratios of merrillite and chlorapatite in the Martian meteorites ALH84001 and Los Angeles have been measured by ion microprobe in multicollector mode. δ18O values of phosphate minerals measured in situ range from ∼3 to 6‰, and are similar to Martian meteorite whole-rock values, as well as the δ18O of igneous phosphate on Earth. These results suggest that the primary, abiotic, igneous phosphate reservoir on Mars is similar in oxygen isotopic composition to the basaltic phosphate reservoir on Earth. This is an important first step in the characterization of Martian phosphate reservoirs for the use of δ18O of phosphate minerals as a biomarker for life on Mars. Cumulative textural, major-element, and isotopic evidence presented here suggest a primary, igneous origin for the phosphates in Los Angeles and ALH84001; textural and chemical evidence suggests that phosphates in ALH84001 were subsequently shock-melted in a later event.  相似文献   

11.
12.
The carbonates in martian meteorite ALH84001 preserve a record of aqueous processes on Mars at 3.9 Ga, and have been suggested to contain signatures of ancient martian life. The conditions of the carbonate formation environment are critical for understanding possible evidence for life on Mars, the history of water on Mars, and the evolution of the martian atmosphere. Despite numerous studies of petrographic relationships, microscale oxygen isotope compositions, microscale chemical compositions, and other minerals associated with the carbonates, formation models remain relatively unconstrained. Microscale carbon isotope analyses of ALH84001 carbonates reveal variable δ13C values ranging from +27 to +64. The isotopic compositions are correlated with chemical composition and extent of crystallization such that the Mg-poor, early-formed carbonates are relatively 13C depleted and the Mg-rich, later forming carbonates, are 13C enriched. These data are inconsistent with many of the previously proposed environments for carbonate formation, and a new set of hypotheses are proposed. Specifically, two new models that account for the data involve low temperature (<100°C) aqueous processes: (1) the carbonates formed during mixing of two fluids derived from separate chemical and isotopic reservoirs; or (2) the carbonates formed from high pH fluids that are exposed to a CO2-rich atmosphere and precipitate carbonate, similar to high pH springs on Earth.  相似文献   

13.
王鹤年  梁英  徐伟彪 《岩石学报》2006,22(2):491-502
GRV 99027陨石是二辉橄榄岩质辉玻无球粒陨石(L-S)的火星陨石新成员,具有嵌晶、非嵌晶和冲击熔融袋结构。矿物模式组成以橄榄石(55%)、辉石(37.5%)为主,有少量熔长石(6%)、铬铁矿(1.5%)以及微量白磷钙石、陨硫铁等。其矿物的化学成分较为均一,无分带现象。橄榄石组分为Fo_(69.1~76.6)Fa_(23.4~30.9),平均Fo_(72.4)Fa_(27.6),低钙易变辉石为En_(59.3~75.1) Fs_(20.5~26.9)Wo_(3.1~14.9),平均En_(68.6)Fs_(23.5)Wo_(8.0),普通辉石为En_(46.6~53)Fs_(13.1~16.1)Wo_(31.9~37.8),平均En_(50.7)Fs_(14.5)Wo_(34.8),熔长石为An_(43.6~59.3) Ab_(40.2~54.6)Or_(0.5~1.8),平均An_(52.4)Ab_(46.7)Or_(0.8)。该陨石的结晶顺序是:亏损的火星幔源区部分熔融形成的原始母岩浆最先结晶的是嵌晶区的橄榄石和铬铁矿,随后易变辉石晶出,呈主晶包裹橄榄石和铬铁矿;此后,橄榄石、易变辉石、普通辉石持续结晶,直到残余熔体在晶隙形成斜长石和白磷钙石等。在这陨石中的易变辉石和普通辉石共存,二辉石温度计显示平衡温度为1000~1190℃(平均≈1146℃)。GRV 99027经历的亚固相再平衡,其程度为ALH 77005≈GRV 99027>LEW 88516>Y 793605。GRV 99027经受的冲击压力为30~45 GPa,,局部达到60~80GPa,冲击后温度可能<600℃。  相似文献   

14.
The texture of Los Angeles (stone 1) is dominated by relatively large (0.5−2.0 mm) anhedral to subhedral grains of pyroxene, and generally subhedral to euhedral shocked plagioclase feldspar (maskelynite). Minor phases include subhedral titanomagnetite and ilmenite, Fe-rich olivine, olivine+augite-dominated symplectites [some of which include a Si-rich phase and some which do not], pyrrhotite, phosphate(s), and an impact shock-related alkali- and silica-rich glass closely associated with anhedral to euhedral silica grains. Observations and model calculations indicate that the initial crystallization of Mg-rich pigeonitic pyroxenes at ≤1150 °C, probably concomitantly with plagioclase, was followed by pigeonitic and augitic compositions between 1100 and 1050 °C whereas between 1050 and 920 to 905 °C pyroxene of single composition crystallized. Below 920 to 905 °C, single composition Fe-rich clinopyroxene exsolved to augite and pigeonite. Initial appearance of titanomagnetite probably occurred near 990 °C and FMQ-1.5 whereas at and below 990 °C and ≥FMQ-1.5 titanomagnetite and single composition Fe-rich clinopyroxene may have started to react, producing ilmenite and olivine. However, judging from the most common titanomagnetite compositions, we infer that most of this reaction likely occurred between 950 and 900 °C at FMQ-1.0±0.2 and nearly simultaneously with pyroxene exsolution, thus producing assemblages of pigeonite, titanomagnetite, olivine, ilmenite, and augite. We deem this reaction as the most plausible explanation for the formation of the olivine+augite-dominated symplectites in Los Angeles. But we cannot preclude possible contributions to the symplectites from the shock-related alkali- and silica-rich glass or shocked plagioclase, and the breakdown of Fe-rich pigeonite compositions to olivine+augite+silica below 900 °C. Reactions between Fe-Ti oxides and silicate minerals in Los Angeles and other similar basaltic Martian meteorites can control the T-fO2 equilibration path during cooling, which may better explain the relative differences in fO2 among the basaltic Martian meteorites.  相似文献   

15.
The Antarctic shergottite EETA79001 is believed to be an impact-ejected fragment of the planet Mars. Samples of the carbonate (white druse) and the basaltic (lithology A) components from this meteorite have been found to contain amino acids at a level of approximately 1 ppm and 0.4 ppm, respectively. The detected amino acids consist almost exclusively of the L-enantiomers of the amino acids commonly found in proteins, and are thus terrestrial contaminants. There is no indication of the presence of alpha-aminoisobutyric acid, one of the most abundant amino acids in several carbonaceous chondrites. The relative abundances of amino acids in the druse material resemble those in Antarctic ice, suggesting that the source of the amino acids may be ice meltwater. The level of amino acids in EETA79001 druse is not by itself sufficient to account for the 600-700 ppm of volatile C reported in druse samples and suggested to be from endogenous martian organic material. However, estimates of total terrestrial organic C present in the druse material based on our amino acid analyses and the organic C content of polar ice can account for most of the reported putative organic C in EETA79001 druse.  相似文献   

16.
If water was ever present on Mars, as suggested by geomorphological features, then much of the surface and subsurface may have experienced chemical weathering. Among those materials most readily altered is olivine, which has been identified on the Martian surface with IR spectroscopy and Mossbauer techniques and occurs in Martian meteorites. We use geochemical models of olivine dissolution kinetics to constrain the residence time of olivine on the surface of Mars in the presence of liquid water. From these models, we have calculated maximum dissolution rates and minimum residence times for olivine as a function of temperature, pH, Fe-composition, and particle size. In general, the most favorable conditions for olivine dissolution are fayalite-rich compositions, small particle sizes, high temperatures, and acidic solutions that are far from equilibrium. The least favorable conditions for olivine dissolution are forsterite-rich compositions, large particle sizes, ultra-low temperatures, and a neutral pH solution near equilibrium. By using kinetic models of olivine dissolution to bound dissolution rates and residence times, we can make inferences about the temporal extent of aqueous alteration on the surface of Mars. Under favorable conditions (pH 2, 5 °C, and far from equilibrium) a relatively large 0.1 cm (radius) particle of Fo65 composition can completely dissolve in 370 years. Particles may last 102–104 times longer under less favorable conditions. However, residence times of a few million years or less are small compared to the age of most of the Martian surface. The survival of olivine on the surface of Mars, especially in older terrains, implies that contact with aqueous solutions has been limited and wet periods on Mars have been short-lived.  相似文献   

17.
A physical analogue model was developed to analyse the relationship between tensional states in rock masses, seepage and karst processes. Use was made of an experimental apparatus consisting of two hydraulic circuits realized by drilling two holes into each of two blocks of sampled limestone from the central Apennines (Italy). A static load (208.85 kg) was applied to one of the blocks in order to elicit tensile stresses within it. Physical and chemical monitoring data showed that the main process involved was temperature-dependent CaCO3 dissolution. This process was more marked in the loaded block circuit, as Ca++ concentration in circulated water reached 54 mg/L, whereas only 28 mg/L was reached in the unloaded one. The interaction between load and dissolution caused the observed opening of microcracks, as confirmed by further increase of water loss and by dilution in the loaded block circuit, resulting in a decrease of Ca++ concentration. These findings were confirmed by recording additional water losses after increasing the load up to 445.05 kg. A finite difference numerical model showed that tensile stresses (max 20 kPa) within the loaded block were clustered at the intersection of the main joints with the flowpaths, thus representing points of preferential and accelerated dissolution.This study is part of a research project on analogical and numerical modelling for geological risk mitigation being conducted at CERI, Research Centre for Geological Risks of the University of Rome “La Sapienza” (Valmontone, Roma, Italy; http://www.ceri@uniroma1.it).  相似文献   

18.
Uranyl silicates such as uranophane and Na-boltwoodite appear to control the solubility of uranium in certain contaminated sediments at the US Department of Energy Hanford site [Liu, C., Zachara, J.M., Qafoku, O., McKinley, J.P., Heald, S.M., Wang, Z. 2004. Dissolution of uranyl microprecipitates in subsurface sediments at Hanford Site, USA. Geochim. Cosmochim. Acta68, 4519-4537.]. Consequently, the solubility of synthetic Na-boltwoodite, Na(UO2)(SiO3OH) · 1.5H2O, was determined over a wide range of bicarbonate concentrations, from circumneutral to alkaline pH, that are representative of porewater and groundwater compositions at the Hanford site and calcareous environments generally. Experiments were open to air. Results show that Na-boltwoodite dissolution was nearly congruent and its solubility and dissolution kinetics increased with increasing bicarbonate concentration and pH. A consistent set of solubility constants were determined from circumneutral pH (0 added bicarbonate) to alkaline pH (50 mM added bicarbonate). Average or 5.85 ± 0.0.26; using the Pitzer ion-interaction model or Davies equation, respectively. These values are close to the one determined by [Nguyen, S.N., Silva, R.J., Weed, H.C., Andrews, Jr., J.E., 1992. Standard Gibbs free energies of formation at the temperature 303.15 K of four uranyl silicates: soddyite, uranophane, sodium boltwoodite, and sodium weeksite. J. Chem. Thermodynamics24, 359-376.] under very different conditions (pH 4.5, Ar atmosphere).  相似文献   

19.
Most magmas proposed as parental to the Martian SNC meteorites are high in iron and low in alumina. Yet, experiments at low pressures on such liquids have not produced the cumulate or melt-inclusion assemblages seen in the chassignite meteorites. Therefore, elevated pressure experiments under anhydrous and hydrous (water-undersaturated) conditions were conducted on a high-Fe, low-Al liquid proposed to be parental to the Chassigny meteorite. These experiments failed to produce the most magnesian cumulate phases, as well as the olivine hosted kaersutite-bearing melt-inclusion assemblage, of the chassignites. These results suggest that the parental liquid to the chassignite meteorites is both more magnesium and aluminum-rich than the previously considered composition (A; Johnson et al., 1991). The proposed composition is similar to the Martian Adirondack class Gusev basalt Humphrey and suggests a link between the Chassigny meteorite and rocks on the surface of Mars.  相似文献   

20.
The Martian meteorite ALH84001 contains ∼1% by weight of carbonate formed by secondary processes on the Martian surface or in the shallow subsurface. The major form of this carbonate is chemically and isotopically zoned rosettes which have been well documented elsewhere. This study concentrates upon carbonate regions ∼200 μm across which possess previously unobserved magnesium rich inner cores, interpreted here as rosette fragments, surrounded by a later stage cement containing rare Ca-rich carbonates (up to Ca81Mg07Fe04Mn07) intimately associated with feldspar. High spatial resolution ion probe analyses of Ca-rich carbonate surrounding rosette fragments have δ18OV-SMOW values as low as −10. These values are not compatible with deposition from a global Martian atmosphere invoked to explain ALH84001 rosettes. The range of δ18O values are also incompatible with a fluid that has equilibrated with the Martian crust at high temperature or from remobilisation of carbonate of rosette isotopic composition. At Martian atmospheric temperatures, the small CO2(gas)-CO2(ice) fractionation makes meteoric CO2 an unlikely source for −10 carbonates. In contrast, closed system Rayleigh fractionation of H2O can generate δ18OH2O −30, as observed at high latitudes on Earth. We suggest that atmospheric transport and precipitation of H2O in a similar fashion to that on Earth provides a source of suitably 18O depleted water for generation of carbonate with δ18OV-SMOW = −10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号