首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The M w 8.6 Indian Ocean earthquake occurred on April 11, 2012 near the NW junction of three plates viz. Indian, Australian and Sunda plate, which caused widespread coseismic displacements and Coulomb stress changes. We analyzed the GPS data from three IGS sites PBRI, NTUS & COCO and computed the coseismic horizontal displacements. In order to have in-depth understanding of the physics of earthquake processes and probabilistic hazard, we estimated the coseismic displacements and associated Coulomb stress changes from two rectangular parallel fault geometries, constrained by Global Positioning System (GPS) derived coseismic displacements. The Coulomb stress changes following the earthquake found to be in the range of 5 to ?4 bar with maximum displacement of ~11 m near the epicenter. We find that most of the aftershocks occurred in the areas of increased Coulomb stress and concentrated in three clusters. The temporal variation of the aftershocks, not conformed to modified Omori’s law, speculating poroelastic processes. It is also ascertained that the spatio-temporal transient stress changes may promote the occurrence of the subsequent earthquakes and enhance the seismic risk in the region.  相似文献   

2.
Quantification of seismic activity is one of the most challenging problems faced by earthquake engineers in probabilistic seismic hazard analysis. Currently, this problem has been attempted using empirical approaches which are based on the regional earthquake recurrence relations from the available earthquake catalogue. However, at a specified site of engineering interest, these empirical models are associated with large number of uncertainties due to lack of sufficient data. Due to these uncertainties, engineers need to develop mechanistic models to quantify seismic activity. A wide range of techniques for modeling continental plates provides useful insights on the mechanics of plates and their seismic activity. Among the different continental plates, the Indian plate experiences diffused seismicity. In India, although Himalaya is regarded as a plate boundary and active region, the seismicity database indicates that there are other regions in the Indian shield reporting sporadic seismic activity. It is expected that mechanistic models of Indian plate, based on finite element method, simulate stress fields that quantify the seismic potential of active regions in India. This article explores the development of a finite element model for Indian plate by observing the simulated stress field for various boundary conditions, geological and rheological conditions. The study observes that the magnitude and direction of stresses in the plate is sensitive to these conditions. The numerical analysis of the models shows that the simulated stress field represents the active seismic zones in India.  相似文献   

3.
Seismicity along the Himalayan front is mostly attributed to the processes of collision between the Indian and the Eurasian plates resulting in the under-thrusting of the Indian Peninsula underneath the Himalaya. The dynamics of the region bears very complex components which require in-depth understanding. Here the overall rate of crustal shortening since ∼ 11 Ma is ∼ 21mm/yr, which is comparable to modern rate of under-thrusting of the northern Indian plate beneath the Himalaya. The region experienced a large number of great earthquakes for the last 100–120 years causing massive destruction. Here an attempt has been made to understand the seismicity pattern of the region using fractal correlation dimension and hence used for the detection of active seismicity. Some clusters of seismicity were found to be indicative of seismically very active zones. Such clusters may enlighten the understanding of recent complex dynamics of Himalayan zone.  相似文献   

4.
Spectral analysis of the digital data of the Bouguer anomaly of North India including Ganga basin suggest a four layer model with approximate depths of 140, 38, 16 and 7 km. They apparently represent lithosphere–asthenosphere boundary (LAB), Moho, lower crust, and maximum depth to the basement in foredeeps, respectively. The Airy’s root model of Moho from the topographic data and modeling of Bouguer anomaly constrained from the available seismic information suggest changes in the lithospheric and crustal thicknesses from ∼126–134 and ∼32–35 km under the Central Ganga basin to ∼132 and ∼38 km towards the south and 163 and ∼40 km towards the north, respectively. It has clearly brought out the lithospheric flexure and related crustal bulge under the Ganga basin due to the Himalaya. Airy’s root model and modeling along a profile (SE–NW) across the Indus basin and the Western Fold Belt (WFB), (Sibi Syntaxis, Pakistan) also suggest similar crustal bulge related to lithospheric flexure due to the WFB with crustal thickness of 33 km in the central part and 38 and 56 km towards the SE and the NW, respectively. It has also shown the high density lower crust and Bela ophiolite along the Chamman fault. The two flexures interact along the Western Syntaxis and Hazara seismic zone where several large/great earthquakes including 2005 Kashmir earthquake was reported.The residual Bouguer anomaly maps of the Indus and the Ganga basins have delineated several basement ridges whose interaction with the Himalaya and the WFB, respectively have caused seismic activity including some large/great earthquakes. Some significant ridges across the Indus basin are (i) Delhi–Lahore–Sargodha, (ii) Jaisalmer–Sibi Syntaxis which is highly seismogenic. and (iii) Kachchh–Karachi arc–Kirthar thrust leading to Sibi Syntaxis. Most of the basement ridges of the Ganga basin are oriented NE–SW that are as follows (i) Jaisalmer–Ganganagar and Jodhpur–Chandigarh ridges across the Ganga basin intersect Himalaya in the Kangra reentrant where the great Kangra earthquake of 1905 was located. (ii) The Aravalli Delhi Mobile Belt (ADMB) and its margin faults extend to the Western Himalayan front via Delhi where it interacts with the Delhi–Lahore ridge and further north with the Himalayan front causing seismic activity. (iii) The Shahjahanpur and Faizabad ridges strike the Himalayan front in Central Nepal that do not show any enhanced seismicity which may be due to their being parts of the Bundelkhand craton as simple basement highs. (iv) The west and the east Patna faults are parts of transcontinental lineaments, such as Narmada–Son lineament. (v) The Munghyr–Saharsa ridge is fault controlled and interacts with the Himalayan front in the Eastern Nepal where Bihar–Nepal earthquakes of 1934 has been reported. Some of these faults/lineaments of the Indian continent find reflection in seismogenic lineaments of Himalaya like Everest, Arun, Kanchenjunga lineaments. A set of NW–SE oriented gravity highs along the Himalayan front and the Ganga and the Indus basins represents the folding of the basement due to compression as anticlines caused by collision of the Indian and the Asian plates. This study has also delineated several depressions like Saharanpur, Patna, and Purnia depressions.  相似文献   

5.
《Tectonophysics》1987,138(1):93-107
The Himalayan arc is a type of plate margin similar to an island arc and is a world-famous region of tectonic and seismic activities, where a series of large earthquakes have occurred in historical time. In this paper, the vertical deformation and horizontal displacement fields of the Himalayan arc are theoretically derived from the viewpoint of the collision between the Indian and Eurasian plates. In the light of the observed data, the seismicity, earthquake focal mechanism, seismotectonic and geomorphological features of the arc and its vicinity are reasonably explained. The characteristics of seismicity and the possibility of earthquakes with magnitude above 8 occurring in this region in the future are studied.  相似文献   

6.
印度板块与欧亚板块在新生代期间的持续碰撞和挤压过程导致亚洲大陆发生了强烈的弥散式板内变形,并形成了一个以贝加尔湖为顶点,以喜马拉雅带为底边的近似三角形的变形区与强震活动区,即新-藏三角区。基于固体刚塑性变形平面结构,结合滑移线场网络模型,对该区历史强震活动的大范围离散式空间分布特点进行了分析解释。结合1505-1976年以来历史强震空间迁移的实例,归纳了该区历史强震活动与地震应变释放从印度板块边界→新-藏地块→两侧大陆的顺序性及定向性迁移特征,并根据对地震空间迁移规律的认识,进一步探讨了区域未来强震危险性问题。结果显示,从2000-2018年间,印度板块边界和新-藏三角区已多次发生M7.9~9.1大地震,但其东、西两侧的区域大陆地区却异常平静,没发生过7级以上大地震。依照区域强震活动的顺序性迁移特点,推测在未来几到几十年,亚洲大陆东部与中部以及喜马拉雅带东段等区域的大地震危险性较大。   相似文献   

7.
陆陆碰撞过程是板块构造缺失的链条。印度板块与亚洲板块的碰撞造就了喜马拉雅造山带和青藏高原的主体。然而,人们对印度板块在大陆碰撞过程中的行为尚不了解。如大陆碰撞及其碰撞后的大陆俯冲是如何进行的、印度板块是俯冲在青藏高原之下还是回转至板块上部(喜马拉雅造山带内)以及两者比例如何,这些仍是亟待解决的问题。印度板块低角度沿喜马拉雅主逆冲断裂(MHT)俯冲在低喜马拉雅和高喜马拉雅之下已经被反射地震图像很好地揭示。然而,关于MHT如何向北延伸,前人的研究仅获得了分辨率较低的接收函数图像。因而,MHT和雅鲁藏布江缝合带之间印度板块的俯冲行为仍是一个谜。喜马拉雅造山楔增生机制,也就是印度地壳前缘的变形机制,反映出物质被临界锥形逆冲断层作用转移到板块上部,或是以韧性管道流的样式向南溢出。在本次研究中,我们给出在喜马拉雅造山带西部地区横过雅鲁藏布江缝合带的沿东经81.5°展布的高分辨率深地震反射剖面,精细揭示了地壳尺度结构构造。剖面显示,MHT以大约20°的倾斜角度延伸至大约60 km深度,接近埋深为70~75 km的Moho面。越过雅鲁藏布江缝合带运移到北面的印度地壳厚度已经不足15 km。深地震反射剖面还显示中地壳逆冲构造反射发育。我们认为,伴随着印度板块俯冲,地壳尺度的多重构造叠置作用使物质自MHT下部的板块向其上部板块转移,这一过程使印度地壳厚度减薄了,同时加厚了喜马拉雅地壳。  相似文献   

8.
The Himalayas has experienced varying rates of earthquake occurrence in the past in its seismo-tectonically distinguished segments which may be attributed to different physical processes of accumulation of stress and its release, and due diligence is required for its inclusion for working out the seismic hazard. The present paper intends to revisit the various earthquake occurrence models applied to Himalayas and examines it in the light of recent damaging earthquakes in Himalayan belt. Due to discordant seismicity of Himalayas, three types of regions have been considered to estimate larger return period events. The regions selected are (1) the North-West Himalayan Fold and Thrust Belt which is seismically very active, (2) the Garhwal Himalaya which has never experienced large earthquake although sufficient stress exists and (3) the Nepal region which is very seismically active region due to unlocked rupture and frequently experienced large earthquake events. The seismicity parameters have been revisited using two earthquake recurrence models namely constant seismicity and constant moment release. For constant moment release model, the strain rates have been derived from global strain rate model and are converted into seismic moment of earthquake events considering the geometry of the finite source and the rates being consumed fully by the contemporary seismicity. Probability of earthquake occurrence with time has been estimated for each region using both models and compared assuming Poissonian distribution. The results show that seismicity for North-West region is observed to be relatively less when estimated using constant seismicity model which implies that either the occupied accumulated stress is not being unconfined in the form of earthquakes or the compiled earthquake catalogue is insufficient. Similar trend has been observed for seismic gap area but with lesser difference reported from both methods. However, for the Nepal region, the estimated seismicity by the two methods has been found to be relatively less when estimated using constant moment release model which implies that in the Nepal region, accumulated strain is releasing in the form of large earthquake occurrence event. The partial release in second event of May 2015 of similar size shows that the physical process is trying to release the energy with large earthquake event. If it would have been in other regions like that of seismic gap region, the fault may not have released the energy and may be inviting even bigger event in future. It is, therefore, necessary to look into the seismicity from strain rates also for its due interpretation in terms of predicting the seismic hazard in various segments of Himalayas.  相似文献   

9.
The Himalayas are one of very active seismic regions in the world where devastating earthquakes of 1803 Bihar–Nepal, 1897 Shillong, 1905 Kangra, 1934 Bihar–Nepal, 1950 Assam and 2011 Sikkim were reported. Several researchers highlighted central seismic gap based on the stress accumulation in central part of Himalaya and the non-occurrence of earthquake between 1905 Kangra and 1934 Bihar–Nepal. The region has potential of producing great seismic event in the near future. As a result of this seismic gap, all regions which fall adjacent to the active Himalayan region are under high possible seismic hazard due to future earthquakes in the Himalayan region. In this study, the study area of the Lucknow urban centre which lies within 350 km from the central seismic gap has been considered for detailed assessment of seismic hazard. The city of Lucknow also lies close to Lucknow–Faizabad fault having a seismic gap of 350 years. Considering the possible seismic gap in the Himalayan region and also the seismic gap in Lucknow–Faizabad fault, the seismic hazard of Lucknow has been studied based on deterministic and the probabilistic seismic hazard analysis. Results obtained show that the northern and western parts of Lucknow are found to have a peak ground acceleration of 0.11–0.13 g, which is 1.6- to 2.0-fold higher than the seismic hazard compared to the other parts of Lucknow.  相似文献   

10.
The Assam Seismic Gap has witnessed a long seismic quiescence since the \({ Mw}{\sim }8.4\) great Assam earthquake of AD 1950. Owing to its improper connectivity over the last decades, this segment of the Himalaya has long remained inadequately explored by geoscientists. Recent geodetic measurements in the eastern Himalaya using GPS document a discrepancy between the geologic and geodetic convergence rates. West to east increase in convergence rate added with shorter time span earthquakes like the 1697 Sadiya, 1714 (\({ Mw}{\sim }8\)) Bhutan and 1950 (\({ Mw}{\sim } 8.4\)) Tibet–Assam, makes this discrepancy more composite and crucial in terms of seismic hazard assessment. To understand the scenario of palaeoearthquake surface rupturing and deformation of youngest landforms between the meizoseismal areas of \({ Mw}{\sim }8.1\) 1934 and 1950 earthquakes, the area between the Manas and Dhanshiri Rivers along the Himalayan Frontal Thrust (HFT) was traversed. The general deformation pattern reflects north-dipping thrust faults. However, back facing scarps were also observed in conjugation to the discontinuous scarps along the frontal thrust. Preliminary mapping along with the published literature suggests that, in the eastern Himalayan front the deformation is taking place largely by the thrust sheet translation without producing a prominent fault-related folds, unlike that of the central and western Himalayas.  相似文献   

11.
The Indian subcontinent is one of the most earthquake-prone regions of the world. The Himalayas are well known for high seismic activity, and the ongoing northwards drift of the Indian plate makes the Himalaya geodynamically active. During the last three decades, several major earthquakes occurred at the plate interiors and boundaries in this subcontinent causing massive losses. Therefore, one of the major challenges in seismology has been to estimate long recurrence period of large earthquakes where most of the classical Probabilistic Seismic Hazard Approaches fail due to short catalogues used in the prediction models. Therefore, during the past few decades, the Himalayan region has been studied extensively in terms of the present ongoing displacements. In this context the present study has been carried out to estimate the surface displacement in a seismically active region of the Himalaya, in between Ganga and Yamuna Tear, using multi-temporal Synthetic Aperture Radar (SAR) Interferometry. A displacement rate of 6.2–8.2 mm/yr in N14°E direction of the Indian plate towards the Tibetan plate has been obtained. It has been noted that the estimated convergence rate using Differential SAR Interferometry technique is relatively low in comparison with those obtained from previous classical studies. The reported low convergence rate may be due to the occurrence of silent/quite earthquakes, aseismic slip, differential movement of Delhi Hardwar ridge, etc. Therefore, in view of the contemporary seismicity and conspicuous displacements, a study of long-term observations of this surface movement has been recommended in future through a time-series SAR Interferometry analysis.  相似文献   

12.
Himalayan orogenic belt is the highest and largest continental collision and subduction zone on the Earth. The Himalayan orogenic belt has produced frequent large earthquakes and caused several geohazards due to landslides and housing collapse, having an impact on the safety of life and property along a length of over 2500 km. Here we took three earthquake clusters as examples, which occurred at Nepal Himalaya, eastern Himalayan syntaxis and western Himalayan syntaxis, respectively. Here we calculated the earthquake locations and fault plane solutions based on the waveform data recorded by seismic stations deployed in source areas by the Institute of Tibetan Plateau Research, Chinese Academy of Sciences. We found that at the Nepal Himalayan, the Main Himalayan Thrust is the major tectonic structure for large earthquakes to occur. At the eastern Himalayan syntaxis, most earthquakes are of the reverse or strike-slip faulting. The major tectonic feature is the combination of the NE-dipping thrust with the southeastern escape of the Tibetan plateau. At the western Himalayan syntaxis, intermediate-depth earthquakes are active. These observations reveal the geometry of the deep subduction of the continental plate with steep dipping angle.  相似文献   

13.
The earthquake events of Himalaya of magnitude ≥5.0 from the time window 1905–2000 are statistically analysed. The inter-event time between earthquakes shows Hurst phenomena of temporal clustering which are spatially located in five distinct domains along the Himalayan fold-thrust belt. Out of these, two domains, one around Uttaranchal-Nepal border and the other around Nepal-Sikkim border reveal maximum number of temporal clusters and thus considered as seismically most potential zones of the Himalaya. Both these zones are located at the interface of the orthogonally disposed major tectonic discontinuities of the Peninsular Shield and Himalayan fold-thrust belt. Such zones are geologically most favourable locales for strain accumulation during later-tectonic movement. Statistical analysis points towards a probability of recurrence of seismic events in near future in these two zones. However, validity of such statistical results can be ascertained by detailed geological and geophysical modelling of the terrain.  相似文献   

14.
喜马拉雅造山带是地球上海拔最高、规模最大的陆陆板块俯冲碰撞带在这条长达2 500 km的板块边界上,近年来多次发生破坏性地震,造成大规模的滑坡、房屋倒塌等次生灾害,给人民生命和财产安全造成严重的威胁。分别选取尼泊尔喜马拉雅、喜马拉雅东构造结和喜马拉雅西构造结地区近期发生的3个地震震群作为研究实例,基于中国科学院青藏高原研究所在研究区架设的区域流动地震台站记录的波形资料,对地震的震源位置和震源机制解进行计算。结果表明,在尼泊尔喜马拉雅地区,主喜马拉雅逆冲断裂是大地震的主要发震构造;东构造结地区的地震以逆冲和走滑型为主,表明印度板块向北东方向的逆冲推覆和青藏高原向东南逃逸的侧向挤出是该地区的主要构造背景;西构造结地区中深源地震多发,揭示了高角度大陆深俯冲的几何形态。  相似文献   

15.
The continuous process of continent–continent collision between the Indian and the Eurasian plates has led to the formation of the Himalayan range and continuously caused earthquakes in the region. Large earthquakes with magnitudes of 8 and above occur in this region infrequently, releasing the elastic strain accumulated over years around the plate boundary. Geodetic measurements can help estimate the strain distribution along the fault system. These measurements provide information on active deformations and associated potential seismic hazards along the Himalayan arc. In order to understand the present deformation around the plate boundary, we collected GPS data during three campaigns in the years of 2005–2007 at 16 sites in the Kumaun region of the Lesser Himalaya. Horizontal velocity vectors estimated in ITRF2000 are found to be in the range of 41–50 mm/yr with an uncertainty level of the order of 1 mm/yr. The velocity field indicates that the present convergence of around 15 mm/yr takes place in the Kumaun Himalaya. Further, we estimate the strain components in the study area for understanding the currently active tectonic process in the region. The estimated dilatational strain indicates that the northern part near the Main Central Thrust (MCT) is more compressional than the southern part. Maximum shear strain is mostly accommodated in the northern part too. The maximum shear and dilatational strain rates are about 1.0 and 0.5 μstrain/yr. It is seen that the distribution of high shear strain spatially correlates with seismicity. The maximum of extensional and compressional strains due to the force acting along the Main Central Thrust (MCT) in the NW–SE direction are found to be 0.4 and 0.1 μstrain/yr, respectively. The maximum shear strain in the northern part of the Himalaya appears to be associated with the convergence of the region proposed by other geophysical studies.  相似文献   

16.
Seismotectonics of the Nepal Himalaya from a local seismic network   总被引:3,自引:0,他引:3  
The National Seismological Network of Nepal consists of 17 short period seismic stations operated since 1994. It provides an exceptional view of the microseismic activity over nearly one third of the Himalayan arc, including the only segment, between longitudes 78°E and 85°E, that has not produced any M>8 earthquakes over the last century. It shows a belt of seismicity that follows approximately the front of the Higher Himalaya with most of the seismic moment being released at depths between 10 and 20 km. This belt of seismicity is interpreted to reflect interseismic stress accumulation in the upper crust associated with creep in the lower crust beneath the Higher Himalaya. The seismic activity is more intense around 82°E in Far-Western Nepal and around 87°E in Eastern Nepal. Western Nepal, between 82.5 and 85°E, is characterized by a particularly low level of seismic activity. We propose that these lateral variations are related to segmentation of the Main Himalayan Thrust Fault. The major junctions between the different segments would thus lie at about 87°E and 82°E with possibly an intermediate one at about 85°E. These junctions seem to coincide with some of the active normal faults in Southern Tibet. Lateral variation of seismic activity is also found to correlate with lateral variations of geological structures suggesting that segmentation is a long-lived feature. We infer four 250–400 km long segments that could produce earthquakes comparable to the M=8.4 Bihar–Nepal earthquake that struck eastern Nepal in 1934. Assuming the model of the characteristic earthquake, the recurrence interval between two such earthquakes on a given segment is between 130 and 260 years.  相似文献   

17.
The variation of in situ stress before and after earthquakes is an issue studied by geologists. In this paper, on the basis of the fault slip dislocation model of Wenchuan Ms8.0 earthquake, the changes of co-seismic displacement and the distribution functions of stress tensor around the Longmen Shan fault zone are calculated. The results show that the co-seismic maximum surface displacement is 4.9 m in the horizontal direction and 6.5 m in the vertical direction, which is almost consistent with the on-site survey and GPS observations. The co-seismic maximum horizontal stress in the hanging wall and footwall decreased sharply as the distance from the Longmen Shan fault zone increased. However, the vertical stress and minimum horizontal stress increased in the footwall and in some areas of the hanging wall. The study of the co-seismic displacement and stress was mainly focused on the long and narrow region along the Longmen Shan fault zone, which coincides with the distribution of the earthquake aftershocks. Therefore, the co-seismic stress only affects the aftershocks, and does not affect distant faults and seismic activities. The results are almost consistent with in situ stress measurements at the two sites before and after Wenchuan Ms8.0 earthquake. Along the fault plane, the co-seismic shear stress in the dip direction is larger than that in the strike direction, which indicates that the faulting mechanism of the Longmen Shan fault zone is a dominant thrust with minor strike-slipping. The results can be used as a reference value for future studies of earthquake mechanisms.  相似文献   

18.
The Himalayan mountains are a product of the collision between India and Eurasia which began in the Eocene. In the early stage of continental collision the development of a suture zone between two colliding plates took place. The continued convergence is accommodated along the suture zone and in the back-arc region. Further convergence results in intracrustal megathrust within the leading edge of the advancing Indian plate. In the Himalaya this stage is characterized by the intense uplift of the High Himalaya, the development of the Tibetan Plateau and the breaking-up of the central and eastern Asian continent. Although numerous models for the evolution of the Himalaya have been proposed, the available geological and geophysical data are consistent with an underthrusting model in which the Indian continental lithosphere underthrusts beneath the Himalaya and southern Tibet. Reflection profiles across the entire Himalaya and Tibet are needed to prove the existence of such underthrusting. Geodetic surveys across the High Himalaya are needed to determine the present state of the MCT as well as the rate of uplift and shortening within the Himalaya. Paleoseismicity studies are necessary to resolve the temporal and spatial patterns of major earthquake faulting along the segmented Himalayan mountains.  相似文献   

19.
The central gap region of Himalaya, which lies in the northern part of the Indian subcontinent, is exposed to great seismic hazard. A three-dimensional attenuation structure (Q) of this region is obtained using the intensity data of four earthquakes (M 4.3–7.0) in the central Himalayan gap region and the damped least square inversion scheme. The technique is based on that given by Hashida and Shimazaki (J Phys Earth 32:299–316, 1984). The obtained Q structure explains the spatial distribution of isoseismals of the stronger earthquakes, which occurred in the recent past. The study area covers the Tehri town, which is the locale of one of the biggest earth fill dams of height 260 m. The spatial distribution of Q suggests that the Tehri town area is surrounded by lower Q medium, and hence any large earthquake in Tehri will pose great seismic hazard.  相似文献   

20.
针对2015年4月25日尼泊尔M8.1地震后喜马拉雅造山带的未来地震危险性问题,通过对喜马拉雅带历史大地震应变能释放和在尼泊尔地震发震前后的区域地震活动图像进行了分析研究。结果发现喜马拉雅带很可能已进入新-轮的地震活跃期。此次尼泊尔大地震不足以将喜马拉雅带中段的地壳应变能全部释放,喜马拉雅带中段的地震活动和藏南裂谷带地震活动具有密切的关联,在喜马拉雅带中段和藏南裂谷带还将有大地震活动。同时研究结果还显示现今在喜马拉雅带的东段存在阿萨姆围空区和不丹围空区,在喜马拉雅的西段出现噶尔围空区,喜马拉雅西段新德里和西藏接壤地区以及喀喇昆仑断裂上噶尔县地区地震危险性很高,喜马拉雅东段林芝山南地区以南的阿萨姆和不丹地区危险性很高,应引起重视。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号