首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radiative forcing and climate sensitivity have been widely used as concepts to understand climate change. This work performs climate change experiments with an intermediate general circulation model (IGCM) to examine the robustness of the radiative forcing concept for carbon dioxide and solar constant changes. This IGCM has been specifically developed as a computationally fast model, but one that allows an interaction between physical processes and large-scale dynamics; the model allows many long integrations to be performed relatively quickly. It employs a fast and accurate radiative transfer scheme, as well as simple convection and surface schemes, and a slab ocean, to model the effects of climate change mechanisms on the atmospheric temperatures and dynamics with a reasonable degree of complexity. The climatology of the IGCM run at T-21 resolution with 22 levels is compared to European Centre for Medium Range Weather Forecasting Reanalysis data. The response of the model to changes in carbon dioxide and solar output are examined when these changes are applied globally and when constrained geographically (e.g. over land only). The CO2 experiments have a roughly 17% higher climate sensitivity than the solar experiments. It is also found that a forcing at high latitudes causes a 40% higher climate sensitivity than a forcing only applied at low latitudes. It is found that, despite differences in the model feedbacks, climate sensitivity is roughly constant over a range of distributions of CO2 and solar forcings. Hence, in the IGCM at least, the radiative forcing concept is capable of predicting global surface temperature changes to within 30%, for the perturbations described here. It is concluded that radiative forcing remains a useful tool for assessing the natural and anthropogenic impact of climate change mechanisms on surface temperature.  相似文献   

2.
Climate is simulated for reference and mitigation emissions scenarios from Integrated Assessment Models using the Bern2.5CC carbon cycle–climate model. Mitigation options encompass all major radiative forcing agents. Temperature change is attributed to forcings using an impulse–response substitute of Bern2.5CC. The contribution of CO2 to global warming increases over the century in all scenarios. Non-CO2 mitigation measures add to the abatement of global warming. The share of mitigation carried by CO2, however, increases when radiative forcing targets are lowered, and increases after 2000 in all mitigation scenarios. Thus, non-CO2 mitigation is limited and net CO2 emissions must eventually subside. Mitigation rapidly reduces the sulfate aerosol loading and associated cooling, partly masking Greenhouse Gas mitigation over the coming decades. A profound effect of mitigation on CO2 concentration, radiative forcing, temperatures and the rate of climate change emerges in the second half of the century.  相似文献   

3.
This paper evaluated the impacts of climate change mitigation technology options on CO2 emission reductions and the effects of model representations regarding renewable intermittency on the assessment of reduction by using a world energy systems model. First, different diffusion scenarios for carbon dioxide capture and storage (CCS), nuclear power, and wind power and solar PV are selected from EMF27 scenarios to analyze their impacts on CO2 emission reductions. These technologies are important for reducing CO2 intensity of electricity, and the impacts of their diffusion levels on mitigation costs are significant, according to the analyses. Availability of CCS in particular, among the three kinds of technologies, has a large impact on the marginal CO2 abatement cost. In order to analyze effects of model representations regarding renewables intermittency, four different representations are assumed within the model. A simplistic model representation that does not take into consideration the intermittency of wind power and solar PV evaluates larger contributions of the energy sources than those evaluated by a model representation that takes intermittency into consideration. Appropriate consideration of renewables intermittency within global energy systems models will be important for realistic evaluations of climate change mitigation scenarios.  相似文献   

4.
Combining bioenergy and carbon dioxide (CO2) capture and storage (CCS) technologies (BECCS) has the potential to remove CO2 from the atmosphere while producing useful energy. BECCS has played a central role in scenarios that reduce climate forcing to low levels such as 2.6 Wm?2. In this paper we consider whether BECCS is essential to limiting radiative forcing (RF) to 2.6 Wm?2 by 2100 using the Global Change Assessment Model, a closely coupled model of biogeophysical and human Earth systems. We show that BECCS can potentially reduce the cost of limiting RF to 2.6 Wm?2 by 2100 but that a variety of technology combinations that do not include BECCS can also achieve this goal, under appropriate emissions mitigation policies. We note that with appropriate supporting land-use policies terrestrial sequestration could deliver carbon storage ranging from 200 to 700 PgCO2-equiavalent over the 21st century. We explore substantial delays in participation by some geopolitical regions. We find that the value of BECCS is substantially higher under delay and that delay results in higher transient RF and climate change. However, when major regions postponed mitigation indefinitely, it was impossible to return RF to 2.6 Wm?2 by 2100. Neither finite land resources nor finite potential geologic storage capacity represented a meaningful technical limit on the ability of BECCS to contribute to emissions mitigation in the numerical experiments reported in this paper.  相似文献   

5.
Climate change mitigation via a reduction in the anthropogenic emissions of carbon dioxide (CO2) is the principle requirement for reducing global warming, its impacts, and the degree of adaptation required. We present a simple conceptual model of anthropogenic CO2 emissions to highlight the trade off between delay in commencing mitigation, and the strength of mitigation then required to meet specific atmospheric CO2 stabilization targets. We calculate the effects of alternative emission profiles on atmospheric CO2 and global temperature change over a millennial timescale using a simple coupled carbon cycle-climate model. For example, if it takes 50 years to transform the energy sector and the maximum rate at which emissions can be reduced is ?2.5% $\text{year}^{-1}$ , delaying action until 2020 would lead to stabilization at 540 ppm. A further 20 year delay would result in a stabilization level of 730 ppm, and a delay until 2060 would mean stabilising at over 1,000 ppm. If stabilization targets are met through delayed action, combined with strong rates of mitigation, the emissions profiles result in transient peaks of atmospheric CO2 (and potentially temperature) that exceed the stabilization targets. Stabilization at 450 ppm requires maximum mitigation rates of ?3% to ?5% $\text{year}^{-1}$ , and when delay exceeds 2020, transient peaks in excess of 550 ppm occur. Consequently tipping points for certain Earth system components may be transgressed. Avoiding dangerous climate change is more easily achievable if global mitigation action commences as soon as possible. Starting mitigation earlier is also more effective than acting more aggressively once mitigation has begun.  相似文献   

6.
The ongoing human-induced emission of carbon dioxide (CO2) threatens to change the earth's climate. One possible way of decreasing CO2 emissions is to apply CO2 removal, which involves recovering of carbon dioxide from energy conversion processes and storing it outside the atmosphere. Since the 1980's, the possibilities for recovering CO2 from thermal power plants received increasing attention.In this study possible techniques of recovering CO2 from large-scale industrial processes are assessed.In some industrial processes, e.g. ammonia production, CO2 is recovered from the process streams to prevent it from interfering with the production process. The CO2 thus recovered can easily be dehydrated and compressed, at low cost. In the iron and steel industry, carbon dioxide can be recovered from blast furnace gas. In the petrochemical industry CO2 can be recovered from flue gases, using low-temperature heat for the separation process.Carbon dioxide can be recovered from large-scale industrial processes and in some cases the cost of recovery is significantly less than CO2 recovery from thermal power plants. Therefore this option should be studied further and should be considered if carbon dioxide removal is introduced on a wide scale.  相似文献   

7.
This empirical study assesses the relationship between the characteristics of developing countries and the amount of official climate mitigation finance inflow. A two-part model and robustness checks were used to analyse 1998–2010 Rio Marker data on 180 developing countries. The results show that developing countries with higher CO2 intensity, larger carbon sinks, lower per capita gross domestic product (GDP) and good governance tend to be selected as recipients of climate mitigation finance, and receive more of it. CO2 emission is not used as a determinant of mitigation finance until the actual financial disbursement. Poverty aid tends to be allocated to countries with low CO2 emissions, possibly to avoid diverting aid from poorer developing countries. However, such a diversion is unavoidable if the share of mitigation finance in climate finance and in overall official development assistance (ODA) continues to escalate. This study calls for an equitable allocation of total ODA mitigation and adaptation finance in addition to the 0.7% ODA/gross national income target, and for transparent criteria and the verification of reporting on the allocation of mitigation finance.  相似文献   

8.
Chen  Liang 《Climate Dynamics》2021,56(1):665-678
Climate Dynamics - Solar energy is abundant and offers significant potential for future climate change mitigation. This study investigates the impacts of climate change on surface solar radiation...  相似文献   

9.
气候工程技术可以被视作可替代传统减排措施的备选项,主要包括太阳辐射管理和CO2移除两大类技术。两类气候工程技术与传统减排方法的空间、时间、成本、不确定性和风险等方面都具有一些差异性。气候工程技术手段改变了传统的国际气候制度构建基础,产生了一些新的治理问题。对该问题的科学研究,有重要的科学、政策和国际气候外交意义。  相似文献   

10.
The uptake and storage of anthropogenic carbon in the North Atlantic is investigated using different configurations of ocean general circulation/carbon cycle models. We investigate how different representations of the ocean physics in the models, which represent the range of models currently in use, affect the evolution of CO2 uptake in the North Atlantic. The buffer effect of the ocean carbon system would be expected to reduce ocean CO2 uptake as the ocean absorbs increasing amounts of CO2. We find that the strength of the buffer effect is very dependent on the model ocean state, as it affects both the magnitude and timing of the changes in uptake. The timescale over which uptake of CO2 in the North Atlantic drops to below preindustrial levels is particularly sensitive to the ocean state which sets the degree of buffering; it is less sensitive to the choice of atmospheric CO2 forcing scenario. Neglecting physical climate change effects, North Atlantic CO2 uptake drops below preindustrial levels between 50 and 300 years after stabilisation of atmospheric CO2 in different model configurations. Storage of anthropogenic carbon in the North Atlantic varies much less among the different model configurations, as differences in ocean transport of dissolved inorganic carbon and uptake of CO2 compensate each other. This supports the idea that measured inventories of anthropogenic carbon in the real ocean cannot be used to constrain the surface uptake. Including physical climate change effects reduces anthropogenic CO2 uptake and storage in the North Atlantic further, due to the combined effects of surface warming, increased freshwater input, and a slowdown of the meridional overturning circulation. The timescale over which North Atlantic CO2 uptake drops to below preindustrial levels is reduced by about one-third, leading to an estimate of this timescale for the real world of about 50 years after the stabilisation of atmospheric CO2. In the climate change experiment, a shallowing of the mixed layer depths in the North Atlantic results in a significant reduction in primary production, reducing the potential role for biology in drawing down anthropogenic CO2.  相似文献   

11.
Although ozone appears in the Earth’s atmosphere in a small abundance, it plays a key role in the energy balance of the planet through its involvement in radiative processes. Its absorption of solar radiation leads to the temperature increase with height defining the tropopause and the stratosphere. Moreover, excluding water vapor, O3 is the third most important contributor (after CO2 and CH4) to the greenhouse radiative forcing. Thus, the total removal of O3 content in an Earth-like atmosphere may cause interesting response of the climate system that deserves further investigation. The present paper addresses this issue by means of a global climate model where the atmosphere is coupled with a passive ocean of a given depth. The model, after reaching the statistical equilibrium under present climate conditions, is perturbed by a sudden switch off of the O3 content. Results obtained for the new equilibrium suggest that the model gets in a colder state mainly because of the water vapor content decrease. Most of the cooling occurs in the Southern Hemisphere while in the Northern Hemisphere the ice cap melts quite consistently. This process appears to be governed by the northward cross-equatorial heat transports induced by changes in the general circulation.  相似文献   

12.
Multi-gas Emissions Pathways to Meet Climate Targets   总被引:1,自引:1,他引:1  
So far, climate change mitigation pathways focus mostly on CO2 and a limited number of climate targets. Comprehensive studies of emission implications have been hindered by the absence of a flexible method to generate multi-gas emissions pathways, user-definable in shape and the climate target. The presented method ‘Equal Quantile Walk’ (EQW) is intended to fill this gap, building upon and complementing existing multi-gas emission scenarios. The EQW method generates new mitigation pathways by ‘walking along equal quantile paths’ of the emission distributions derived from existing multi-gas IPCC baseline and stabilization scenarios. Considered emissions include those of CO2 and all other major radiative forcing agents (greenhouse gases, ozone precursors and sulphur aerosols). Sample EQW pathways are derived for stabilization at 350 ppm to 750 ppm CO2 concentrations and compared to WRE profiles. Furthermore, the ability of the method to analyze emission implications in a probabilistic multi-gas framework is demonstrated. The probability of overshooting a 2 C climate target is derived by using different sets of EQW radiative forcing peaking pathways. If the probability shall not be increased above 30%, it seems necessary to peak CO2 equivalence concentrations around 475 ppm and return to lower levels after peaking (below 400 ppm). EQW emissions pathways can be applied in studies relating to Article 2 of the UNFCCC, for the analysis of climate impacts, adaptation and emission control implications associated with certain climate targets. See for EQW-software and data.  相似文献   

13.
The concentration of carbon dioxide in the atmosphere acts to control the stomatal conductance of plants. There is observational and modelling evidence that an increase in the atmospheric concentration of CO2 would suppress the evapotranspiration (ET) rate over land. This process is known as CO2 physiological forcing and has been shown to induce changes in surface temperature and continental runoff. We analyse two transient climate simulations for the twenty-first century to isolate the climate response to the CO2 physiological forcing. The land surface warming associated with the decreased ET rate is accompanied by an increase in the atmospheric lapse rate, an increase in specific humidity, but a decrease in relative humidity and stratiform cloud over land. We find that the water vapour feedback more than compensates for the decrease in latent heat flux over land as far as the budget of atmospheric water vapour is concerned. There is evidence that surface snow, water vapour and cloudiness respond to the CO2 physiological forcing and all contribute to further warm the climate system. The climate response to the CO2 physiological forcing has a quite different signature to that from the CO2 radiative forcing, especially in terms of the changes in the temperature vertical profile and surface energy budget over land.  相似文献   

14.
Carbon dioxide emissions need to be reduced well below current emissions if atmospheric concentrations are to be stabilised at a level likely to avoid dangerous climate change. We investigate how delays in reducing CO2 emissions affect stabilisation scenarios leading to overshooting of a target concentration pathway. We show that if geo-engineering alone is used to compensate for the delay in reducing CO2 emissions, such an option needs to be sustained for centuries even though the period of overshooting emissions may only last for a few decades. If geo-engineering is used for a shorter period, it has to be associated with emission reductions significantly larger than those required to stabilise CO2 without overshooting the target. In the presence of a strong climate–carbon cycle feedback the required emission reductions are even more drastic.  相似文献   

15.
Comparing statistical estimates for the long-run temperature effect of doubled CO2 with those generated by climate models begs the question, is the long-run temperature effect of doubled CO2 that is estimated from the instrumental temperature record using statistical techniques consistent with the transient climate response, the equilibrium climate sensitivity, or the effective climate sensitivity. Here, we attempt to answer the question, what do statistical analyses of the observational record measure, by using these same statistical techniques to estimate the temperature effect of a doubling in the atmospheric concentration of carbon dioxide from seventeen simulations run for the Coupled Model Intercomparison Project 2 (CMIP2). The results indicate that the temperature effect estimated by the statistical methodology is consistent with the transient climate response and that this consistency is relatively unaffected by sample size or the increase in radiative forcing in the sample.  相似文献   

16.
Minimizing the future impacts of climate change requires reducing the greenhouse gas (GHG) load in the atmosphere. Anthropogenic emissions include many types of GHG’s as well as particulates such as black carbon and sulfate aerosols, each of which has a different effect on the atmosphere, and a different atmospheric lifetime. Several recent studies have advocated for the importance of short timescales when comparing the climate impact of different climate pollutants, placing a high relative value on short-lived pollutants, such as methane (CH4) and black carbon (BC) versus carbon dioxide (CO2). These studies have generated confusion over how to value changes in temperature that occur over short versus long timescales. We show the temperature changes that result from exchanging CO2 for CH4 using a variety of commonly suggested metrics to illustrate the trade-offs involved in potential carbon trading mechanisms that place a high value on CH4 emissions. Reducing CH4 emissions today would lead to a climate cooling of approximately ~0.5 °C, but this value will not change greatly if we delay reducing CH4 emissions by years or decades. This is not true for CO2, for which the climate is influenced by cumulative emissions. Any delay in reducing CO2 emissions is likely to lead to higher cumulative emissions, and more warming. The exact warming resulting from this delay depends on the trajectory of future CO2 emissions but using one business-as usual-projection we estimate an increase of 3/4 °C for every 15-year delay in CO2 mitigation. Overvaluing the influence of CH4 emissions on climate could easily result in our “locking” the earth into a warmer temperature trajectory, one that is temporarily masked by the short-term cooling effects of the CH4 reductions, but then persists for many generations.  相似文献   

17.
Integrated assessment models (IAMs) have commonly been used to understand the relationship between the economy, the earth’s climate system and climate impacts. We compare the IPCC simulations of CO2 concentration, radiative forcing, and global mean temperature changes associated with five SRES ‘marker’ emissions scenarios with the responses of three IAMs—DICE, FUND and PAGE—to these same emission scenarios. We also compare differences in simulated temperature increase resulting from moving from a high to a low emissions scenario. These IAMs offer a range of climate outcomes, some of which are inconsistent with those of IPCC, due to differing treatments of the carbon cycle and of the temperature response to radiative forcing. In particular, in FUND temperatures up until 2100 are relatively similar for the four emissions scenarios, and temperature reductions upon switching to lower emissions scenarios are small. PAGE incorporates strong carbon cycle feedbacks, leading to higher CO2 concentrations in the twenty-second century than other models. Such IAMs are frequently applied to determine ‘optimal’ climate policy in a cost–benefit approach. Models such as FUND which show smaller temperature responses to reducing emissions than IPCC simulations on comparable timescales will underestimate the benefits of emission reductions and hence the calculated ‘optimal’ level of investment in mitigation.  相似文献   

18.
一维辐射-对流模式对云辐射强迫的数值模拟研究   总被引:10,自引:9,他引:1  
利用一维辐射-对流气候模式, 详细研究了云量、云光学厚度以及云高等要素的变化对大气顶和地面太阳短波辐射和红外长波辐射通量以及云的辐射强迫的影响, 给出了计算这些物理量的经验拟合公式。结果表明, 云具有极为重要的辐射-气候效应。云量、云光学厚度以及云高即使只有百分之几的变化, 所带来的辐射强迫也可以与大气二氧化碳浓度加倍所产生的辐射强迫(3.75 W/m2)相比拟。例如, 当分别给它们+3%的扰动时, 即取云量变化0.015, 云光学厚度变化0.27, 以及云高变化0.15 km时(在实际的地球大气中, 这种尺度的变化是完全可能发生的), 那么,可以得到地气系统的太阳短波辐射强迫-3.10 W/m2以及红外长波辐射强迫-1.77 W/m2, 二者之和为-4.78 W/m2, 已经完全可以抵消大气二氧化碳浓度加倍所产生的辐射强迫。但是, 当云量、云光学厚度以及云高向相反方向产生类似扰动时, 所产生的辐射强迫可能极大地放大二氧化碳浓度增加所产生的增强温室效应。因此, 研究结果揭示出, 不管是为了解释过去的气候变化, 还是预测未来的气候变化, 亟待加强在一个变化了的气候环境(例如地面温度升高)下, 云将发生何种变化的研究。  相似文献   

19.
Carbon dioxide (CO2) is an important greenhouse gas that influences regional climate through disturbing the earth’s energy balance. The CO2 concentrations are usually prescribed homogenously in most climate models and the spatiotemporal variations of CO2 are neglected. To address this issue, a regional climate model (RegCM4) is modified to investigate the non-homogeneous distribution of CO2 and its effects on regional longwave radiation flux and temperature in East Asia. One-year simulation is performed with prescribed surface CO2 fluxes that include fossil fuel emission, biomass burning, air–sea exchange, and terrestrial biosphere flux. Two numerical experiments (one using constant prescribed CO2 concentrations in the radiation scheme and the other using the simulated CO2 concentrations that are spatially non-homogeneous) are conducted to assess the impact of non-homogeneous CO2 on the regional longwave radiation flux and temperature. Comparison of CO2 concentrations from the model with the observations from the GLOBALVIEW-CO2 network suggests that the model can well capture the spatiotemporal patterns of CO2 concentrations. Generally, high CO2 mixing ratios appear in the heavily industrialized eastern China in cold seasons, which probably relates to intensive human activities. The accommodation of non-homogeneous CO2 concentrations in the radiative transfer scheme leads to an annual mean change of–0.12 W m–2 in total sky surface upward longwave flux in East Asia. The experiment with non-homogeneous CO2 tends to yield a warmer lower troposphere. Surface temperature exhibits a maximum difference in summertime, ranging from–4.18 K to 3.88 K, when compared to its homogeneous counterpart. Our results indicate that the spatial and temporal distributions of CO2 have a considerable impact on regional longwave radiation flux and temperature, and should be taken into account in future climate modeling.  相似文献   

20.
This study diagnoses the climate sensitivity, radiative forcing and climate feedback estimates from eleven general circulation models participating in the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5), and analyzes inter-model differences. This is done by taking into account the fact that the climate response to increased carbon dioxide (CO2) is not necessarily only mediated by surface temperature changes, but can also result from fast land warming and tropospheric adjustments to the CO2 radiative forcing. By considering tropospheric adjustments to CO2 as part of the forcing rather than as feedbacks, and by using the radiative kernels approach, we decompose climate sensitivity estimates in terms of feedbacks and adjustments associated with water vapor, temperature lapse rate, surface albedo and clouds. Cloud adjustment to CO2 is, with one exception, generally positive, and is associated with a reduced strength of the cloud feedback; the multi-model mean cloud feedback is about 33 % weaker. Non-cloud adjustments associated with temperature, water vapor and albedo seem, however, to be better understood as responses to land surface warming. Separating out the tropospheric adjustments does not significantly affect the spread in climate sensitivity estimates, which primarily results from differing climate feedbacks. About 70 % of the spread stems from the cloud feedback, which remains the major source of inter-model spread in climate sensitivity, with a large contribution from the tropics. Differences in tropical cloud feedbacks between low-sensitivity and high-sensitivity models occur over a large range of dynamical regimes, but primarily arise from the regimes associated with a predominance of shallow cumulus and stratocumulus clouds. The combined water vapor plus lapse rate feedback also contributes to the spread of climate sensitivity estimates, with inter-model differences arising primarily from the relative humidity responses throughout the troposphere. Finally, this study points to a substantial role of nonlinearities in the calculation of adjustments and feedbacks for the interpretation of inter-model spread in climate sensitivity estimates. We show that in climate model simulations with large forcing (e.g., 4 × CO2), nonlinearities cannot be assumed minor nor neglected. Having said that, most results presented here are consistent with a number of previous feedback studies, despite the very different nature of the methodologies and all the uncertainties associated with them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号