共查询到20条相似文献,搜索用时 15 毫秒
1.
Lique Camille Johnson Helen L. Plancherel Yves Flanders Robert 《Climate Dynamics》2015,45(5-6):1235-1252
Climate Dynamics - The impact of climate warming on the ocean near Greenland is investigated with a high resolution coupled global climate model. The ocean around Greenland exhibits a strong... 相似文献
2.
The heat budget of the upper Arctic Ocean is examined in an ensemble of coupled climate models under idealised increasing CO2 scenarios. All of the experiments show a strong amplification of surface air temperatures but a smaller increase in sea surface temperature than the rest of the world as heat is lost to the atmosphere as the sea-ice cover is reduced. We carry out a heat budget analysis of the Arctic Ocean in an ensemble of model runs to understand the changes that occur as the Arctic becomes ice free in summer. We find that as sea-ice retreats heat is lost from the ocean surface to the atmosphere contributing to the amplification of Arctic surface temperatures. Furthermore, heat is mixed upwards into the mixed layer as a result of increased upper ocean mixing and there is increased advection of heat into the Arctic as the ice edge retreats. Heat lost from the upper Arctic Ocean to the atmosphere is therefore replenished by mixing of warmer water from below and by increased advection of warm water from lower latitudes. The ocean is therefore able to contribute more to Arctic amplification. 相似文献
3.
根据黑龙江省1961~2007年的气候资料和1983~2007年黑龙江省主要粮食作物(水稻、小麦、玉米和大豆)的播种面积等统计资料,分析了气候变化背景下黑龙江省主要粮食作物种植格局和种植界限的变化情况.结果表明:近20 a以来,黑龙江省的主要粮食作物的播种面积及产量均发生了显著的变化.黑龙江省粮食作物种植结构从主要以小麦和玉米为主的粮食作物种植结构变化成为以玉米和水稻为主;水稻的种植区域明显向北扩展,小麦的种植区域向北收缩,玉米则在保持一个相对稳定的比例关系基础上,逐渐向北和东部扩展.这种情况的出现显然是和近20 a来全球变暖、黑龙江省地区气温显著增加分不开的.事实证明温度的变化在某种程度上影响人类社会,而人类则通过改变自己的生产生活方式以适应周围环境的变化. 相似文献
4.
M. P. Hoerling J. W. Hurrell T. Xu G. T. Bates A. S. Phillips 《Climate Dynamics》2004,23(3-4):391-405
Ensembles of atmospheric general circulation model (AGCM) experiments are used in an effort to understand the boreal winter Northern Hemisphere (NH) extratropical climate response to the observed warming of tropical sea surface temperatures (SSTs) over the last half of the twentieth Century. Specifically, we inquire about the origins of unusual, if not unprecedented, changes in the wintertime North Atlantic and European climate that are well described by a linear trend in most indices of the North Atlantic Oscillation (NAO). The simulated NH atmospheric response to the linear trend component of tropic-wide SST change since 1950 projects strongly onto the positive polarity of the NAO and is a hemispheric pattern distinguished by decreased (increased) Arctic (middle latitude) sea level pressure. Progressive warming of the Indian Ocean is the principal contributor to this wintertime extratropical response, as shown through additional AGCM ensembles forced with only the SST trend in that sector. The Indian Ocean influence is further established through the reproducibility of results across three different models forced with identical, idealized patterns of the observed warming. Examination of the transient atmospheric adjustment to a sudden “switch-on” of an Indian Ocean SST anomaly reveals that the North Atlantic response is not consistent with linear theory and most likely involves synoptic eddy feedbacks associated with changes in the North Atlantic storm track. The tropical SST control exerted over twentieth century regional climate underlies the importance of determining the future course of tropical SST for regional climate change and its uncertainty. Better understanding of the extratropical responses to different, plausible trajectories of the tropical oceans is key to such efforts. 相似文献
5.
The current generations of climate models are in substantial disagreement as to the projected patterns of sea surface temperatures (SSTs) in the Tropics over the next several decades. We show that the spatial patterns of tropical ocean temperature trends have a strong influence on global mean temperature and precipitation and on global mean radiative forcing. We identify the SST patterns with the greatest influence on the global mean climate and find very different, and often opposing, sensitivities to SST changes in the tropical Indian and West Pacific Oceans. Our work stresses the need to reduce climate model biases in these sensitive regions, as they not only affect the regional climates of the nearby densely populated continents, but also have a disproportionately large effect on the global climate.
相似文献
Joseph J. BarsugliEmail: Phone: +1-303-4976042Fax: +1-303-4976449 |
6.
正The impacts of global warming will be felt most strongly at regional scales.However,great uncertainties exist in climate change projections at these scales,limiting our ability to provide useful information for the planning and implementation of appropriate adaptation measures.Thus,there is an urgent need to reduce these uncertainties. 相似文献
7.
Modelling the response of glaciers to climate warming 总被引:9,自引:0,他引:9
J. Oerlemans B. Anderson A. Hubbard P. Huybrechts T. Jóhannesson W. H. Knap M. Schmeits A. P. Stroeven R. S. W. van de Wal J. Wallinga Z. Zuo 《Climate Dynamics》1998,14(4):267-274
Dynamic ice-flow models for 12 glaciers and ice caps have been forced with various climate change scenarios. The volume of
this sample spans three orders of magnitude. Six climate scenarios were considered: from 1990 onwards linear warming rates
of 0.01, 0.02 and 0.04 K a-1, with and without concurrent changes in precipitation. The models, calibrated against the historic record of glacier length
where possible, were integrated until 2100. The differences in individual glacier responses are very large. No straightforward
relationship between glacier size and fractional change of ice volume emerges for any given climate scenario. The hypsometry
of individual glaciers and ice caps plays an important role in their response, thus making it difficult to generalize results.
For a warming rate of 0.04 K a-1, without increase in precipitation, results indicate that few glaciers would survive until 2100. On the other hand, if the
warming rate were to be limited to 0.01 K a-1 with an increase in precipitation of 10% per degree warming, we predict that overall loss would be restricted to 10 to 20%
of the 1990 volume.
Received: 30 June 1997/Accepted: 21 October 1997 相似文献
8.
Sergio H. Franchito V. Brahmananda Rao J. Pablo R. Fernandez 《Theoretical and Applied Climatology》2012,109(1-2):73-79
This study investigates the impact of global warming on the savannization of the tropical land region and also examines the relative roles of the impact of the increase of greenhouse gas concentration and future changes in land cover on the tropical climate. For this purpose, a mechanistic–statistical–dynamical climate model with a bidirectional interaction between vegetation and climate is used. The results showed that climate change due to deforestation is more than that due to greenhouse gases in the tropical region. The warming due to deforestation corresponds to around 60% of the warming in the tropical region when the increase of CO2 concentration is included together. However, the global warming due to deforestation is negligible. On the other hand, with the increase of CO2 concentration projected for 2100, there is a lower decrease of evapotranspiration, precipitation and net surface radiation in the tropical region compared with the case with only deforestation. Differently from the case with only deforestation, the effect of the changes in the net surface radiation overcomes that due to the evapotranspiration, so that the warming in the tropical land region is increased. The impact of the increase of CO2 concentration on a deforestation scenario is to increase the reduction of the areas covered by tropical forest (and a corresponding increase in the areas covered by savanna) which may reach 7.5% in future compared with the present climate. Compared with the case with only deforestation, drying may increase by 66.7%. This corroborates with the hypothesis that the process of savannization of the tropical forest can be accelerated in future due to global warming. 相似文献
9.
人类活动显著影响着全球大气循环格局,全球平均温度升高导致干旱事件发生幅度、频度和持续时间增加,这对森林生态系统带来更多的是负面影响.本文基于已有研究,系统总结了干旱事件对森林生态系统地理分布格局、群落结构重建、植物生长和生理特性、死亡和灭绝、植物生产力以及碳循环功能的影响及其机理,并对未来干旱事件对森林生态系统长期效应以及在不同时间尺度上作用机理的研究提出建议.本研究对开展全球变化背景下森林生态系统对干旱事件响应机制的研究具有重要指导意义. 相似文献
10.
Hyun-Chul Lee Thomas L. Delworth Anthony Rosati Rong Zhang Whit G. Anderson Fanrong Zeng Charles A. Stock Anand Gnanadesikan Keith W. Dixon Stephen M. Griffies 《Climate Dynamics》2013,40(1-2):327-340
The impact of climate warming on the upper layer of the Bering Sea is investigated by using a high-resolution coupled global climate model. The model is forced by increasing atmospheric CO2 at a rate of 1% per year until CO2 reaches double its initial value (after 70 years), after which it is held constant. In response to this forcing, the upper layer of the Bering Sea warms by about 2°C in the southeastern shelf and by a little more than 1°C in the western basin. The wintertime ventilation to the permanent thermocline weakens in the western Bering Sea. After CO2 doubling, the southeastern shelf of the Bering Sea becomes almost ice-free in March, and the stratification of the upper layer strengthens in May and June. Changes of physical condition due to the climate warming would impact the pre-condition of spring bio-productivity in the southeastern shelf. 相似文献
11.
In China, ten climate types were classified using the K-means cluster analysis based on monthly temperature and precipitation data from 753 national meteorological stations for the period 1966–2005. However, 11 mountain climate stations, which are located in southeast China, were classified as one type due to their distinct climate characteristic that differentiated them from other stations. This type could not represent the climate characteristic of this region because all climate stations in this type were located at high-elevation mountains. Thus, it was eliminated when defining climate zones based on climate types. Therefore, nine climate zones were defined in China. Moreover, the temporal change of climate zones was detected in 20-year intervals (1966–1985 and 1986–2005). Although 48 stations changed their climate zones between these two periods, the whole pattern of all climate zones remained stable in these two periods. However, the boundaries between some climate zones changed slightly due to inconsistent variation of regional temperature and precipitation. The most obvious change was the eastern movement of the boundary between an arid temperate zone and a sub-humid temperate zone. There was also a northern shift of the boundary between a tropic zone and a southern subtropic zone. All these changes were probably connected with the climate change in recent 40 years. 相似文献
12.
热带太平洋环流季节变化的数值模拟 总被引:3,自引:0,他引:3
在观测到的海表风应力和热量及淡水通量驱动下,用大气物理研究所发展的高分辨率自由表面热带太平洋环流模式对热带太平洋环流季节变化进行了数值模拟。对模拟得到的热带太平洋海面起伏、温度场和流场等季节变化分析、比较表明,模式成功地模拟了观测到的环流季节变化基本特征。其中,海面起伏中西北太平洋副热带反气旋环流在冬季最强,赤道槽在冬季和早春季强,而赤道脊和北赤道逆流槽则在秋季强;北赤道逆流在秋季强而春季弱,150°W附近区域赤道表层洋流流向在4至7月逆转;赤道东太平洋地区海表温度场春季增暖和秋冷却;以及次表层赤道斜温层 相似文献
13.
利用多成员集合试验结果,比较分析了热带印度洋和太平洋增暖各自对东亚夏季风趋势变化的影响。试验所用模式是GFDLAM2大气环流模式,增暖是通过在气候平均海洋表面温度(SST)基础上,叠加随时间线性增加的、相当于实际50a左右达到的SST异常来实现的。结果表明:热带印度洋和太平洋共同增暖有使东亚夏季风减弱的趋势。相比较而言,单独印度洋增暖有使东亚夏季风增强、华北降水增多的趋势,而单独太平洋增暖有使东亚夏季风减弱的趋势,即印度洋增暖与太平洋增暖对东亚夏季风存在相反的、竞争性影响。进一步分析指出,热带太平洋特别是热带中东太平洋的增温可能对20世纪70年代末期开始的夏季风年代际减弱有更重要的贡献;在未来热带印度洋和太平洋持续增暖、但增暖强度纬向差异减小的新情况下,东亚夏季风减弱的趋势可能还将持续。 相似文献
14.
15.
M. G. Keerthi M. Lengaigne J. Vialard C. de Boyer Montégut P. M. Muraleedharan 《Climate Dynamics》2013,40(3-4):743-759
In the present study, interannual fluctuations of the mixed layer depth (MLD) in the tropical Indian Ocean are investigated from a long-term (1960–2007) eddy permitting numerical simulation and a new observational dataset built from hydrographic in situ data including Argo data (1969–2008). Both datasets show similar interannual variability patterns in relation with known climate modes and reasonable phase agreement in key regions. Due to the scarcity of the observational dataset, we then largely rely on the model to describe the interannual MLD variations in more detail. MLD interannual variability is two to four times smaller than the seasonal cycle. A large fraction of MLD interannual variations is linked to large-scale climate modes, with the exception of coastal and subtropical regions where interannual signature of small-scale structures dominates. The Indian Ocean Dipole is responsible for most variations in the 10°N–10°S band, with positive phases being associated with a shallow MLD in the equatorial and south-eastern Indian Ocean and a deepening in the south-central Indian Ocean. The El Niño signature is rather weak, with moderate MLD shoaling in autumn in the eastern Arabian Sea. Stronger than usual monsoon jets are only associated with a very modest MLD deepening in the southern Arabian Sea in summer. Finally, positive Indian Ocean Subtropical Dipoles are associated with a MLD deepening between 15 and 30°S. Buoyancy fluxes generally appear to dominate MLD interannual variations except for IOD-induced signals in the south-central Indian Ocean in autumn, where wind stirring and Ekman pumping dominate. 相似文献
16.
We evaluate three categories of variables for explaining the spatial pattern of warming and cooling trends over land: predictions of general circulation models (GCMs) in response to observed forcings; geographical factors like latitude and pressure; and socioeconomic influences on the land surface and data quality. Spatial autocorrelation (SAC) in the observed trend pattern is removed from the residuals by a well-specified explanatory model. Encompassing tests show that none of the three classes of variables account for the contributions of the other two, though 20 of 22 GCMs individually contribute either no significant explanatory power or yield a trend pattern negatively correlated with observations. Non-nested testing rejects the null hypothesis that socioeconomic variables have no explanatory power. We apply a Bayesian Model Averaging (BMA) method to search over all possible linear combinations of explanatory variables and generate posterior coefficient distributions robust to model selection. These results, confirmed by classical encompassing tests, indicate that the geographical variables plus three of the 22 GCMs and three socioeconomic variables provide all the explanatory power in the data set. We conclude that the most valid model of the spatial pattern of trends in land surface temperature records over 1979–2002 requires a combination of the processes represented in some GCMs and certain socioeconomic measures that capture data quality variations and changes to the land surface. 相似文献
17.
Satellite observations reveal a much stronger intraseasonal sea surface temperature (SST) variability in the southern Indian Ocean along 5-10oS in boreal winter than in boreal summer. The cause of this seasonal dependence is studied using a 2?-layer ocean model forced by ERA-40 reanalysis products during 1987-2001. The simulated winter-summer asymmetry of the SST variability is consistent with the observed. A mixed-layer heat budget is analyzed. Mean surface westerlies along the ITCZ (5-10oS) in December-January-February (DJF) leads to an increased (decreased) evaporation in the westerly (easterly) phase of the intraseasonal oscillation (ISO), during which convection is also enhanced (suppressed). Thus the anomalous shortwave radiation, latent heat flux and entrainment effects are all in phase and produce strong SST signals. During June-July-August (JJA), mean easterlies prevail south of the equator. Anomalies of the shortwave radiation tend to be out of phase to those of the latent heat flux and ocean entrainment. This mutual cancellation leads to a weak SST response in boreal summer. The resultant SST tendency is further diminished by a deeper mixed layer in JJA compared to that in DJF. The strong intraseasonal SST response in boreal winter may exert a delayed feedback to the subsequent opposite phase of ISO, implying a two-way air-sea interaction scenario on the intraseasonal timescale.
Citation: Li, T., F. Tam, X. Fu, et al., 2008: Causes of the intraseasonal SST variability in the tropical Indian ocean, Atmos. Oceanic Sci. Lett., 1, 18-23 相似文献
18.
MA Zhanhong FEI Jianfang HUANG Xiaogang CHENG Xiaoping LIU Lei 《Acta Meteorologica Sinica》2013,27(6):910-922
In this study, the interaction between the tropical cyclone(TC) and the underlying ocean is reproduced by using a coupled atmosphere-ocean model. Based on the simulation results, characteristics of the TC boundary layer depth are investigated in terms of three commonly used definitions, i.e., the height of the mixed layer depth(HVTH), the height of the maximum tangential winds(HTAN), and the inflow layer depth(HRAD). The symmetric height of the boundary layer is shown to be cut down by the ocean response, with the decrease of HVTH slightly smaller than that of HTAN and HRAD. The ocean feedback also leads to evident changes in asymmetric features of the boundary layer depth. The HVTH in the right rear of the TC is significantly diminished due to presence of the cold wake, while the changes of HVTH in other regions are rather small. The decreased surface virtual potential temperature by the cold wake is identified to be dominant in the asymmetric changes in HVTH. The impacts of ocean response on the asymmetric distributions of HTAN are nonetheless not distinct, which is attributed to the highly axisymmetric property of tangential winds. The HRAD possesses remarkable asymmetric features and the inflow layer does not exist in all regions, an indication of the inadequacy of the definition based on symmetric inflow layer depth. Under influences of the cold wake, the peak inflow area rotates counterclockwise distinctly. As a consequence, the HRAD becomes deeper in the east while shallower in the west of the TC. 相似文献
19.
Spatiotemporal change in geographical distribution of global climate types in the context of climate warming 总被引:4,自引:0,他引:4
After standardizing global land climate gridded data from the Climatic Research Unit TS (time-series) 3.1 dataset for the period 1901–2009, cluster analysis is used to objectively classify world climates into 14 climate types. These climate types establish a baseline classification map and the types are named according to Köppen–Geiger climate classifications. Although the cluster analysis and Köppen classification methods are very different, the distributions of climate types obtained by the two methods are similar. Moreover, the climate types we identify also coincide well with their corresponding vegetation types. Thus, cluster analysis can be used as an effective alternative to the Köppen classification method for classifying world climate types. The spatial and temporal changes in geographical distribution of global climate types were investigated in 25-year intervals, and Cohen’s kappa coefficient is used to detect agreement between the periods. Globally, although an obvious trend in increasing global temperature is found, distribution of climate types overall show no distinct changes over the periods. However, at the regional scale, spatial change in distribution of climate types is evident in South America and Africa. In South America, larger areas of the “fully humid equatorial rainforest” (Af) and “equatorial savannah with dry winter” (Aw) climate types have changed types. In Africa, changes mainly occurred in the Af, “equatorial savannah with dry summer” (As), Aw, “steppe climate” (BS), and “desert climate” (BW) climate types. Moreover, some climate types, including Af, “equatorial monsoon” (Am), BS, BW, and “tundra climate” (ET), were susceptible to temporal climate changes, especially in the period 1976–2009. 相似文献
20.
热带印度洋偶极子事件期间印度洋大气的变化——大气流函数场和势函数场的分析 总被引:1,自引:0,他引:1
大气环流的变异是热带印度洋偶极子(IOD)事件研究中的一个重要问题。本文从风场旋度分量和散度分量角度出发,利用观测资料和大气环流模式,对IOD事件发生时热带印度洋海区上空的大气环流变化进行了分析,揭示出风场不同分量在IOD事件期间的变化特征。研究结果表明,热带印度洋大气环流系统在IOD事件期间,旋度分量和散度分量在垂直方向上呈现明显的一阶斜压形式,而在水平方向上呈现明显的对称分布特征。对低空(850 hPa)来说,无辐散流函数距平场在IOD事件正位相期间表现为关于赤道对称的一对反气旋式环流;无旋度分量在IOD事件正位相期间的响应表现为东印度洋辐散、西印度洋辐合;大气环流的两种分量场均可以在赤道印度洋地区产生距平意义下的纬向东风,正是这种形式的距平东风使得IOD事件依靠海气系统正反馈机制得以维持和发展。而高空(200 hPa)大气环流形式刚好与850 hPa相反。 相似文献