首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We assess the impact of improved ocean initial conditions for predicting El Niño-Southern Oscillation (ENSO) and Indian Ocean dipole (IOD) using the Bureau of Meteorology’s Predictive Ocean Atmosphere Model for Australia (POAMA) coupled seasonal prediction model for the period 1982–2006. The new ocean initial conditions are provided by an ensemble-based analysis system that assimilates subsurface temperatures and salinity and which is a clear improvement over the previous optimal interpolation system which used static error covariances and was univariate (temperature only). Hindcasts using the new ocean initial conditions have better skill at predicting sea surface temperature (SST) variations associated with ENSO than do the hindcasts initialized with the old ocean analyses. The improvement derives from better prediction of subsurface temperatures and the largest improvements come during ENSO–IOD neutral years. We show that improved prediction of the Niño3.4 SST index derives from improved initial depiction of the thermocline and halocline in the equatorial Pacific but as lead time increases the improved depiction of the initial salinity field in the western Pacific become more important. Improved ocean initial conditions do not translate into improved skill for predicting the IOD but we do see an improvement in the prediction of subsurface temperatures in the Indian Ocean (IO). This result reflects that the coupling between subsurface and surface temperature variations is weaker in the IO than in the Pacific, but coupled model errors may also be limiting predictive skill in the IO.  相似文献   

2.
The potential for predicting interannual variations of the Leeuwin Current along the west coast of Australia is addressed. The Leeuwin Current flows poleward against the prevailing winds and transports warm-fresh tropical water southward along the coast, which has a great impact on local climate and ecosystems. Variations of the current are tightly tied to El Niño/La Niña (weak during El Niño and strong during La Niña). Skilful seasonal prediction of the Leeuwin Current to 9-month lead time is achieved by empirical downscaling of dynamical coupled model forecasts of El Niño and the associated upper ocean heat content anomalies off the north west coast of Australia from the Australian Bureau of Meteorology Predictive Ocean Atmosphere Model for Australia (POAMA) seasonal forecast system. Prediction of the Leeuwin Current is possible because the heat content fluctuations off the north west coast are the primary driver of interannual annual variations of the current and these heat content variations are tightly tied to the occurrence of El Niño/La Niña. POAMA can skilfully predict both the occurrence of El Niño/La Niña and the subsequent transmission of the heat content anomalies from the Pacific onto the north west coast.  相似文献   

3.
Advanced warning of extreme sea level events is an invaluable tool for coastal communities, allowing the implementation of management policies and strategies to minimise loss of life and infrastructure damage. This study is an initial attempt to apply a dynamical coupled ocean–atmosphere model to the prediction of seasonal sea level anomalies (SLA) globally for up to 7 months in advance. We assess the ability of the Australian Bureau of Meteorology’s operational seasonal dynamical forecast system, the Predictive Ocean Atmosphere Model for Australia (POAMA), to predict seasonal SLA, using gridded satellite altimeter observation-based analyses over the period 1993–2010 and model reanalysis over 1981–2010. Hindcasts from POAMA are based on a 33-member ensemble of seasonal forecasts that are initialised once per month for the period 1981–2010. Our results show POAMA demonstrates high skill in the equatorial Pacific basin and consistently exhibits more skill globally than a forecast based on persistence. Model predictability estimates indicate there is scope for improvement in the higher latitudes and in the Atlantic and Southern Oceans. Most characteristics of the asymmetric SLA fields generated by El-Nino/La Nina events are well represented by POAMA, although the forecast amplitude weakens with increasing lead-time.  相似文献   

4.
We assess the depiction and prediction of blocking at 140°E and its impact on Australian intra-seasonal climate variability in the Bureau of Meteorology’s dynamical intra-seasonal/seasonal forecast model Predictive Ocean Atmosphere Model for Australia version 2 (POAMA-2). The model simulates well the strong seasonality of blocking but underestimates its strength and frequency increasingly with lead time, particularly after the first fortnight of the hindcast, in connection with the model’s drifting basic state. POAMA-2 reproduces well the large-scale structure of weekly-mean blocking anomalies and associated rainfall anomalies over Australia; the depiction of total blocking in POAMA-2 may be improved with the reduction of biases in the distribution of Indian Ocean rainfall via a tropical-extratropical wave teleconnection linking blocking activity at 140°E with tropical variability near Indonesia. POAMA-2 demonstrates the ability to skilfully predict the daily blocking index out to 16 days lead time for the ensemble mean hindcast, surpassing the average predictive skill of the individual hindcast members (5 days), the skill obtained from persistence of observed (2 days), and the decorrelation timescale of blocking (3 days). This skilful prediction of the blocking index, together with effective simulation of blocking rainfall anomalies, translates into higher skill in forecasting rainfall in weeks 2 and 3 over much of Australia when blocking is high at the initial time of the hindcast, compared to when the blocking index is small. POAMA-2 is thus capable of providing forecast skill for blocking rainfall on the intra-seasonal timescale to meet the needs of Australian farming communities, whose management practises often rely upon decisions being made a few weeks ahead.  相似文献   

5.
The two types of El Niño events simulated by the Geophysical Fluid Dynamics Laboratory Climate Model version 2p1 (GFDL CM2p1) model and its “spring predictability barrier” (SPB) associations are examined. By conducting the ensemble hindcast experiments related to the sea temperature on the whole Pacific, both of the predictions for CP- and EP-El Niño show a significant SPB phenomenon, but the CP-El Niño features a much weaker SPB compared to the EP-El Niño. Further analyses revealed that, for CP-El Niño events, the initial sea temperature errors of the North Pacific with triple-like shape, referred to as negative Victoria Mode (VM) induces the largest prediction errors in Niño4 areas and modulates the intensities of CP-El Niño events. While for EP-El Niño events, the initial sea temperature errors in the subsurface layer of the western equatorial Pacific and the upper layer of the Southeast Pacific (15–30ºS) with the meridional mode induce the largest prediction errors in Niño3 areas and modulates the intensities of EP-El Niño events. Obviously, results stress that, in order to reduce final prediction errors and obtain better predictions in terms of intensity on the two types of El Niño events, we should mainly focus on initial sea temperature accuracy in not only the subsurface layer of the west equatorial Pacific but also the surface layer of southeast Pacific and the region covered by the VM-like mode in the North Pacific.  相似文献   

6.
Long-lead prediction of waxing and waning of the Western North Pacific (WNP)-East Asian (EA) summer monsoon (WNP-EASM) precipitation is a major challenge in seasonal time-scale climate prediction. In this study, deficiencies and potential for predicting the WNP-EASM precipitation and circulation one or two seasons ahead were examined using retrospective forecast data for the 26-year period of 1981–2006 from two operational couple models which are the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS) and the Bureau of Meteorology Research Center (BMRC) Predictive Ocean–Atmosphere Model for Australia (POAMA). While both coupled models have difficulty in predicting summer mean precipitation anomalies over the region of interest, even for a 0-month lead forecast, they are capable of predicting zonal wind anomalies at 850 hPa several months ahead and, consequently, satisfactorily predict summer monsoon circulation indices for the EA region (EASMI) and for the WNP region (WNPSMI). It should be noted that the two models’ multi-model ensemble (MME) reaches 0.40 of the correlation skill for the EASMI with a January initial condition and 0.75 for the WNPSMI with a February initial condition. Further analysis indicates that prediction reliability of the EASMI is related not only to the preceding El Niño and Southern Oscillation (ENSO) but also to simultaneous local SST variability. On other hand, better prediction of the WNPSMI is accompanied by a more realistic simulation of lead–lag relationship between the index and ENSO. It should also be noted that current coupled models have difficulty in capturing the interannual variability component of the WNP-EASM system which is not correlated with typical ENSO variability. To improve the long-lead seasonal prediction of the WNP-EASM precipitation, a statistical postprocessing was developed based on the multiple linear regression method. The method utilizes the MME prediction of the EASMI and WNPSMI as predictors. It is shown that the statistical postprocessing is able to improve forecast skill for the summer mean precipitation over most of the WNP-EASM region at all forecast leads. It is noteworthy that the MME prediction, after applying statistical postprocessing, shows the best anomaly pattern correlation skill for the EASM precipitation at a 4-month lead (February initial condition) and for the WNPSM precipitation at a 5-month lead (January initial condition), indicating its potential for improving long-lead prediction of the monsoon precipitation.  相似文献   

7.
We assess the ability of the Predictive Ocean Atmosphere Model for Australia (POAMA) to simulate and predict weekly rainfall associated with the MJO using a 27-year hindcast dataset. After an initial 2-week atmospheric adjustment, the POAMA model is shown to simulate well, both in pattern and in intensity, the weekly-mean rainfall variation associated with the evolution of the MJO over the tropical Indo-Pacific. The simulation is most realistic in December?CFebruary (austral summer) and least realistic in March?CMay (austral autumn). Regionally, the most problematic area is the Maritime Continent, which is a common problem area in other models. Coupled with our previous demonstration of the ability of POAMA to predict the evolution of the large-scale structure of the MJO for up to about 3?weeks, this ability to simulate the regional rainfall evolution associated with the MJO translates to enhanced predictability of rainfall regionally throughout much of the tropical Indo-Pacific when the MJO is present in the initial conditions during October?CMarch. We also demonstrate enhanced prediction skill of rainfall at up to 3?weeks lead time over the north-east Pacific and north Atlantic, which are areas of pronounced teleconnections excited by the MJO-modulation of tropical Indo-Pacific rainfall. Failure to simulate and predict the modulation of rainfall in such places as the Maritime Continent and tropical Australia by the MJO indicates, however, there is still much room for improvement of the prediction of the MJO and its teleconnections.  相似文献   

8.
With the Zebiak–Cane model, the relationship between the optimal precursors (OPR) for triggering the El Niño/Southern Oscillation (ENSO) events and the optimally growing initial errors (OGE) to the uncertainty in El Niño predictions is investigated using an approach based on the conditional nonlinear optimal perturbation. The computed OPR for El Niño events possesses sea surface temperature anomalies (SSTA) dipole over the equatorial central and eastern Pacific, plus positive thermocline depth anomalies in the entire equatorial Pacific. Based on the El Niño events triggered by the obtained OPRs, the OGE which cause the largest prediction errors are computed. It is found that the OPR and OGE share great similarities in terms of localization and spatial structure of the SSTA dipole pattern over the central and eastern Pacific and the relatively uniform thermocline depth anomalies in the equatorial Pacific. The resemblances are possibly caused by the same mechanism of the Bjerknes positive feedback. It implies that if additional observation instruments are deployed to the targeted observations with limited coverage, they should preferentially be deployed in the equatorial central and eastern Pacific, which has been determined as the sensitive area for ENSO prediction, to better detect the early signals for ENSO events and reduce the initial errors so as to improve the forecast skill.  相似文献   

9.
The interdecadal change in seasonal predictability and numerical models’ seasonal forecast skill in the Northern Hemisphere are examined using both observations and the seasonal hindcast from six coupled atmosphere-ocean climate models from the 21 period of 1960–1980 (P1) to that of 1981–2001 (P2). It is shown that the one-month lead seasonal forecast skill of the six models’ multi-model ensemble is significantly increased from P1 to P2 for all four seasons. We identify four possible reasons accounting for the interdecadal change of the seasonal forecast skill. Firstly, the numerical model’s ability to simulate the mean state, the time variability and the spatial structures of the sea surface temperature and precipitation over the tropical Pacific is improved in P2 compared to P1. Secondly, an examination of the potential predictability of the atmosphere, estimated by the ratio of the total variance to the variance due to the internal dynamics of the model atmosphere, reveals that the atmospheric potential predictability is significantly increased after 1980s which is mainly due to an increased influence of El Niño-Southern Oscillation signal over the North Pacific and North American regions. Thirdly, the long-term climate trends in the atmosphere are found to contribute, to some extent, to the increased seasonal forecast skill especially over the Eurasian regions. Finally, the improved ocean observations in P2 may provide better initial conditions for the coupled models’ seasonal forecast.  相似文献   

10.
We assessed current status of multi-model ensemble (MME) deterministic and probabilistic seasonal prediction based on 25-year (1980–2004) retrospective forecasts performed by 14 climate model systems (7 one-tier and 7 two-tier systems) that participate in the Climate Prediction and its Application to Society (CliPAS) project sponsored by the Asian-Pacific Economic Cooperation Climate Center (APCC). We also evaluated seven DEMETER models’ MME for the period of 1981–2001 for comparison. Based on the assessment, future direction for improvement of seasonal prediction is discussed. We found that two measures of probabilistic forecast skill, the Brier Skill Score (BSS) and Area under the Relative Operating Characteristic curve (AROC), display similar spatial patterns as those represented by temporal correlation coefficient (TCC) score of deterministic MME forecast. A TCC score of 0.6 corresponds approximately to a BSS of 0.1 and an AROC of 0.7 and beyond these critical threshold values, they are almost linearly correlated. The MME method is demonstrated to be a valuable approach for reducing errors and quantifying forecast uncertainty due to model formulation. The MME prediction skill is substantially better than the averaged skill of all individual models. For instance, the TCC score of CliPAS one-tier MME forecast of Niño 3.4 index at a 6-month lead initiated from 1 May is 0.77, which is significantly higher than the corresponding averaged skill of seven individual coupled models (0.63). The MME made by using 14 coupled models from both DEMETER and CliPAS shows an even higher TCC score of 0.87. Effectiveness of MME depends on the averaged skill of individual models and their mutual independency. For probabilistic forecast the CliPAS MME gains considerable skill from increased forecast reliability as the number of model being used increases; the forecast resolution also increases for 2 m temperature but slightly decreases for precipitation. Equatorial Sea Surface Temperature (SST) anomalies are primary sources of atmospheric climate variability worldwide. The MME 1-month lead hindcast can predict, with high fidelity, the spatial–temporal structures of the first two leading empirical orthogonal modes of the equatorial SST anomalies for both boreal summer (JJA) and winter (DJF), which account for about 80–90% of the total variance. The major bias is a westward shift of SST anomaly between the dateline and 120°E, which may potentially degrade global teleconnection associated with it. The TCC score for SST predictions over the equatorial eastern Indian Ocean reaches about 0.68 with a 6-month lead forecast. However, the TCC score for Indian Ocean Dipole (IOD) index drops below 0.40 at a 3-month lead for both the May and November initial conditions due to the prediction barriers across July, and January, respectively. The MME prediction skills are well correlated with the amplitude of Niño 3.4 SST variation. The forecasts for 2 m air temperature are better in El Niño years than in La Niña years. The precipitation and circulation are predicted better in ENSO-decaying JJA than in ENSO-developing JJA. There is virtually no skill in ENSO-neutral years. Continuing improvement of the one-tier climate model’s slow coupled dynamics in reproducing realistic amplitude, spatial patterns, and temporal evolution of ENSO cycle is a key for long-lead seasonal forecast. Forecast of monsoon precipitation remains a major challenge. The seasonal rainfall predictions over land and during local summer have little skill, especially over tropical Africa. The differences in forecast skills over land areas between the CliPAS and DEMETER MMEs indicate potentials for further improvement of prediction over land. There is an urgent need to assess impacts of land surface initialization on the skill of seasonal and monthly forecast using a multi-model framework.  相似文献   

11.
Daily output from the hindcasts by the National Centers for Environmental Prediction (NCEP) Climate Forecast System version 2 (CFSv2) is analyzed to understand the skill of forecasting atmospheric variability on quasi-biweekly (QBW) time scale. Eight dominant quasi-biweekly oscillation (QBWO) modes identified by the extended empirical orthogonal function analysis are focused. In the CFSv2, QBW variability exhibits a significant weakening tendency with lead time for all seasons. For most QBWO modes, the variance drops to only 50 % of the initial value at lead time of 11–15 days. QBW variability has better prediction skill in the winter hemisphere than in the summer hemisphere. Skillful forecast can reach about 10–15 days for most modes but those in the winter hemisphere have better forecast skills. Among the eight QBWO modes, the North Pacific mode and the South Pacific (SP) mode have the highest forecast skills while the Asia–Pacific mode and the Central American mode have the lowest skills. For the Asia–Pacific and Central American modes, the forecasted QBWO phase shows an obvious eastward shift with increase in lead time compared to observations, indicating a smaller propagating speed. However, the predicted feature for the SP mode is more realistic. Air–sea coupling on the QBW time scale is perhaps responsible for the different prediction skills for different QBWO modes. In addition, most QBWO modes have better forecasting skills in El Niño years than in La Niña years. Different dynamical mechanisms for various QBWO modes may be partially responsible for the differences in prediction skill among different QBWO modes.  相似文献   

12.
This study introduces a new global climate model--the Integrated Climate Model (ICM)--developed for the seasonal prediction of East Asian-western North Pacific (EA-WNP) climate by the Center for Monsoon System Research at the Institute of Atmospheric Physics (CMSR, IAP), Chinese Academy of Sciences. ICM integrates ECHAM5 and NEMO2.3 as its atmospheric and oceanic components, respectively, using OASIS3 as the coupler. The simulation skill of ICM is evaluated here, including the simulated climatology, interannual variation, and the influence of E1 Nifio as one of the most important factors on EA-WNP climate. ICM successfully reproduces the distribution of sea surface temperature (SST) and precipitation without climate shift, the seasonal cycle of equatorial Pacific SST, and the precipitation and circulation of East Asian summer monsoon. The most prominent biases of ICM are the excessive cold tongue and unrealistic westward phase propagation of equatorial Pacific SST. The main interannual variation of the tropical Pacific SST and EA-WNP climate E1 Nifio and the East Asia-Pacific Pattern--are also well simulated in ICM, with realistic spatial pattern and period. The simulated E1 Nifio has significant impact on EA-WNP climate, as in other models. The assessment shows ICM should be a reliable model for the seasonal prediction of EA-WNP climate.  相似文献   

13.
Twenty-one-year hindcasts of sea surface temperature (SST) anomalies in the tropical Pacific were performed to validate the influence of ocean subsurface entrainment on SST prediction.A new hybrid coupled model was used that considered the entrainment of subsurface temperature anomalies into the sea surface.The results showed that predictions were improved significantly in the new coupled model.The predictive correlation skill increased by about 0.2 at a lead time of 9 months,and the root-mean-square (RMS) errors were decreased by nearly 0.2°C in general.A detailed analysis of the 1997-98 El Nio hindcast showed that the new model was able to predict the onset,peak (both time and amplitude),and decay of the 1997-98 strong El Nio event up to a lead time of one year,factors that are not represented well by many other forecast systems.This implies,in terms of prediction,that subsurface anomalies and their impact on the SST are one of the controlling factors in ENSO cycles.Improving the presentation of such effects in models would increase the forecast skill.  相似文献   

14.
The simulation and prediction of extreme heat over Australia on intraseasonal timescales in association with the El Niño–Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) is assessed using the Bureau of Meteorology’s Predictive Ocean Atmosphere Model for Australia (POAMA). The analysis is based on hindcasts over 1981–2010 and focuses on weeks 2 and 3 of the forecasts, i.e. beyond a typical weather forecast. POAMA simulates the observed increased probabilities of extreme heat during El Niño events, focussed over south eastern and southern Australia in SON and over northern Australia in DJF, and the decreased probabilities of extreme heat during La Niña events, although the magnitude of these relationships is smaller than observed. POAMA also captures the signal of increased probabilities of extreme heat during positive phases of the IOD across southern Australia in SON and over Western Australia in JJA, but again underestimates the strength of the relationship. Shortcomings in the simulation of extreme heat in association with ENSO and the IOD over southern Australia may be linked to deficiencies in the teleconnection with Indian Ocean SSTs. Forecast skill for intraseasonal episodes of extreme heat is assessed using the Symmetric Extremal Dependence Index. Skill is highest over northern Australia in MAM and JJA and over south-eastern and eastern Australia in JJA and SON, whereas skill is generally poor over south-west Western Australia. Results show there are windows of forecast opportunity related to the state of ENSO and the IOD, where the skill in predicting extreme temperatures over certain regions is increased.  相似文献   

15.
Liu  Xueyuan  Köhl  Armin  Stammer  Detlef  Masuda  Shuhei  Ishikawa  Yoichi  Mochizuki  Takashi 《Climate Dynamics》2017,49(3):1061-1075

We investigated the influence of dynamical in-consistency of initial conditions on the predictive skill of decadal climate predictions. The investigation builds on the fully coupled global model “Coupled GCM for Earth Simulator” (CFES). In two separate experiments, the ocean component of the coupled model is full-field initialized with two different initial fields from either the same coupled model CFES or the GECCO2 Ocean Synthesis while the atmosphere is initialized from CFES in both cases. Differences between both experiments show that higher SST forecast skill is obtained when initializing with coupled data assimilation initial conditions (CIH) instead of those from GECCO2 (GIH), with the most significant difference in skill obtained over the tropical Pacific at lead year one. High predictive skill of SST over the tropical Pacific seen in CIH reflects the good reproduction of El Niño events at lead year one. In contrast, GIH produces additional erroneous El Niño events. The tropical Pacific skill differences between both runs can be rationalized in terms of the zonal momentum balance between the wind stress and pressure gradient force, which characterizes the upper equatorial Pacific. In GIH, the differences between the oceanic and atmospheric state at initial time leads to imbalance between the zonal wind stress and pressure gradient force over the equatorial Pacific, which leads to the additional pseudo El Niño events and explains reduced predictive skill. The balance can be reestablished if anomaly initialization strategy is applied with GECCO2 initial conditions and improved predictive skill in the tropical Pacific is observed at lead year one. However, initializing the coupled model with self-consistent initial conditions leads to the highest skill of climate prediction in the tropical Pacific by preserving the momentum balance between zonal wind stress and pressure gradient force along the equatorial Pacific.

  相似文献   

16.
Wansuo Duan  Ben Tian  Hui Xu 《Climate Dynamics》2014,43(5-6):1677-1692
In this paper, an optimal forcing vector (OFV) approach is proposed. The OFV offsets tendency errors and optimizes the agreement of the model simulation with observation. We apply the OFV approach to the well-known Zebiak–Cane model and simulate several observed eastern Pacific (EP) El Niño and central Pacific (CP) El Niño events during 1980–2004. It is found that the Zebiak–Cane model with a proper initial condition often reproduces the EP-El Niño events; however, the Zebiak–Cane model fails to reproduce the CP-El Niño events. The model may be much more influenced by model errors when simulating the CP-El Nino events. As expected, when we use the OFV to correct the Zebiak–Cane model, the model reproduces the three CP-El Niño events well. Furthermore, the simulations of the corresponding winds and thermocline depths are also acceptable. In particular, the thermocline depth simulations for the three CP-El Niño events lead us to believe that the discharge process of the equatorial heat content associated with the CP-El Niño is not efficient and emphasizes the role of the zonal advection in the development of the CP-El Nino events. The OFVs associated with the three CP-El Niño events often exhibit a sea surface temperature anomaly (SSTA) tendency with positive anomalies in the equatorial eastern Pacific; therefore, the SST tendency errors occurring in the equatorial eastern Pacific may dominate the uncertainties of the Zebiak–Cane model while simulating CP-El Nino events. A further investigation demonstrates that one of the model errors offset by the OFVs is of a pattern similar to the SST cold-tongue cooling mode, which may then provide one of the climatological conditions for the frequent occurrence of CP-El Nino events. The OFV may therefore be a useful tool for correcting forecast models and then for helping improve the forecast skill of the models.  相似文献   

17.
Long-lead precipitation forecasts for 1–4 seasons ahead are usually difficult in dynamical climate models due to the model deficiencies and the limited persistence of initial signals. But, these forecasts could be empirically improved by statistical approaches. In this study, to improve the seasonal precipitation forecast over the southern China (SC), the statistical downscaling (SD) models are built by using the predictors of atmospheric circulation and sea surface temperature (SST) simulated by the Beijing Climate Center Climate System Model version 1.1 m (BCC_CSM1.1 m). The different predictors involved in each SD model is selected based on both its close relationship with the target seasonal precipitation and its reasonable prediction skill in the BCC_CSM1.1 m. Cross and independent validations show the superior performance of the SD models, relative to the BCC_CSM1.1 m. The temporal correlation coefficient of SD models could reach > 0.4, exceeding the 95 % confidence level. The SC precipitation index can be much better forecasted by the SD models than by the BCC_CSM1.1 m in terms of the interannual variability. In addition, the errors of the precipitation forecast in all four seasons are significantly reduced over most of SC in the SD models. For the 2015/2016 strong El Niño event, the SD models outperform the dynamical BCC_CSM1.1 m model on the spatial and regional-average precipitation anomalies, mostly due to the effective SST predictor in the SD models and the weak response of the SC precipitation to El Niño-related SST anomalies in the BCC_CSM1.1 m.  相似文献   

18.
The importance of initializing atmospheric intra-seasonal (stochastic) variations for prediction of the onset of the 1997/1998 El Ni?o is examined using the Australian Bureau of Meteorology coupled seasonal forecast model. A suite of 9-month forecasts was initialized on the 1st December 1996. Observed ocean initial conditions were used together with five different atmospheric initial conditions that sample a range of possible initial states of intra-seasonal (stochastic) variability, especially the Madden-Julian Oscillation (MJO), which is considered the primary stochastic variability of relevance to El Ni?o evolution. The atmospheric initial states were generated from a suite of atmosphere-only integrations forced by observed sea surface temperatures (SST). To the extent that low frequency variability of the tropical atmosphere is forced by slow variations in SST, these atmospheric states should all represent realistic low frequency atmospheric variability that was present in December 1996. However, to the extent that intra-seasonal variability is not constrained by SST, they should capture a range of intra-seasonal states, especially variations in the activity, phase and amplitude of the MJO. For each of these five states, a 20-member ensemble of coupled model forecasts was generated by the addition of small random perturbations to the SST field at the initial time. The ensemble mean from all five sets of forecasts resulted in El Ni?o but three of the sets produced substantially greater warming by months 4?C5 in the NINO3.4 region compared to the other two. The warmer group stemmed from stronger intra-seasonal westerly wind anomalies associated with the MJO that propagated eastward into the central Pacific during the first 1?C2?months of the forecast. These were largely absent in the colder group; the weakest of the colder group developed strong easterly wind anomalies, relative to the grand ensemble mean, that propagated into the central Pacific early in the forecast, thereby generating significantly weaker downwelling Kelvin waves in comparison to the warmer group. The strong reduction in downwelling Kelvin waves in the weakest case acted to limit the warming in the eastern Pacific, resulting in a ??Modoki?? type El Ni?o that is more focused in the central Pacific. Our results suggest that the intra-seasonal stochastic component of the atmospheric initial condition has an important and potentially predictable impact on the forecasts of the initial warming and flavour of the 1997/1998 El Ni?o. However, to the extent that atmospheric intra-seasonal variability is not predictable beyond a month or two, these results imply a limit to the accuracy with which the strength and perhaps the spatial distribution of an El Ni?o can ultimately be predicted. These results do not preclude a predictable role of the MJO and other intra-seasonal stochastic variability at longer lead times if some aspects of the stochastic variability are preconditioned by the evolving state of El Ni?o or other low frequency boundary forcing.  相似文献   

19.
The retrospective forecast skill of three coupled climate models (NCEP CFS, GFDL CM2.1, and CAWCR POAMA 1.5) and their multi-model ensemble (MME) is evaluated, focusing on the Northern Hemisphere (NH) summer upper-tropospheric circulation along with surface temperature and precipitation for the 25-year period of 1981–2005. The seasonal prediction skill for the NH 200-hPa geopotential height basically comes from the coupled models’ ability in predicting the first two empirical orthogonal function (EOF) modes of interannual variability, because the models cannot replicate the residual higher modes. The first two leading EOF modes of the summer 200-hPa circulation account for about 84% (35.4%) of the total variability over the NH tropics (extratropics) and offer a hint of realizable potential predictability. The MME is able to predict both spatial and temporal characteristics of the first EOF mode (EOF1) even at a 5-month lead (January initial condition) with a pattern correlation coefficient (PCC) skill of 0.96 and a temporal correlation coefficient (TCC) skill of 0.62. This long-lead predictability of the EOF1 comes mainly from the prolonged impacts of El Niño-Southern Oscillation (ENSO) as the EOF1 tends to occur during the summer after the mature phase of ENSO. The second EOF mode (EOF2), on the other hand, is related to the developing ENSO and also the interdecadal variability of the sea surface temperature over the North Pacific and North Atlantic Ocean. The MME also captures the EOF2 at a 5-month lead with a PCC skill of 0.87 and a TCC skill of 0.67, but these skills are mainly obtained from the zonally symmetric component of the EOF2, not the prominent wavelike structure, the so-called circumglobal teleconnection (CGT) pattern. In both observation and the 1-month lead MME prediction, the first two leading modes are accompanied by significant rainfall and surface air temperature anomalies in the continental regions of the NH extratropics. The MME’s success in predicting the EOF1 (EOF2) is likely to lead to a better prediction of JJA precipitation anomalies over East Asia and the North Pacific (central and southern Europe and western North America).  相似文献   

20.
Forecast skill of the APEC Climate Center (APCC) Multi-Model Ensemble (MME) seasonal forecast system in predicting two main types of El Niño-Southern Oscillation (ENSO), namely canonical (or cold tongue) and Modoki ENSO, and their regional climate impacts is assessed for boreal winter. The APCC MME is constructed by simple composite of ensemble forecasts from five independent coupled ocean-atmosphere climate models. Based on a hindcast set targeting boreal winter prediction for the period 1982–2004, we show that the MME can predict and discern the important differences in the patterns of tropical Pacific sea surface temperature anomaly between the canonical and Modoki ENSO one and four month ahead. Importantly, the four month lead MME beats the persistent forecast. The MME reasonably predicts the distinct impacts of the canonical ENSO, including the strong winter monsoon rainfall over East Asia, the below normal rainfall and above normal temperature over Australia, the anomalously wet conditions across the south and cold conditions over the whole area of USA, and the anomalously dry conditions over South America. However, there are some limitations in capturing its regional impacts, especially, over Australasia and tropical South America at a lead time of one and four months. Nonetheless, forecast skills for rainfall and temperature over East Asia and North America during ENSO Modoki are comparable to or slightly higher than those during canonical ENSO events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号