首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
To reveal the steric sea level change in 20th century historical climate simulations and future climate change projections under the IPCC’s Representative Concentration Pathway 8.5 (RCP8.5) scenario, the results of two versions of LASG/IAP’s Flexible Global Ocean-Atmosphere-Land System model (FGOALS) are analyzed. Both models reasonably reproduce the mean dynamic sea level features, with a spatial pattern correlation coefficient of 0.97 with the observation. Characteristics of steric sea level changes in the 20th century historical climate simulations and RCP8.5 scenario projections are investigated. The results show that, in the 20th century, negative trends covered most parts of the global ocean. Under the RCP8.5 scenario, global-averaged steric sea level exhibits a pronounced rising trend throughout the 21st century and the general rising trend appears in most parts of the global ocean. The magnitude of the changes in the 21st century is much larger than that in the 20th century. By the year 2100, the global-averaged steric sea level anomaly is 18 cm and 10 cm relative to the year 1850 in the second spectral version of FGOALS (FGOALS-s2) and the second grid-point version of FGOALS (FGOALS-g2), respectively. The separate contribution of the thermosteric and halosteric components from various ocean layers is further evaluated. In the 20th century, the steric sea level changes in FGOALS-s2 (FGOALS-g2) are largely attributed to the thermosteric (halosteric) component relative to the pre-industrial control run. In contrast, in the 21st century, the thermosteric component, mainly from the upper 1000 m, dominates the steric sea level change in both models under the RCP8.5 scenario. In addition, the steric sea level change in the marginal sea of China is attributed to the thermosteric component.  相似文献   

2.
The MIT 2D climate model is used to make probabilistic projections for changes in global mean surface temperature and for thermosteric sea level rise under a variety of forcing scenarios. The uncertainties in climate sensitivity and rate of heat uptake by the deep ocean are quantified by using the probability distributions derived from observed twentieth century temperature changes. The impact on climate change projections of using the smallest and largest estimates of twentieth century deep ocean warming is explored. The impact is large in the case of global mean thermosteric sea level rise. In the MIT reference (“business as usual”) scenario the median rise by 2100 is 27 and 43 cm in the respective cases. The impact on increases in global mean surface air temperature is more modest, 4.9 and 3.9 C in the two respective cases, because of the correlation between climate sensitivity and ocean heat uptake required by twentieth century surface and upper air temperature changes. The results are also compared with the projections made by the IPCC AR4’s multi-model ensemble for several of the SRES scenarios. The multi-model projections are more consistent with the MIT projections based on the largest estimate of ocean warming. However, the range for the rate of heat uptake by the ocean suggested by the lowest estimate of ocean warming is more consistent with the range suggested by the twentieth century changes in surface and upper air temperatures, combined with the expert prior for climate sensitivity.  相似文献   

3.
For many locations around the globe some of the most severe weather is associated with outbreaks of cold air over relatively warm oceans, referred to here as marine cold-air outbreaks (MCAOs). Drawing on empirical evidence, an MCAO indicator is defined here as the difference between the skin potential temperature, which over open ocean is the sea surface potential temperature, and the potential temperature at 700 hPa. Rare MCAOs are defined as the 95th percentile of this indicator. Climate model data that have been provided as part of the Intergovernmental Panel on Climate Change (IPCC) Assessment Report Four (AR4) were used to assess the models’ projections for the twenty-first century and their ability to represent the observed climatology of MCAOs. The ensemble average of the models broadly captures the observed spatial distribution of the strength of MCAOs. However, there are some significant differences between the models and observations, which are mainly associated with simulated biases of the underlying sea ice, such as excessive sea-ice extent over the Barents Sea in most of the models. The future changes of the strength of MCAOs vary significantly across the Northern Hemisphere. The largest projected weakening of MCAOs is over the Labrador Sea. Over the Nordic seas the main region of strong MCAOs will move north and weaken slightly as it moves away from the warm tongue of the Gulf Stream in the Norwegian Sea. Over the Sea of Japan there is projected to be only a small weakening of MCAOs. The implications of the results for mesoscale weather systems that are associated with MCAOs, namely polar lows and arctic fronts, are discussed.  相似文献   

4.
Most state-of-the art global coupled models simulate a weakening of the Atlantic meridional overturning circulation (MOC) in climate change scenarios but the mechanisms leading to this weakening are still being debated. The third version of the CNRM (Centre National de Recherches Météorologiques) global atmosphere-ocean-sea ice coupled model (CNRM-CM3) was used to conduct climate change experiments for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4). The analysis of the A1B scenario experiment shows that global warming leads to a slowdown of North Atlantic deep ocean convection and thermohaline circulation south of Iceland. This slowdown is triggered by a freshening of the Arctic Ocean and an increase in freshwater outflow through Fram Strait. Sea ice melting in the Barents Sea induces a local amplification of the surface warming, which enhances the cyclonic atmospheric circulation around Spitzberg. This anti-clockwise circulation forces an increase in Fram Strait outflow and a simultaneous increase in ocean transport of warm waters toward the Barents Sea, favouring further sea ice melting and surface warming in the Barents Sea. Additionally, the retreat of sea ice allows more deep water formation north of Iceland and the thermohaline circulation strengthens there. The transport of warm and saline waters toward the Barents Sea is further enhanced, which constitutes a second positive feedback.  相似文献   

5.
State-of-the-art coupled general circulation models(CGCMs)are used to predict ocean heat uptake(OHU)and sealevel change under global warming.However,the projections of different models vary,resulting in high uncertainty.Much of the inter-model spread is driven by responses to surface heat perturbations.This study mainly focuses on the response of the ocean to a surface heat flux perturbation F,as prescribed by the Flux-Anomaly-Forced Model Intercomparison Project(FAFMIP).The results of ocean model were compared with those of a CGCM with the same ocean component.On the global scale,the changes in global mean temperature,ocean heat content(OHC),and steric sea level(SSL)simulated in the OGCM are generally consistent with CGCM simulations.Differences in changes in ocean temperature,OHC,and SSL between the two models primarily occur in the Arctic and Atlantic Oceans(AA)and the Southern Ocean(SO)basins.In addition to the differences in surface heat flux anomalies between the two models,differences in heat exchange between basins also play an important role in the inconsistencies in ocean climate changes in the AA and SO basins.These discrepancies are largely due to both the larger initial value and the greater weakening change of the Atlantic meridional overturning circulation(AMOC)in CGCM.The greater weakening of the AMOC in the CGCM is associated with the atmosphere–ocean feedback and the lack of a restoring salinity boundary condition.Furthermore,differences in surface salinity boundary conditions between the two models contribute to discrepancies in SSL changes.  相似文献   

6.
Abstract

Key physical variables for the Northwest Atlantic (NWA) are examined in the “historical” and two future Representative Concentration Pathway (RCP) simulations of six Earth System Models (ESMs) available through Phase 5 of the Climate Model Intercomparison Project (CMIP5). The variables are air temperature, sea-ice concentration, surface and subsurface ocean temperature and salinity, and ocean mixed-layer depth. Comparison of the historical simulations with observations indicates that the models provide a good qualitative and approximate quantitative representation of many of the large-scale climatological features in the NWA (e.g., annual cycles and spatial patterns). However, the models represent the detailed structure of some important NWA ocean and ice features poorly, such that caution is needed in the use of their projected future changes. Monthly “climate change” fields between the bidecades 1986–2005 and 2046–2065 are described, using ensemble statistics of the changes across the six ESMs. The results point to warmer air temperatures everywhere, warmer surface ocean temperatures in most areas, reduced sea-ice extent and, in most areas, reduced surface salinities and mixed-layer depths. However, the magnitudes of the inter-model differences in the projected changes are comparable to those of the ensemble-mean changes in many cases, such that robust quantitative projections are generally not possible for the NWA.  相似文献   

7.
The Flux-Anomaly-Forced Model Intercomparison Project(FAFMIP) is an endorsed Model Intercomparison Project in phase 6 of the Coupled Model Intercomparison Project(CMIP6). The goal of FAFMIP is to investigate the spread in the atmosphere–ocean general circulation model projections of ocean climate change forced by increased CO2, including the uncertainties in the simulations of ocean heat uptake, global mean sea level rise due to ocean thermal expansion and dynamic sea level change due...  相似文献   

8.
Wide ranging climate changes are expected in the Arctic by the end of the 21st century, but projections of the size of these changes vary widely across current global climate models. This variation represents a large source of uncertainty in our understanding of the evolution of Arctic climate. Here we systematically quantify and assess the model uncertainty in Arctic climate changes in two CO2 doubling experiments: a multimodel ensemble (CMIP3) and an ensemble constructed using a single model (HadCM3) with multiple parameter perturbations (THC-QUMP). These two ensembles allow us to assess the contribution that both structural and parameter variations across models make to the total uncertainty and to begin to attribute sources of uncertainty in projected changes. We find that parameter uncertainty is an major source of uncertainty in certain aspects of Arctic climate. But also that uncertainties in the mean climate state in the 20th century, most notably in the northward Atlantic ocean heat transport and Arctic sea ice volume, are a significant source of uncertainty for projections of future Arctic change. We suggest that better observational constraints on these quantities will lead to significant improvements in the precision of projections of future Arctic climate change.  相似文献   

9.
For all of the IPCC Special Report on Emission Scenarios (SRESs), sea level is projected to rise globally. However, sea level changes are not expected to be geographically uniform, with many regions departing significantly from the global average. Some of regional distributions of sea level changes can be explained by projected changes of ocean density and dynamics. In this study, with 11 available Coupled Model Intercomparison Project Phase 3 climate models under the SRES A1B, we identify an asymmetric feature (not recognised in previous studies) of projected subtropical gyre circulation changes and associated sea level changes between the North and South Pacific, through analysing projected changes of ocean dynamic height (with reference to 2,000 db), depth integrated steric height, Sverdrup stream function, surface wind stress and its curl. Poleward expansion of the subtropical gyres is projected in the upper ocean for both North and South Pacific. Contrastingly, the subtropical gyre circulation is projected to spin down by about 20 % in the subsurface North Pacific from the main thermocline around 400 m to at least 2,000 m, while the South Pacific subtropical gyre is projected to strengthen by about 25 % and expand poleward in the subsurface to at least 2,000 m. This asymmetrical distribution of the projected subtropical gyre circulation changes is directly related to differences in projected changes of temperature and salinity between the North and South Pacific, forced by surface heat and freshwater fluxes, and surface wind stress changes.  相似文献   

10.
Sea level change predicted by the CMIP5 atmosphere–ocean general circulation models (AOGCMs) is not spatially homogeneous. In particular, the sea level change in the North Atlantic is usually characterised by a meridional dipole pattern with higher sea level rise north of 40°N and lower to the south. The spread among models is also high in that region. Here we evaluate the role of surface buoyancy fluxes by carrying out simulations with the FAMOUS low-resolution AOGCM forced by surface freshwater and heat flux changes from CO2-forced climate change experiments with CMIP5 AOGCMs, and by a standard idealised surface freshwater flux applied in the North Atlantic. Both kinds of buoyancy flux change lead to the formation of the sea level dipole pattern, although the effect of the heat flux has a greater magnitude, and is the main cause of the spread of results among the CMIP5 models. By using passive tracers in FAMOUS to distinguish between additional and redistributed buoyancy, we show that the enhanced sea level rise north of 40°N is mainly due to the direct steric effect (the reduction of sea water density) caused by adding heat or freshwater locally. The surface buoyancy forcing also causes a weakening of the Atlantic meridional overturning circulation, and the consequent reduction of the northward ocean heat transport imposes a negative tendency on sea level rise, producing the reduced rise south of 40°N. However, unlike previous authors, we find that this indirect effect of buoyancy forcing is generally less important than the direct one, except in a narrow band along the east coast of the US, where it plays a major role and leads to sea level rise, as found by previous authors.  相似文献   

11.
Toward a physically plausible upper bound of sea-level rise projections   总被引:2,自引:1,他引:2  
Anthropogenic sea-level rise (SLR) causes considerable risks. Designing a sound SLR risk-management strategy requires careful consideration of decision-relevant uncertainties such as the reasonable upper bound of future SLR. The recent Intergovernmental Panel on Climate Change’s (IPCC) Fourth Assessment reported a likely upper SLR bound in the year 2100 near 0.6 m (meter). More recent studies considering semi-empirical modeling approaches and kinematic constraints on glacial melting suggest a reasonable 2100 SLR upper bound of approximately 2 m. These recent studies have broken important new ground, but they largely neglect uncertainties surrounding thermal expansion (thermosteric SLR) and/or observational constraints on ocean heat uptake. Here we quantify the effects of key parametric uncertainties and observational constraints on thermosteric SLR projections using an Earth system model with a dynamic three-dimensional ocean, which provides a mechanistic representation of deep ocean processes and heat uptake. Considering these effects nearly doubles the contribution of thermosteric SLR compared to previous estimates and increases the reasonable upper bound of 2100 SLR projections by 0.25 m. As an illustrative example of the effect of overconfidence, we show how neglecting thermosteric uncertainty in projections of the SLR upper bound can considerably bias risk analysis and hence the design of adaptation strategies. For conditions close to the Port of Los Angeles, the 0.25 m increase in the reasonable upper bound can result in a flooding-risk increase by roughly three orders of magnitude. Results provide evidence that relatively minor underestimation of the upper bound of projected SLR can lead to major downward biases of future flooding risks.  相似文献   

12.
In this study, projections of seasonal means and extremes of ocean wave heights were made using projections of sea level pressure fields conducted with three global climate models for three forcing-scenarios. For each forcing-scenario, the three climate models’ projections were combined to estimate the multi-model mean projection of climate change. The relative importance of the variability in the projected wave heights that is due to the forcing prescribed in a forcing-scenario was assessed on the basis of ensemble simulations conducted with the Canadian coupled climate model CGCM2. The uncertainties in the projections of wave heights that are due to differences among the climate models and/or among the forcing-scenarios were characterized. The results show that the multi-model mean projection of climate change has patterns similar to those derived from using the CGCM2 projections alone, but the magnitudes of changes are generally smaller in the boreal oceans but larger in the region nearby the Antarctic coastal zone. The forcing-induced variance (as simulated by CGCM2) was identified to be of substantial magnitude in some areas in all seasons. The uncertainty due to differences among the forcing-scenarios is much smaller than that due to differences among the climate models, although it was identified to be statistically significant in most areas of the oceans (this indicates that different forcing conditions do make notable differences in the wave height climate change projection). The sum of the model and forcing-scenario uncertainties is smaller in the JFM and AMJ seasons than in other seasons, and it is generally small in the mid-high latitudes and large in the tropics. In particular, some areas in the northern oceans were projected to have large changes by all the three climate models.  相似文献   

13.
The recent increase in the rate of the Greenland ice sheet melting has raised with urgency the question of the impact of such a melting on the climate. As former model projections, based on a coarse representation of the melting, show very different sensitivity to this melting, it seems necessary to consider a multi-model ensemble to tackle this question. Here we use five coupled climate models and one ocean-only model to evaluate the impact of 0.1 Sv (1 Sv = 106 m3/s) of freshwater equally distributed around the coast of Greenland during the historical era 1965–2004. The ocean-only model helps to discriminate between oceanic and coupled responses. In this idealized framework, we find similar fingerprints in the fourth decade of hosing among the models, with a general weakening of the Atlantic Meridional Overturning Circulation (AMOC). Initially, the additional freshwater spreads along the main currents of the subpolar gyre. Part of the anomaly crosses the Atlantic eastward and enters into the Canary Current constituting a freshwater leakage tapping the subpolar gyre system. As a consequence, we show that the AMOC weakening is smaller if the leakage is larger. We argue that the magnitude of the freshwater leakage is related to the asymmetry between the subpolar-subtropical gyres in the control simulations, which may ultimately be a primary cause for the diversity of AMOC responses to the hosing in the multi-model ensemble. Another important fingerprint concerns a warming in the Nordic Seas in response to the re-emergence of Atlantic subsurface waters capped by the freshwater in the subpolar gyre. This subsurface heat anomaly reaches the Arctic where it emerges and induces a positive upper ocean salinity anomaly by introducing more Atlantic waters. We found similar climatic impacts in all the coupled ocean–atmosphere models with an atmospheric cooling of the North Atlantic except in the region around the Nordic Seas and a slight warming south of the equator in the Atlantic. This meridional gradient of temperature is associated with a southward shift of the tropical rains. The free surface models also show similar sea-level fingerprints notably with a comma-shape of high sea-level rise following the Canary Current.  相似文献   

14.
A simple idealized atmosphere–ocean climate model and an ensemble Kalman filter are used to explore different coupled ensemble data assimilation strategies. The model is a low-dimensional analogue of the North Atlantic climate system, involving interactions between large-scale atmospheric circulation and ocean states driven by the variability of the Atlantic meridional overturning circulation (MOC). Initialization of the MOC is assessed in a range of experiments, from the simplest configuration consisting of forcing the ocean with a known atmosphere to performing fully coupled ensemble data assimilation. “Daily” assimilation (that is, at the temporal frequency of the atmospheric observations) is contrasted with less frequent assimilation of time-averaged observations. Performance is also evaluated under scenarios in which ocean observations are limited to the upper ocean or are non-existent. Results show that forcing the idealized ocean model with atmospheric analyses is inefficient at recovering the slowly evolving MOC. On the other hand, daily assimilation rapidly leads to accurate MOC analyses, provided a comprehensive set of oceanic observations is available for assimilation. In the absence of sufficient observations in the ocean, the assimilation of time-averaged atmospheric observations proves to be more effective for MOC initialization, including the case where only atmospheric observations are available.  相似文献   

15.
A preindustrial climate experiment was conducted with the third version of the CNRM global atmosphere–ocean–sea ice coupled model (CNRM-CM3) for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4). This experiment is used to investigate the main physical processes involved in the variability of the North Atlantic ocean convection and the induced variability of the Atlantic meridional overturning circulation (MOC). Three ocean convection sites are simulated, in the Labrador, Irminger and Greenland–Iceland–Norwegian (GIN) Seas in agreement with observations. A mechanism linking the variability of the Arctic sea ice cover and convection in the GIN Seas is highlighted. Contrary to previous suggested mechanisms, in CNRM-CM3 the latter is not modulated by the variability of freshwater export through Fram Strait. Instead, the variability of convection is mainly driven by the variability of the sea ice edge position in the Greenland Sea. In this area, the surface freshwater balance is dominated by the freshwater input due to the melting of sea ice. The ice edge position is modulated either by northwestward geostrophic current anomalies or by an intensification of northerly winds. In the model, stronger than average northerly winds force simultaneous intense convective events in the Irminger and GIN Seas. Convection interacts with the thermohaline circulation on timescales of 5–10 years, which translates into MOC anomalies propagating southward from the convection sites.  相似文献   

16.
Ocean dynamics play a key role in the climate system, by redistributing heat and freshwater. The uncertainty of how these processes are represented in climate models, and how this uncertainty affects future climate projections can be investigated using perturbed physics ensembles of global circulation models (GCMs). Techniques such as flux adjustments should be avoided since they can impact the sensitivity of the ensemble to the imposed forcing. In this study a method for developing an coupled ensemble with a GCM that does not use flux adjustment is presented. The ensemble is constrained by using information from a prior ensemble with a mixed layer ocean coupled to an atmosphere GCM, to reduce drifts in the coupled ensemble. Constraints on parameter perturbations are derived by using observational constraints on surface temperature, and top of the atmosphere radiative fluxes. As an example of such an ensemble developed with this methodology, uncertainty in response of the meridional overturning circulation (MOC) to increased CO2 concentrations is investigated. The ensemble mean MOC strength is 17.1?Sv and decreases by 2.1?Sv when greenhouse gas concentrations are doubled. No rapid changes or shutdown of the MOC are seen in any of the ensemble members. There is a strong negative relationship between global mean temperature and MOC strength across the ensemble which is not seen in a multimodel ensemble. A positive relationship between climate sensitivity and the decrease of MOC strength is also seen.  相似文献   

17.
Anthropogenic climate forcing will cause the global mean sea level to rise over the 21st century.However,regional sea level is expected to vary across ocean basins,superimposed by the influence of natural internal climate variability.Here,we address the detection of dynamic sea level(DSL)changes by combining the perspectives of a single and a multimodel ensemble approach(the 50-member CanESM5 and a 27-model ensemble,respectively,all retrieved from the CMIP6 archive),under three CMIP6 projected scenarios:SSP1-2.6,SSP3-7.0 and SSP5-8.5.The ensemble analysis takes into account four key metrics:signal(S),noise(N),S/N ratio,and time of emergence(ToE).The results from both sets of ensembles agree in the fact that regions with higher S/N(associated with smaller uncertainties)also reflect earlier ToEs.The DSL signal is projected to emerge in the Southern Ocean,Southeast Pacific,Northwest Atlantic,and the Arctic.Results common for both sets of ensemble simulations show that while S progressively increases with increased projected emissions,N,in turn,does not vary substantially among the SSPs,suggesting that uncertainty arising from internal climate variability has little dependence on changes in the magnitude of external forcing.Projected changes are greater and quite similar for the scenarios SSP3-7.0 and SSP5-8.5 and considerably smaller for the SSP1-2.6,highlighting the importance of public policies towards lower emission scenarios and of keeping emissions below a certain threshold.  相似文献   

18.
Atmosphere–ocean interactions are known to dominate seasonal to decadal sea level variability in the southeastern North Sea. In this study an atmospheric proxy for the observed sea level variability in the German Bight is introduced. Monthly mean sea level (MSL) time series from 13 tide gauges located in the German Bight and one virtual station record are evaluated in comparison to sea level pressure fields over the North Atlantic and Europe. A quasi-linear relationship between MSL in the German Bight and sea level pressure over Scandinavia and the Iberian Peninsula is found. This relationship is used (1) to evaluate the atmospheric contribution to MSL variability in hindcast experiments over the period from 1871–2008 with data from the twentieth century reanalysis v2 (20CRv2), (2) to isolate the high frequency meteorological variability of MSL from longer-term changes, (3) to derive ensemble projections of the atmospheric contribution to MSL until 2100 with eight different coupled global atmosphere–ocean models (AOGCM’s) under the A1B emission scenario and (4) two additional projections for one AOGCM (ECHAM5/MPI-OM) under the B1 and A2 emission scenarios. The hindcast produces a reasonable good reconstruction explaining approximately 80 % of the observed MSL variability over the period from 1871 to 2008. Observational features such as the divergent seasonal trend development in the second half of the twentieth century, i.e. larger trends from January to March compared to the rest of the year, and regional variations along the German North Sea coastline in trends and variability are well described. For the period from 1961 to 1990 the Kolmogorov-Smirnow test is used to evaluate the ability of the eight AOGCMs to reproduce the observed statistical properties of MSL variations. All models are able to reproduce the statistical distribution of atmospheric MSL. For the target year 2100 the models point to a slight increase in the atmospheric component of MSL with generally larger changes during winter months (October–March). Largest MSL changes in the order of ~5–6 cm are found for the high emission scenario A2, whereas the moderate B1 and intermediate A1B scenarios lead to moderate changes in the order of ~3 cm. All models point to an increasing atmospheric contribution to MSL in the German Bight, but the uncertainties are considerable, i.e. model and scenario uncertainties are in the same order of magnitude.  相似文献   

19.
Recent observations suggest Antarctic Intermediate Water (AAIW) properties are changing. The impact of such variations is explored using idealised perturbation experiments with a coupled climate model, HadCM3. AAIW properties are altered between 10 and 20°S in the South Atlantic, maintaining constant potential density. The perturbed AAIW remains subsurface in the South Atlantic, but as it moves northwards, it surfaces and interacts with the atmosphere leading to density anomalies due to heat exchanges. For a cooler, fresher AAIW, there is a significant decrease in the mean North Atlantic sea surface temperature (SST), of up to 1°C, during years 51?C100. In the North Atlantic Current region there are persistent cold anomalies from 2,000?m depth to the surface, and in the overlying atmosphere. Atmospheric surface pressure increases over the mid-latitude Atlantic, and precipitation decreases over northwest Africa and southwest Europe. Surface heat flux anomalies show that these impacts are caused by changes in the ocean rather than atmospheric forcing. The SST response is associated with significant changes in the Atlantic meridional overturning circulation (MOC). After 50?years there is a decrease in the MOC that persists for the remainder of the simulation, resulting from changes in the column-averaged density difference between 30°S and 60°N. Rather than showing a linear response, a warmer, saltier AAIW also leads to a decreased MOC strength for years 51?C100 and resulting cooling in the North Atlantic. The non-linearity can be attributed to opposing density responses as the perturbed water masses interact with the atmosphere.  相似文献   

20.
The meridional overturning circulation (MOC) in the coupled ECHAM5/MPIOM exhibits variability at periods of near 30 years and near 60 years. The 30-year variability, referred to as interdecadal variability (IDV), exist in an ocean model driven by climatological atmospheric forcing, suggesting that it is maintained by ocean dynamics; the 60-year variability, the multidecadal variability (MDV), is only observed in the fully coupled model and therefore is interpreted as an atmosphere–ocean coupled mode. The coexistence of the 30-year IDV and the 60-year MDV provides a possible explanation for the widespread time scales observed in climate variables. Further analyses of the climatologically forced ocean model shows that, the IDV is related to the interplay between the horizontal temperature-dominated density gradients and the ocean circulation: temperature anomalies move along the cyclonic subpolar gyre leading to fluctuations in horizontal density gradients and the subsequent weakening and strengthening of the MOC. This result is consistent with that from less complex models, indicating the robustness of the IDV. We further show that, along the North Atlantic Current path, the sea surface temperature anomalies are determined by the slow LSW advection at the intermediate depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号