首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the eastern Sierras Pampeanas, Central Argentina, tourmalinites and coticules are found in close association with stratabound scheelite deposits in metamorphic terranes. In Sierra Grande (Agua de Ramón and Ambul districts) and Sierra de Altautina, tourmalinites are associated with stratabound scheelite deposits related to orthoamphibolites. In the Pampa del Tamboreo area, tourmalinites are located in biotite schists stratigraphically related to acid to intermediate metavolcanic rocks and scheelite-bearing quartzites.The mineral chemistry and boron isotopic compositions of tourmalinite-hosted and vein-hosted tourmalines are investigated. Overall, the tourmalines belong to the dravite-schorl series and are generally aluminous; Fe/(Fe+Mg) ranges from 0.33 to 0.85, Al/(Al+Fe+Mg) from 0.66 to 0.76 and the amount of X-site vacancy (0.12–0.48) indicates significant foitite components. Their boron isotopic compositions (δ11B) are from −24.0‰ to−15.0‰.Similar mineral chemistries and boron isotopic values for tourmaline in tourmalinites related to stratabound scheelite mineralisation and in tungsten-bearing quartz veins suggest a common source for the boron and probably the tungsten. The field, chemical and isotopic relationships are consistent with tungsten and boron in quartz-vein deposits being remobilised from stratabound scheelite and tourmalinite, dominantly by liquid-state transfer associated with regional shear zones. Tungsten and boron in the original sedimentary sequence (now meta-exhalites) are ascribed to volcanogenic exhalations.  相似文献   

2.
The crystalline basement of the Sierra de San Luis, which belongs to the Eastern Sierras Pampeanas in central Argentina, consists of three main units: (1) Conlara, (2) Pringles, and (3) Nogolí metamorphic complexes. In the Pringles Metamorphic Complex, mafic–ultramafic bodies occur as discontinuous lenses along a narrow central belt concordant with the general NNE–SSW structural trend. A metamorphic gradient from granulite to greenschist facies is apparent on both sides of the mafic–ultramafic bodies. This work focuses on the characteristics of the mylonitization overprinted on the mafic–ultramafic intrusives in the Pringles Metamorphic Complex and their gneissic–migmatitic surroundings, both previously metamorphosed within the granulite facies. Petrogenetic grid and geothermobarometry applied to the paragenesis equilibrated during the mylonitic event, together with mineral deformation mechanisms, indicate that mafic and adjacent basement mylonites developed under upper amphibolite transitional to granulite facies metamorphic conditions at intermediate pressures (668–764 °C, 6.3–6.9 kbar, 0.3 < XCO2 < 0.7). However, the following mylonitic assemblages can be distinguished from the external limits of the Pringles Metamorphic Complex to its center: lower amphibolite facies  middle amphibolite facies  upper amphibolite transitional to granulite facies. Geothermobarometry applied to mylonitic assemblages indicate a temperature gradient from 555 °C to 764 °C and pressures of 6–7 kbar for the mylonitic event. This event is considered to have developed on a preexisting temperature gradient attributed to the intrusion of mafic–ultramafic bodies. The concentration of sulfides in mylonitic bands and textural relationships provide evidence of remobilization of primary magmatic sulfides of the mafic–ultramafic rocks (+PGM) during the mylonitic event. A lower-temperature final overprint produced brittle fracturing and localized retrogression on mafic–ultramafic minerals and ores by means of a water-rich fluid phase, which gave rise to a serpentine + magnetite ± actinolite association. Concordantly in the adjacent country rocks, fluids channeled along preexisting mylonitic foliation planes produced local obliteration of the mylonitic texture by a randomly oriented replacement of the mylonite mineralogy by a chlorite + sericite/muscovite + magnetite assemblage. Observed mineral reactions combined with structural data and geothermobarometry suggest a succession of tectonometamorphic events for the evolution of the Pringles Metamorphic Complex of Sierra de San Luis, developed in association with a counterclockwise PTd path. The most likely geological setting for this type of evolution is a backarc basin, associated with east-directed Famatinian subduction initiated in Mid-Cambrian times and closed during the collision of the allochthonous Precordillera terrane in Mid-Ordovician times.  相似文献   

3.
In the Sierras Pampeanas of San Luis, Argentina, Late Tertiary volcanic rocks extend along a 80-km NW-SE-trending belt, between La Carolina and Sierra del Morro. Several gold deposits, among which those in the western end of the belt are better known, are genetically related to the volcanic rocks, formed during a volcanic episode that occurred between 9.5 Ma and 1.9 Ma. Located 600 km from the Peru-Chile trench, the volcanic belt represents the easternmost and youngest mineralized magmatic manifestation associated with the shallowing of the Nazca plate in the flat-slab Andean segment extending from 28° to 33° S Lat.

The volcanic complex includes lavas and volcaniclastic rocks. Small-volume lavas were emplaced as domes, flows, and dikes. Pyroclastic deposits are associated with them in certain areas, such as at La Carolina, Cerro Tiporco, and Sierra del Morro. At La Carolina, phreatomagmatic breccias and base-surge deposits define a maar-diatreme volcanic setting. At Cerro Tiporco and Sierra del Morro, the volcaniclastic units are related to the formation of calderas. Mesosilicic magmas (SiO2 = 59% to 68%) belong to normal to high-K calc-alkaline and shoshonitic magma types. At both local and regional scales, K enrichment accompanies progressively decreasing age. Although the volcanic rocks differ from the typical Andean series, some geochemical features, such as Ta and Ti depletion, high large-ion-lithophile-element (LILE) contents, and arc-like Ba/La and La/Ta ratios, indicate an arc signature.

In the La Carolina zone, the most important mineralization is the La Carolina volcanic-hosted, low-sulfidation, epithermal gold deposit. Here, several gold and base-metal-bearing epithermal veins cut basement rocks. In the Canada Honda district, the most important mineral deposits are the Diente Verde gold-rich porphyry copper deposit and low-sulfidation epithermal gold and base-metal veins hosted by both basement and coeval volcanics.

There is no strong evidence of gold-bearing mineral deposits on the eastern side of the volcanic belt. However, there are hydrothermal alteration zones at Cerros del Rosario and El Morro as well as traces of gold at the Santa Isabel calcareous onyx deposit and inside the Sierra del Morro caldera. In addition, favorable volcanic structures, such as the calderas at Tiporco, Cerro Lomita, and El Morro, make the eastern side of the belt an interesting target for mineral exploration.  相似文献   

4.
The application of the SHRIMP U/Pb dating technique to zircon and monazite of different rock types of the Sierras de Córdoba provides an important insight into the metamorphic history of the basement domains. Additional constraints on the Pampean metamorphic episode were gained by Pb/Pb stepwise leaching (PbSL) experiments on two titanite and garnet separates. Results indicate that the metamorphic history recorded by Crd-free gneisses (M2) started in the latest Neoproterozoic/earliest Cambrian (553 and 543 Ma) followed by the M4 metamorphism at ~530 Ma that is documented in the diatexites. Zircon ages of 492 Ma in the San Carlos Massif correlate partly with rather low Th/U ratios (<0.1) suggesting their growth by metamorphic fluids. This age is even younger than the PbSL titanite ages of 506 Ma. It is suggested that the fluid alteration relates to the beginning of the Famatinien metamorphic cycle in the neighbouring Sierra de San Luis and has not affected the titanite ages. The PTt evolution can be correlated with the plate tectonic processes responsible for the formation of the Pampean orogene, i.e., the accretion of the Pampean basement to the Río de La Plata craton (M2) and the later collision of the Western Pampean basement with the Pampean basement.  相似文献   

5.
Provenance studies have been performed utilising major and trace elements, Nd systematics, whole rock Pb–Pb isotopes and zircon U/Pb SHRIMP data on metasedimentary rocks of the Sierra de San Luis (Nogolí Metamorphic Complex, Pringles Metamorphic Complex, Conlara Metamorphic Complex and San Luis Formation) and the Puncoviscana Formation of the Cordillera Oriental. The goal was the characterisation of the different domains in the study area and to give insights to the location of the source rocks. An active continental margin setting with typical composition of the upper continental crust is depicted for all the complexes using major and trace elements. The Pringles Metamorphic Complex shows indications for crustal recycling, pointing to a bimodal provenance. Major volcanic input has to be rejected due to Th/Sc, Y/Ni and Cr/V ratios for all units. The εNd(540 Ma) data is lower for the San Luis Formation and higher for the Conlara Metamorphic Complex, as compared to the other units, in which a good consistency is given. This is similar to the TDM ages, where the metapsammitic samples of the San Luis Formation are slightly older. The spread of data is largest for the Pringles Metamorphic Complex, again implying two different sources. The whole rock 207Pb/206Pb isotopic data lies in between the South American and African sources, excluding Laurentian provenances. The whole rock Pb–Pb data is almost indistinguishable in the different investigated domains. Only the PMC shows slightly elevated 208Pb/204Pb values. Possible source rocks for the different domains could be the Quebrada Choja in the Central Arequipa–Antofalla domain, the Southern domain of the Arequipa–Antofalla basement, the Brazilian shield or southern Africa. Zircon SHRIMP data point to a connection between the Puncoviscana Formation and the Conlara Metamorphic Complex. Two maxima around 600 Ma and around 1000 Ma have been determined. The Nogolí Metamorphic Complex and the Pringles Metamorphic Complex show one peak of detrital zircons around 550 Ma, and only a few grains are older than 700 Ma. The detrital zircon ages for the San Luis Formation show age ranges between 590 and 550 Ma. A common basin can be assumed for the Conlara Metamorphic Complex and the Puncoviscana Formation, but the available data support different sources for the rest of the Complexes of the Sierra de San Luis. These share the diminished importance or the lack of the Grenvillian detrital peak, a common feature for the late Cambrian–early Ordovician basins of the Eastern Sierras Pampeanas, in contrast to the Sierras de Córdoba, the PVF and the Conlara Metamorphic Complex.  相似文献   

6.
The Paleozoic granitoids of the Sierra de San Luis comprise the Ordovician tonalite suite (OTS; metaluminous to mildly peraluminous calcic tonalite–granodiorites) and granodiorite–granite suite (OGGS; peraluminous calcic to calc-alkaline granodiorite–monzogranites), as well as the Devonian granite suite (DGS; peraluminous alkali-calcic monzogranites) and monzonite–granite suite (DMGS; metaluminous alkali-calcic quartz monzonite–monzogranite ± granodiorite, mildly peraluminous alkalicalcic monzogranites). The OTS has relatively high K2O, CaO, and YbN and low Cr, Ni, Ba, Sr, Rb/Sr, Sr/Y, and (La/Yb)N, as well as negative Eu/Eu1, high 87Sr/86Sr (0.70850–0.71114), and unradiogenic εNd(470Ma) (−5.3 to −6.0), which preclude an origin of variably fractionated mantle melts and favour a mafic lower crustal source. The OGGS consists of two granitoids: (1) high-temperature characterized by low Al2O3/TiO2, Rb/Sr, and (La/Yb)N, a smooth negative Eu/Eu1, and relatively high CaO and (2) low-temperature with high Al2O3/TiO2 and Rb/Sr, low CaO, (La/Yb)N, and Sr/Y, and negative Eu/Eu1. Melting of metagreywackes at pressures below 10 kbar with a variable supply of water could account for the chemistry of the high-T OGGS, whereas dehydration melting of biotite-bearing metasedimentary sources at low pressures is proposed for the low temperature OGGS. Melting of crustal sources relates to a contemporaneous mafic magmatism.Devonian magmatism is characterized by high Ba, Sr, K2O, Na2O, Sr/Y, and (La/Yb)N. Sources for the DGS include metasedimentary or metatonalitic protoliths. Biotite dehydration melting triggered by the addition of heat, supplied by mantle-derived magmas, is proposed. High Ba, Sr, LREE, MgO, Cr, Ni, Zr, and V of the monzonites suggest an enriched lithospheric mantle source. Low Yb and Y and high Sr and (La/Yb)N indicate a garnet-rich residual assemblage (P  10 kbar). Melts for the peraluminous rocks may have derived from a metasedimentary or metaigneous source at lower pressures in a process dominated by biotite consumption and plagioclase in the residue.The Ordovician granitoids are synkinematic with compressive deformation related to the early stages of Famatinian convergence. The Devonian magmatism is synkinematic with a system of shear zones that were active during the Achalian cycle.  相似文献   

7.
New geochronological and geochemical data are reported for the San Blas Pluton (SBP), in the northwestern Sierra de Velasco, Sierras Pampeanas, which intrudes Ordovician granitoids developed during the Famatinian orogeny. A precise Carboniferous age of 340±3 Ma is established by U–Pb dating of zircon using a sensitive high-resolution ion microprobe (SHRIMP). The SBP illustrates several petrological and geochemical characteristics of previously reported Carboniferous granitoids in the Sierras Pampeanas. Their generation is consistent with a regional reheating of the crust at approximately 342 Ma, which resulted in the formation of relatively large amounts of granitic melts that were emplaced in higher crustal levels along master fractures (older master shear zones of Lower Paleozoic age). The SBP can be chemically defined as a typical A-type granitoid related to postcollisonal or postorogenic magmatism. Its high REE content and extraordinarily high U and Th concentrations may have economic significance. Many previously published Devonian and Carboniferous K–Ar dates are reset Ordovician ages, but the existence of other Carboniferous bodies in the Sierra de Velasco cannot be discounted until detailed mapping of the whole Sierra is completed.  相似文献   

8.
International Journal of Earth Sciences - Systematic 40Ar/39Ar feldspar data obtained from the Sierras Pampeanas are presented, filling the gap between available high-...  相似文献   

9.
Metamorphic rocks, granitic rocks, and sediments from the Eastern Sierras Pampanas, Argentina, were analyzed for major and trace element concentrations, including rare earth elements (REE). Parental rocks exhibit distinctive REE normalized diagram patterns and elemental ratios, and some elemental ratios reveal significant differences between rock sources. For example, ratios such as Th/Sc, Cr/Th, and La/Cr have a mean value of 0.7, 8.4 and 0.4 in metamorphic rocks, whereas granitic rocks exhibit means of 1.4, 0.7 and 4.9, respectively. These ratios are also useful in linking detrital materials with the corresponding parental rocks. Metamorphic sources yield sediments with lower Th/Sc and La/Cr, and higher Cr/Th ratios than sediments derived from granitic sources. REE and other elements are enriched in the silt-size fraction, whereas they are diluted by quartz in the sand-size fraction.The size of the Eu/Eu* anomaly can be used as a stratigraphical correlation tool in the sedimentary record: Cretaceous rocks show a mean value of 0.9±0.1, whereas Tertiary rocks have a mean value of 2.9±0.3. The Eu anomaly in Quaternary and modern sediments ranges from 0.5 to 0.8.  相似文献   

10.
Cordieritites and highly peraluminous granites within the ElPilón granite complex, Sierras Pampeanas, Argentina,were emplaced during a medium-P, high-T metamorphic event duringthe initial decompression of a Cambrian orogen along the southwesternmargin of Gondwana. Very fresh orbicular and massive cordierititebodies with up to 90% cordieritite are genetically associatedwith a cordierite monzogranite pluton and a larger body of porphyriticgranodiorite. The petrogenesis of this association has beenstudied using petrographical, mineralogical, thermobarometric,geochemical, geochronological and isotope methods. The graniticmagmas were formed by anatexis of mid-crustal metamorphic rocksformed earlier in the Pampean orogeny. The cordieritites appearat the top of feeder conduits that connected the source regionlocated at  相似文献   

11.
12.
40Ar/39Ar dating and estimates of regional metamorphic PT conditions were carried out on the basement rocks of the Eastern Kunlun Mountains, Western China. Samples from the Jinshuikou, Xiaomiao, Kuhai, Wanbaogou, and Nachitai groups revealed distinct metamorphic events and four age groups. The age group in the range from 363 to 439 Ma is interpreted to represent cooling after Middle Silurian–Late Devonian granulite(?) and amphibolite facies metamorphism, which is dominated by low–middle pressure/high temperature conditions. This tectono-thermal event is related to the closure of an oceanic basin or marginal sea. An age group of 212–242 Ma represents cooling after Triassic metamorphic overprint, which is probably associated with magmatic intrusions. This thermal event, together with the Permo-Triassic ophiolite zone along the South Kunlun Fault, relates to the closure of a major ocean (between India and Eurasia) and the eventual N-ward accretion of the Qiangtang block in Permo-Triassic times. The significance of the age group of 104–172 Ma may be related to the ductile deformation along the Xidatan fault due to the northward-directed accretion of the Lhasa block. Biotites from Nachitai record a partial isotopic resetting at ca. 32 Ma that is interpreted to represent a late-stage exhumation caused by further crustal shortening.  相似文献   

13.
Stream waters draining granitic terrains from the highest part (850 to 2200 m a.s.l.) of Sierras Pampeanas (Córdoba, Argentina, ∼32°S, ∼65°W) were sampled in order to define sources and distribution of dissolved rare earth elements (REE), and to describe the geochemical processes that govern their mobility. The contribution of the regional granite to the dissolved REE pool in stream water is limited due to the physical conditions predominating in the area (i.e., steep slopes and semiarid climate). Therefore, precipitation is considered a seasonally significant source controlling REE concentration in stream water. Dissolved REE concentrations are inversely correlated with monthly precipitation and rainfall frequency. During the rainy season (i.e., the austral summer) REE concentrations in stream water are lower than during the dry season (i.e., austral winter). Such low concentrations reflect the balance between the REE input from precipitation and their removal by adsorption. In contrast, during the dry season, the longer residence time of water within fractures and colluvium determines an increased REE concentration in the base flow. Lower pH values also contribute to raise REE concentration through desorption from mineral surfaces.  相似文献   

14.
The intrusion of granitoids into the Eastern Sierras Pampeanas in the Early Carboniferous took place after a long period of mainly compressional deformation that included the Famatinian (Ordovician) and Achalian (Devonian) orogenies. These granitoids occur as small scattered plutons emplaced in a dominant extensional setting, within older metamorphic and igneous rocks, and many of them are arranged along a reactivated large shear zone. A set of 46 samples from different granitic rocks: Huaco granitic complex, San Blas pluton, and the La Chinchilla stock from the Sierra de Velasco, Zapata granitic complex from Sierra de Zapata, and the Los Árboles pluton from Sierra de Fiambalá, display high and restricted SiO2 contents between 69.2 and 76.4 wt.%. On both FeO/(FeO + MgO) vs. SiO2 and [(Na2O + K2O) ? CaO] vs. SiO2 plots the samples plot in the ferroan and alkaline-calcic to calco-alkaline fields (FeO/(FeO + MgO) = 0.88–1.0%;[(Na2O + K2O) ? CaO] = 6.3–8.3%), thus showing an A-type granitoid signature. The high concentrations for the High Field Strength Elements (HSFE), such as Y, Nb, Ga, Ta, U, Th, etc. and flat REE patterns showing significant negative Eu anomalies are also typical features of A-type granites. Our petrogenetic model supports progressive fractional crystallization with dominant fractionation of feldspar and a source mineral assemblage enriched in plagioclase. Biotites have distinctive compositions with high FeO/MgO ratios (7.8–61.5), F (360–5610 ppm), and Cl (120–1050 ppm). The FeO/MgO ratios together with the F and Cl content of igneous biotites seem to reflect the nature of their parental host magmas and may be useful in identifying A-type granitoids. The isotopic data (Rb–Sr and Sm–Nd) confirm that the A-type granites represent variable mixtures of asthenospheric mantle and continental crust and different mixtures lead to different subtypes of A-type granite (illustrating the lack of consensus about A-type magma origin). We conclude that prominent shear zones play an important role in providing suitable conduits for ascending asthenospheric material and heat influx in the crust, a hypothesis that is in accord with other recent work on A-type granites.  相似文献   

15.
In the northwest of the Sierras Pampeanas of Córdoba (Central Argentina), in the Tuclame area, rocks called ‘banded schists’ are recognized. They are known since 120 years ago and are one of the most important lithologies of the metamorphic complex in this region. The compositional banding is the most conspicuous structural mesoscopic feature, composed of quartz-rich and mica-rich layers. It is a tectonic banding produced by pressure solution during a compressive event. P–T conditions of 557 ± 25 °C and 3.9 ± 1 kb were obtained for the main metamorphic event. A detailed field checking allowed recognition of the banded schists as decimetric or centimetric xenoliths isolated within the regional migmatites and the anatectic granitoids and as kilometric-scale belts within Sierras de Córdoba and San Luis. The authors have also identified banded schists in the Sierras de Aconquija, Ambato, Ancasti and Guasayán. Other workers recognized them in the Puna, Cumbres Calchaquíes, Sierras de Quilmes and Fiambalá, among the most well known outcrops. The banded schists have systematic petrological features and a distinctive mesoscopic structure that allow their identification and correlation with the other outcrops, which are arranged as a huge belt 2000 km long and 150 km wide, between 64°00′–66°30′W and 25°00′–41°34′S. In this work, all these rocks are proposed to be integrated into the Puncoviscana Basin, since field evidence indicated that the banded schists transitionally pass by transposition to phyllitic rocks typical of this metamorphosed basin, which would cover a region of about 300,000 km2. At present, there is no accurate geochronology available for the metamorphic and deformation events proposed in this work for the Tuclame banded schists. However, considering the regional geological evidence, the great spread of the petrostructural process forming these rocks, the transition between the Puncoviscana Formation and the banded schists, and the earlier idea that the Puncoviscana Formation is the shallowest equivalent of deeper structural levels in the Sierras Pampeanas, we favor for the moment the hypothesis that the banded schists could be part of the oldest evolution of the Pampean orogeny (early Pampean stage) and could represent different structural levels of the same orogen, probably a late Precambrian–early Palaeozoic orogen. The events of migmatization and emplacement of anatectic granitoids could represent a late Pampean stage of early Palaeozoic age. Thus, the Pampean orogeny could have lasted around 30–40 Ma (570–530 Ma).  相似文献   

16.
New petrologic, thermobarometric and U-Pb monazite geochronologic information allowed to resolve the metamorphic evolution of a high temperature mid-crustal segment of an ancient subduction-related orogen. The El Portezuelo Metamorphic-Igneous Complex, in the northern Sierras Pampeanas, is mainly composed of migmatites that evolved from amphibolite to granulite metamorphic facies, reaching thermal peak conditions of 670–820 °C and 4.5–5.3 kbar. The petrographic study combined with conventional and pseudosection thermobarometry led to deducing a short prograde metamorphic evolution within migmatite blocks. The garnet-absent migmatites represent amphibolite-facies rocks, whereas the cordierite-garnet-K-feldspar-sillimanite migmatites represent higher metamorphic grade rocks. U-Pb geochronology on monazite grains within leucosome record the time of migmatization between ≈477 and 470 Ma. Thus, the El Portezuelo Metamorphic-Igneous Complex is an example of exhumed Early Ordovician anatectic middle crust of the Famatinian mobile belt. Homogeneous exposure of similar paleo-depths throughout the Famatinian back-arc and isobaric cooling paths suggest slow exhumation and consequent longstanding crustal residence at high temperatures. High thermal gradients uniformly distributed in the Famatinian back-arc can be explained by shallow convection of a low-viscosity asthenosphere promoted by subducting-slab dehydration.  相似文献   

17.
The Eastern Sierras Pampeanas were structured by three main events: the Ediacaran to early Cambrian (580?C510?Ma) Pampean, the late Cambrian?COrdovician (500?C440?Ma) Famatinian and the Devonian-Carboniferous (400?C350?Ma) Achalian orogenies. Geochronological and Sm?CNd isotopic evidence combined with petrological and structural features allow to speculate for a major rift event (Ediacaran) dividing into two Mesoproterozoic major crustal blocks (source of the Grenvillian age peaks in the metaclastic rocks).This event would be coeval with the development of arc magmatism along the eastern margin of the eastern block. Closure of this eastern margin led to a Cambrian active margin (Sierra Norte arc) along the western margin of the eastern block in which magmatism reworked the same crustal block. Consumption of a ridge segment (input of OIB signature mafic magmas) which controlled granulite-facies metamorphism led to a final collision (Pampean orogeny) with the western Mesoprotrozoic block. Sm?CNd results for the metamorphic basement suggest that the T DM age interval of 1.8?C1.7?Ga, which is associated with the less radiogenic values of ??Nd(540) (?6 to ?8), can be considered as the mean average crustal composition for the Eastern Sierras Pampeanas. Increasing metamorphic grade in rocks with similar detrital sources and metamorphic ages like in the Sierras de Córdoba is associated with a younger T DM age and a more positive ??Nd(540) value. Pampean pre-540?Ma granitoids form two clusters, one with T DM ages between 2.0 and 1.75?Ga and another between 1.6 and 1.5?Ga. Pampean post-540?Ma granitoids exhibit more homogenous T DM ages ranging from 2.0 to 1.75?Ga. Ordovician re-activation of active margin along the western part of the block that collided in the Cambrian led to arc magmatism (Famatinian orogeny) and related ensialic back-arc basin in which high-grade metamorphism is related to mid-crustal felsic plutonism and mafic magmatism with significant contamination of continental crust. T DM values for the Ordovician Famatinian granitoids define a main interval of 1.8?C1.6, except for the Ordovician TTG suites of the Sierras de Córdoba, which show younger T DM ages ranging from 1.3 to 1.0?Ga. In Devonian times (Achalian orogeny), a new subduction regime installed west of the Eastern Sierras Pampeanas. Devonian magmatism in the Sierras exhibit process of mixing/assimilation of depleted mantle signature melts and continental crust. Achalian magmatism exhibits more radiogenic ??Nd(540) values that range between 0.5 and ?4 and T DM ages younger than 1.3?Ga. In pre-Devonian times, crustal reworking is dominant, whereas processes during Devonian times involved different geochemical and isotopic signatures that reflect a major input of juvenile magmatism.  相似文献   

18.
Textural and compositional changes affecting a quartzose metagabbro/metadiorite in a ductile shear zone which is part of the Early Palaeozoic (Famatinian) orogenic belt of the Western Sierras Pampeanas, Argentina, allow reconstruction of its tectono-metamorphic evolution as well as the metamorphic conditions achieved. On the basis of paragenetic associations and microfabrics, three overprinted deformation events are differentiated: a) a relict ductile event developed within the granulite facies, at temperatures exceeding 800 °C and pressures ≤5–5.5 kbar; b) a two-stage mylonitic deformation event under high-to medium-grade metamorphic conditions, at temperatures 500–700 °C and pressures between 6 and 7 kbar and c) a brittle deformation event developed at low greenschist facies below 400 °C. Evidence of the first event is preserved in the protolith although the subsequent deformation obliterated it partially. Slight modal and chemical changes were detected between the protolith and its mylonitic products. Deformation ages of the mylonites that vary from 441.9 ± 1.9 Ma to 438.7 ± 1.9 Ma are internally consistent and compatible with existing geological and geochronological data for the region, suggesting that during the Famatinian orogeny the western margin of Gondwana was characterized by several episodes of ductile deformation that varied in time and space.  相似文献   

19.
A new LA-ICP-MS crystallization age of 370?±?8 Ma is presented for monzogranite from the Achala batholith, the largest Devonian igneous body in the Sierras Pampeanas, confirming previous U-Pb zircon ages and indicating emplacement within a relatively short episode. Granitic rocks from the central area of the batholith display restricted high SiO2 contents (69.8–74.5 wt.%). Major element plots show ferroan and alkaline-calcic to calc-alkaline compositions with an A-type signature. High concentrations of the high field-strength elements such as Y, Nb, Ga, Ta, U, Th, and flat REE patterns with significant negative Eu anomalies, are also typical of A-type granites. The aluminium saturation index (1.10–1.37) indicates aluminous parent magmas which are further characterised by high FeO/MgO ratios (2.6–3.3) and F contents of igneous biotites (0.9–1.5 wt%), as well as relatively high AlIV (2.39–2.58 a.p.f.u.) in biotites and the occurrence of primary muscovite. Petrogenetic modelling supports a source enriched in plagioclase and progressive fractional crystallization of feldspar. The central area of the batholith displays small-scale bodies composed predominantly of biotite (80 %), muscovite (10 %) and apatite (10 %), yielding rock compositions with 2.3–5.4 wt. % P2O5, and 6–7 wt.% F, together with anomalous contents of U (88–1,866 ppm), Zr (1081–2,581 ppm), Nb (257–1,395 ppm) and ΣREE (1,443–4,492 ppm). Previous studies rule out an origin of these bodies as metasedimentary xenoliths and they have been interpreted as cumulates from the granitic magma. An alternative flow segregation process is discussed here.  相似文献   

20.
The Boa Vista and Cubati Basins, Paraíba, Brazil, are NW–SE extension-related intracratonic basins that resulted from tectonic stresses after the opening of the South Atlantic. These basins contain lacustrine fossiliferous sediments, bentonite beds, and basalt flows that preserve Cenozoic continental records. 40Ar/39Ar ages for six whole-rocks from two distinct basaltic flows underlying the sediments in the Boa Vista basin are 27.3 ± 0.8 and 25.4 ± 1.3 Ma, while three grains from a basaltic flow overlying the sediments yield 22.0 ± 0.2 Ma. The sediments at the nearby Cubati Basin are overlain by a basalt flow with ages of ∼25.4 Ma. Three whole-rocks from an NE–SW-trending trachytic dyke cross cutting the sediments at the Boa Vista Basin yield 40Ar/39Ar ages of ∼12.45 ± 0.06, 12.59 ± 0.07, and 12.58 ± 0.07 Ma. Three whole-rocks from a nearby volcanic plug (Chupador) yield an age of 23.4 ± 0.1 Ma. The geochronological results combined with stratigraphic correlations between the two basins allow bracketing the age of the main sedimentary and bentonic units within the Boa Vista and Cubati Basins between 25.5 ± 1.3 and 24.9 ± 0.1 Ma. The ages, combined with field observations reveal that the formation of the Boa Vista and Cubati basins is associated with mantle-derived magmas channelled through reactivated Precambrian shear zones. Our geochronological results suggest that a temporal link with the Fernando de Noronha and Saint Helena hot spots can be excluded as possible sources of the Boa Vista and Cubati magmas. Rather, the extensional tectonics in the 30–20 Ma interval, long after Gondwana break-up, may be associated with the re-activation of continental-scale shear zones that channelled small batches of mantle-derived magmas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号