首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lake Fidler is an ectogenic meromictic lake with a monimolimnion maintained by periodic incursions of brackish water from the lower Gordon River estuary. A dam across the middle reaches of the Gordon River has restricted these incursions of brackish water and meromictic stability has rapidly declined. A palaeolimnological study was carried in order to assess the historical development of meromixis and the impact of the dam on the microbiological communities in the lake. Fossil pigments in a 17 m sediment core were analysed using reverse phase high performance liquid chromatography (rp-HPLC) and mass spectrometry (MS). In addition, taphonomic studies of pigment production, deposition and degradation in the water column and surface sediments were used to identify planktonic and benthic pigment degradation processes and constrain the stratigraphic interpretation. Results comparing the pigment composition of pelagic sediment traps and littoral surface sediments indicated that the core from the centre of the lake would permit a historical reconstruction of planktonic bacterial and algal communities. Marked increases in prokaryotic pigments ca 3500 yr B.P. suggested the possible colonisation of a chemocline by phototrophic bacteria. Further changes in chlorophyll: carotenoid ratios and changes in relative abundances of both chlorophyll a and bacteriochlorophyll c derivatives also indicated that a change in the depositional environment had occurred; possibly due to altered stratification or anoxia. From this we infer the onset of either intermittent or permanent meromixis. Further increases in prokaryotic pigment abundance suggested that the present state of permanent meromixis was firmly established by 2070 ±50 14C yr B.P., and diatom analysis confirmed the development of a stable mixolimnion. High resolution studies of the top 10 cm of sediments measured pigments in mean concentrations of 15.1 ng g-1 with a mean S.D. of only 2.78 indicating little change in pigment abundance since the construction of the dam. Thus, Lake Fidler still retains most of the features of meromixis. However, evidence from nearby Lake Morrison and Sulphide Pool has shown that any further declines in meromictic stability will cause a rapid reversion to holomixis. Palaeolimnological evidence from the early stages of meromictic development of Lake Fidler suggests that such reversion to holomixis may not permanently eliminate all the microbiological communities, and that, given time, they may return and prosper with re-establishment of a suitable chemocline. These studies will guide recommendations for a management strategy to prevent the further decay of meromixis in the Gordon River lakes.  相似文献   

2.
The post-glacial history of Lake Pieni-Kuuppalanlampi, western Lake Ladoga region, was studied by means of stratigraphic pollen and diatom analyses. Diatoms were analysed to track the isolation history of the basin and the limnological effects of the early land-use phases indicated by pollen analysis. Chrysophycean stomatocysts and Isoëtes spores were also employed in the limnological reconstructions. Sediment dating was provided by six conventional radiocarbon dates.The lower part of the 370-cm long sediment sequence represents early Holocene, large lake conditions: the (freshwater) Yoldia and Ancylus stages of the Baltic basin, with a short-term lagoonal or isolation phase at the end of Yoldia. The basin was isolated due to Ancylus lake regression at 9785 cal B.P. For the small-lake sequence (0–250 cm) we used diatom inferences (WA-method) for hindcasting water chemistry. The post-isolation limnology of Pieni-Kuuppalanlampi reflects the development of vegetation on its small hill-top catchment. In its early development, the lake was mesotrophic, but became more acidic (pH about 6) and oligotrophic after the decline of temperate hardwood trees and the spread of spruce to the area after around 5000 B.P. The lake ecosystem appears to have reacted sensitively to agricultural land-use in the catchment from AD 400–800 onwards: inferred total phosphorus levels and pH both rise during these periods.  相似文献   

3.
Sediments of Lake Fidler, a meromictic lake in south-west Tasmania, contain distinctive laminae. In order to determine their composition and formation, these laminae were studied using a combination of X- ray analysis, scanning electron microscopy, X-ray diffraction and vibrational spectrometry. Results indicated that the laminae were composed of clay originating from the adjacent Gordon River estuary. The clay was also found as part of the general sediment matrix of the core. The evidence indicates that the laminae are formed during incursions of brackish water from the adjacent Gordon River estuary into Lake Fidler which cause the flocculation of clay minerals in the water column. These clay minerals then sink rapidly to the sediments to form laminae. Although the formation of these laminae pre-dates meromixis, their mode of formation corroborates the theory that meromixis is maintained ectogenically by periodic inflows of brackish water replenishing monimolimnetic salts.  相似文献   

4.
Meromixis has several powerful effects on lakes, yet there is no single definitive sediment indicator of meromixis. In this study three sediment indicators of meromixis were compared in Brownie Lake, Minneapolis, Minnesota, a small eutrophic lake that became meromictic around 1925. The results show that in Brownie the onset of laminations and changes in the iron to manganese ratio most likely occurred before the development of permanently anoxic bottom water and that changes in the diatom assemblage occurred later, most likely only when meromixis was well developed.This is the 11th in a series of papers published in this special AMQUA issue. These papers were presented at the 1994 meeting of the American Quaternary Association held 19–22 June, 1994, at the University of Minnesota, Minneapolis, Minnesota, USA. Dr Linda C. K. Shane served as guest editor for these papers.  相似文献   

5.
A textural analysis of the siliceous sediments component of a small saline lake in south-eastern South Australia (Lake Cantara South) was undertaken. The data indicated periods of marine incursion, lagoonal dominance and elevated freshwater inputs. Lake Cantara originated as a marine embayment; then followed periods of intermittent marine connection; finally, the lake became athalassic (mostly saline but with occasional freshwater inundations). This history accords well with that derived from an examination of mollusc fossils (marine, estuarine, athalassic saline, and freshwater forms) and with previously published mineralogical, geochemical and geomorphological evidence.  相似文献   

6.
Wallywash Great Pond (17° 57 N, 77° 48 W, 7 m a.s.l.) is the largest perennial lake in Jamaica. It occupies a fault trough within the karstic White Limestone. The Great Pond is a hardwater lake with a pH of 8.2–8.6 and an alkalinity of 3.6–3.9 meq 1–1. Its chemistry is strongly influenced by the spring discharge from the limestone. The lake water is subject to degassing, evaporation and bicarbonate assimilation by submerged plants and algae, resulting in marl precipitation. A 9.23 m core (WGP2), taken from a water depth of 2.8 m, was analysed for magnetic susceptibility, loss-on-ignition, carbonate content, mole % MgCO3 in calcite, and stable isotopes in the fine carbonate fraction. The chronology is based on ten14C and four U/Th dates. Four main sediment types alternate in the core: marl; organic, calcareous mud; organic mud or peat; and earthy, brown, calcareous mud. The marls represent periods of wet/warm climate during sea-level highstands and the organic deposits, shallower, swampy conditions. In contrast, the brown, calcareous muds were laid down when the lake was dry or ephemeral. The last interglacial (120 000- 106 000 yr BP) is represented by three distinct marl units. After a dry interval, stable, wet/warm conditions set in from 106 000 to 93 000 yr BP. A dry/cool climate prevailed between 93 000 and at least 9500 yr BP. Three subsequent cycles of alternating wet and dry conditions culminated in flooding of the basin by the Black River during the late Holocene. These recent events cannot be accurately dated by14C due to significant and temporally-variable inputs of dead carbon from the springs.  相似文献   

7.
Historical and recent changes in the nature of Lake Texcoco, a saline lake in Mexico, are described. These changes are particularly important since they significantly affect water supply, drainage and other urban issues in Mexico City, Mexico's largest city and capital located within the general boundaries of the lake basin and gradually sinking (mean annual sinking rate is 30 cm). After brief reviews of the present status of the lake and background geological, palaeolimnological and climatic features, human activities during historical and recent times are considered. Of particular note have been drainage basin activities, diversion of inflows, pollution and over-exploitation of groundwater and biological resources (especially fish and waterfowl). The major effects of these activities are water shortages, soil erosion, salinization, dust storms, sinking ground, poor water quality and decreased biological resources. Conservation measures are discussed.  相似文献   

8.
Three piston cores from Lake Victoria (East Africa) have been analysed for organic carbon (TOC) and nitrogen (TN) content, stable isotopes (13C and 15N), and Hydrogen Index (HI). These data are combined with published biogenic silica and water content analyses to produce a detailed palaeolimnological history of the lake over the past ca. 17.5 ka. Late Pleistocene desiccation produced a lake-wide discontinuity marked by a vertisol. Sediments below the discontinuity are characterised by relatively low TOC and HI values, and high C/N, 13C and 15N, reflecting the combined influence of abundant terrestrial plant material and generally unfavourable conditions for organic matter preservation. A thin muddy interval with lower 13C and higher HI and water content indicates that dry conditions were interrupted by a humid period of a few hundred years duration when the lake was at least 35 m deep. The climate changed to significantly more humid conditions around 15.2 ka when the dry lake floor was rapidly flooded. Abundant macrophytic plant debris and high TOC and 13C values at the upper vertisol surface probably reflect a marginal swamp. 13C values decrease abruptly and HI begins to increase around 15 ka BP, marking a shift to deeper-water conditions and algal-dominated lake production. C/N values are relatively low during this period, suggesting a generally adequate supply of nitrogen, but increasing 15N values reflect intense utilisation of the lake's DIN reservoir, probably due to a dramatic rise in productivity as nutrients were released to the lake from the flooded land surface.An abrupt drop in 13C and 15N values around 13.8-13.6 ka reflects a period of deep mixing. Productivity increased due to more efficient nutrient recycling, and 13C values fell as 12C-rich CO2 released by bacterial decomposition of the organic material was brought into the epilimnion. A weak drop in HI values suggests greater oxygen supply to the hypolimnion at this time. Better mixing was probably due to increased wind intensity and may mark the onset of the Younger Dryas in the region.After the period of deep mixing, the water column became more stable. TOC, C/N, 13C and HI values were at a maximum during the period between 10 and 4 ka, when the lake probably had a stratified water column with anoxic bottom waters. A gradual decrease in values over the last 4000 yrs suggest a change to a more seasonal climate, with periodic mixing of the water column. Rising sediment accumulation rates and a trend to more uniform surface water conditions over the last 2000 yrs are probably a result of increased anthropogenic impact on the lake and its catchment.Following a maximum at the time of the rapid lake-level rise during the terminal Pleistocene, 15N has remained relatively low and displays a gradual but consistent trend to lower values from the end of the Pleistocene to the present. TN values have risen during the same period. The lack of correlation between 13C and 15N, and the absence of any evidence for isotopic reservoir effects despite the rise in TN, suggests that the atmosphere, rather than the lake's dissolved nitrogen pool has been the principal source of nitrogen throughout the Holocene. The importance of atmospheric N fixation to Lake Victoria's nitrogen cycle thus predates by a very considerable margin any possible anthropogenic eutrophication of the lake.  相似文献   

9.
In this study, we demonstrate that an integrated approach, combining palaeolimnological records and limnological monitoring data, can increase our understanding of changing ecological patterns and processes in shallow lakes. We focused on recent regime shifts in shallow Lake Krankesjön, southern Sweden, including the collapse of the clear-water state in 1975 and its subsequent recovery in the late 1980s. We used diatom, hydrocarbon and biogenic silica sediment records, in concert with limnological data sets on nutrient concentrations, water clarity, chlorophyll-a and water depth, to investigate the shifts. The shift from clear to turbid conditions was abrupt and occurred over 1 to 2 years, whereas recovery of the clear-water state was more gradual, taking 4–5 years. In 1978, shortly after the first regime shift in water clarity, the diatom community underwent a significant shift. It became less diverse, with decreased abundance of epiphytic and planktonic taxa. Despite rising phosphorus concentrations and lower abundance of submerged macrophytes, Lake Krankesjön has remained in the clear-water state over the past 20 years, although this state seems to be increasingly unstable and susceptible to collapse. The complex reactions of the entire lake ecosystem to major changes in lake-water clarity, as shown by the palaeolimnological variables investigated in this study, emphasize the importance of careful lake and catchment management if a stable, clear-water state is desired.  相似文献   

10.
A palaeoecological study of an oligotrophic alpine lake, Paione Superiore (Italy), provided a record of historical changes in water quality. Historical trends in lake acidification were reconstructed by means of calibration and regression equations from diatoms, chrysophycean scales and pigment ratios. The historical pH was inferred by using two different diatom calibration data sets, one specific to the alpine region. These pH trends, together with the record of sedimentary carbonaceous particles and chironomid remains, indicate a recent acidification of this low alkalinity lake.Concentration of total organic matter, organic carbon, nitrogen, biogenic silica (BSiO2), chlorophyll derivatives (CD), fucoxanthin, diatom cell concentration and number of chironomid head capsules increased during the last 2–3 decades. When expressed as accumulation rates, most of these parameters tended to decrease from the past century to c. 1950, then all except P increased to the present day. A marked increase in sedimentary nitrogen may be related to atmospheric pollution and to the general increases in output of N in Europe. High C/N ratios indicate a prevailing allochthonous source of organic matter.Finally, the increase in measured air temperature from the mid-1800's appeared to be related to lake water pH before industrialization: cold periods generally led to lower pH and vice-versa. The more recent phenomenon of anthropogenic acidification has apparently decoupled this climatic-water chemistry relationship.  相似文献   

11.
Human activity and climatic forcing have influenced sedimentation in three of Finland's deepest lakes during the last centuries. High-resolution sediment sequences of Lake Päijänne, Lake Pääjärvi and Lake Pyhäjärvi represent records of the last 440 years, 839 years and 633 years, respectively. The accumulation rates of dry matter, organic carbon and biogenic silica refer to changes in human activity in the catchments. However, they also reveal the importance of climatic forcing on lake sediment deposition. A significant correlation was found between instrumentally measured records of temperature (163 years) and precipitation (148 years), and varve thickness. Warm winter months indicating a short ice-cover period have the strongest control on varve thickness. This shows that wind-driven resuspension of littoral material is the forcing mechanism of climate on lake sediments. The long-term human-induced erosion pulses observed may even have magnified the climatic signals in some cases. Nevertheless, increased anthropogenic field erosion in the catchment, and the associated leaching of bioavailable nutrients, hampers the observation of climate signals, especially during the last 50 years, in the lakes studied.This is the second paper a series of papers published in this issue on high-resolution paleolimnology. These papers were presented at the Sixth International Palaeolimnology Symposium held 19-April, 1993 at the Australian National University, Canberra, Australia. Dr A. F. Lotter and Dr. M. Sturm served as guest editors for these papers.  相似文献   

12.
Spatial variability of sediment and diatom deposition was assessed in a small monomictic, eutrophic lake in Northern Ireland (Lough Augher, Co. Tyrone) using measurements from 17 sediment cores. Loss-onignition profiles in water depths >6 m showed good repeatability, while littoral cores were more variable with localised profiles. Dry mass accumulation rates, derived by biostratigraphic correlation to a 210Pb dated master core, were variable and not correlated with water depth. Basin mean dry mass accumulation rate was 0.068 g cm-2 yr-1 (range 0.036–0.09) prior to 1900, and 0.19 g cm-2 yr-1 (range 0.11–0.3) after 1974. Post-1940 cumulative fluxes were estimated for dry mass (range 3.49–916 g cm-2) and diatoms (range 16.9–113.8×107 frustules cm-2). Cumulative dry mass was inversely correlated (r=–0.64) with distance from the inflow, indicating its localised influence. No variable was correlated with water depth except frustules of planktonic diatoms (r=0.66). However, high cumulative fluxes of diatoms and dry mass away from the inflow suggest that the expansion of the littoral macrophyte community may be responsible for decreased resuspension in shallow water, and together with increased sediment trapping, has enhanced sediment accumulation in shallow water over recent time periods.  相似文献   

13.
Accurate identification of fossil pigments is essential if they are to be used as biomarker compounds in palaeolimnological studies. In recent years High Performance Liquid Chromatography (HPLC) has greatly enhanced the efficiency with which fossil pigments can be characterised and quantified. Using HPLC, undegraded pigments are typically identified through retention times, absorbance spectra and co-chromatography with authentic reference standards. However, lake sediments may also contain degraded pigments for which there are often no standards, and which may be difficult to identify using HPLC alone. In this study, we submitted HPLC fractions of fossil pigments and pigment derivatives collected from a meromictic lake in south west Tasmania, to a combination of Mass Spectrometry (MS) techniques including Electron Impact (EI) and static Liquid Secondary Ion MS (LSIMS) to identify their molecular ion characteristics and organic chemical composition. Mass Spectrometry permitted the detection of specific mass ions which were used to verify the identity of pigments and their derivatives. These included five carotenoids, chlorophyll a and derivatives, three previously described bacteriochlorophyll c derivatives with molecular weights of 770, 784, and 802, and two undescribed derivatives of bacteriochlorophyll c with molecular weights of 766 and 788. With these improved identifications we speculate on the pathways and modes of pigment degradation in the lake and asses the value of the degraded pigments as biomarkers. The use of MS permitted the identification of a greater number of signature pigments of algal and bacterial communities thus increasing the palaeolimnological value of the sediments. These methods are best applied in fossil pigment studies where there are a large number of unknown pigments and pigment degradation products, and where there are no authentic standards for co-chromatography. Practical suggestions for pigment MS are included in the discussion.  相似文献   

14.
The development of Soppensee (Central Switzerland, 596 m a.s.l.) has been reconstructed using algal remains such as diatoms, chlorophytes and fossil pigments, as well as the pollen and spores of macrophytes. Sediment accumulation in Soppensee began at the end of the last glacial period, approximately 15,000 yrs ago. During the Oldest Dryas biozone (> 12,700 radiocarbon yrs B.P.) the lake had low primary productivity. After reforestation with birch and later pine, around 12,700 B.P., phases of summer anoxia occurred in the lake. These anoxic conditions were most probably caused by additional carbon input from the catchment, as well as longer phases of stratification due to reduced wind exposure caused by the sheltering effect of increased tree cover. From the Younger Dryas biozone (10,800 to 10,000 radiocarbon yrs B.P.) onwards, Soppensee became meromictic for several millennia.The fossil diatom assemblages are dominated by planktonic alkaliphilous to alkalibiontic species with mainly meso- to eutrophic preferences. Diatom-inferred total phosphorus reconstructions suggest meso- to eutrophic conditions throughout the Holocene. Eutrophic conditions are also suggested by the presence of pigments of cyanobacteria, including Oscillatoria species. First human activity in the catchment is evidenced ca. 5000 radiocarbon yrs B.P. by the occurrence of cereal pollen. Diatom-inferred total phosphorus concentrations also increased slightly during the Neolithic period.According to the fossil pigment record, meromictic conditions ended during the Iron Age. Deep-water anoxia, however, persisted at least during the stratification period. During the Middle Ages massive deforestation in the catchment and around the lake changed the limnological conditions drastically. The lack of forest increased the wind fetch and, therefore, also the mixing of the lake, while soil erosion and retting of hemp supplied additional nutrients. Because of intensive agriculture in its catchment, Soppensee has become hypertrophic and diatom assemblages have consequently changed completely in the last 50 yrs.  相似文献   

15.
Diatom and pigment data are presented from a 6.39 m core from Little Lake, New Brunswick. From its inception to ca. 11.5k y.B.P., the lake was dominated by benthic alkaliphilic diatoms, predominantly Fragilaria spp, which are believed to have grown in the moat of a lake with extended periods of ice cover. Ice free summers apparently prevailed for up to 500 years (ca. 11.5–11k y.B.P.), during which time planktonic species — Cyclotella bodanica Eulenst. and C. stelligera Cl. & Grun. appeared for the first time. From ca. 11.–10k y.B.P. the lake was dominated by Fragilaria pinnata Ehr.v. pinnata, F. construens v. venter (Ehr.) Grun. and F. construens (Ehr.) Grun. The reappearance of these species, coincident with distinct changes in sediments, organic matter, pollen types and influx rates, is believed to represent the influence of the younger Dryas climatic cooling. Little Lake appears to have reverted to a period of only partial summer melting. The ca. 10k y.B.P. warming is marked by a Navicula/Cymbella/Cyclotella community, representing growth of both littoral and planktonic communities. Navicula was subsequently replaced by Eunotia and Tabellaria, and finally by a Pinnularia/Stauroneis/Eunotia community, in which Fragilaria pinnata v. pinnata and F. construens v. venter increase again. These two recent phases represent increasing growth of a littoral community, and some increase in littoral alkaliphilous elements. Trends in organic matter and pigment values are consistent with a gradual increase in biomass, particularly from ca. 10k y.B.P. Diatom growth is indicative of increasing littoral and benthic growth with time, but there is no indication that Little Lake was ever eutrophic.  相似文献   

16.
Sedimentary diatom frustules and chironomid remains, in addition to the chemical stratigraphy of 32 elements and resin acids, were studied from short-core samples taken from two basins and a sheltered bay of Lake Päijänne in southern Finland (about 61 °10–62 °15 N, 25 °30 E). The lake was formerly oligotrophic but has been subject to effluent loading from pulp and paper mills during the past century since the opening of the first pulp mill in the 1880s. Four developmental phases were distinguished and named mainly according to the effects found in the basin close to the pollution source: (1) the pre-industrial phase (from the 1800s to ca. 1920), including the early years of industrialization, with low impacts; (2) the phase of increasing pollution (ca. 1920–1969); (3) the phase of severe pollution (1970–1981); and (4) the water protection phase (1982 onwards).Distinct differences were observed between pelagic (diatoms) and benthic (chironomid) ecosystems in their response to pollution. Effluent loading from the pulp and paper mills had a pronounced impact on chironomid assemblages, but only a slight influence on diatoms in the basin close to the pollution source. In the southern basin, approximately 60 km downstream, an increase in acidophilous species was observed in the diatom assemblages during the early years of pollution, but changes in chironomids in this basin were negligible. The water protection work of the past 30 years, which has led to an improvement in water quality and a marked recovery of the profundal biota, has also resulted in a slight increase in primary production of the lake. The decrease in brown-coloured effluent water has led to an increase in thickness of the lake's photic productive layer, while the toxicity of the water has simultaneously diminished. Rapid changes in chironomid assemblages and sedimentation observed in the sheltered bay highlight the importance of local land-use activities as causes of environmental change in this area, and especially their effects on sedimentation and benthic life.  相似文献   

17.
Pollen, geochemical and sedimentological data from Sidi Ali, a montane Moroccan lake, provide a 7000 yr record of changes in climate, catchment vegetation and soil erosion intensity. Diatoms, non-silicious algae, macrophyte fossils and ostracods from the same core record the dynamics of the lake ecosystem. Oxygen isotope and trace-element ratios of benthic ostracods appear to be relatively insensitive to climatic variation in this open lake with low water-residence time, but diatom plankton / periphyton (P/L) ratios show lake-level variations that are probably climate controlled. At least two superimposed processes are recorded, but at different timescales: catchment vegetation and soils show long-term changes due to climate and human impact, whereas P/L ratios suggest century-scale oscillations in lake depth. The timing of changes in algal and macrophyte productivity and carbon cycling within the lake broadly corresponds to changes in terrestrial vegetation, suggesting either that lake nutrient status is linked to catchment vegetation and soils, or that both were influenced by climate. The lack of a sensitive and independent (non-biological) climate proxy makes it more difficult to assess the lake's ecological response to short-term climate variation. Overall, the lake's evolution has been influenced both by catchment-mediated nutrient flux and by changes in water balance, thus having characteristics in common with both temperate and arid zone lakes.  相似文献   

18.
The Upper Río Lerma valley, Estado de México, is a high-altitude (2575 m a.s.l.) basin floored by Quaternary alluvial, lacustrine and pyroclastic deposits. Two pits were dug in the swampy bed of the recently drained L. Chiconahuapan. Ten 14C dates have been obtained from these profiles, which consist of diatomaceous organic lake muds and peats with intercalated tephras. The oldest unit is the Upper Toluca Pumice (Tripartite Ash), dated 11 580±70 yr BP. Analyses of sediment chemistry, loss-onignition, mineral-magnetic variations and subfossil diatom assemblages provide evidence of environmental changes since this date. Alkaline ponds or freshwater lakes developed during the intervals 9000–6000, 6000–5500, 3600–1400 and 800–0 yr BP, and acidic marshes or bogs during the intervening dry episodes. An important phase of accelerated erosion, beginning around 3100 yr BP and culminating around 1400–700 yr BP, appears to have been associated with human disturbance of the basin soils.  相似文献   

19.
Paleolimnological investigations of a marginal lake in the Lake Michigan basin revealed signals of long-term lake-level changes primarily controlled by climatic forces. Multiple analyses identified concurrent signals in sediment chemistry, grain size, and the microfossil record. Coarse-grained sediments, benthic diatoms, and nutrient response species increased as lake levels rose or fell. Finer sediments and higher percentages of taxa associated with stable thermocline conditions occurred during high-lake periods. Sedimentary evidence revealed corresponding strong high-lake signals c. 2500–2200, 1800–1500, 1170–730, and 500–280 BP. Low-lake periods occurred c. 1500–1170 and 700–500 B.P. An additional signal of lake-level decline was apparent beginning c. 280 BP but was interrupted by anthropogenic effects. Evidence of extreme low-lake levels (c. 1400–1300 BP), and signals for a medieval warming period (1030–910 BP) and the Maunder minimum (370–325 BP) indicate occurrence of short-lived dry climatic conditions.  相似文献   

20.
Paleoecological analysis of the sediment record of 12 Adirondack lakes reveals that the 8 clearwater lakes with current pH < 5.5 and alkalinity < 10 eq l-1 have acidified recently. The onset of this acidification occurred between 1920 and 1970. Loss of alkalinity, based on quanitative analysis of diatom assemblages, ranged from 2 to 35 eq l-1. The acidification trends are substantiated by several lines of evidence including stratigraphies of diatom, chrysophyte, chironomid, and cladoceran remains, Ca:Ti and Mn:Ti ratios, sequentially extracted forms of Al, and historical fish data. Acidification trends appear to be continuing in some lakes, despite reductions in atmospheric sulfur loading that began in the early 1970s. The primary cause of the acidification trend is clearly increased atmospheric deposition of strong acids derived from the combustion of fossil fuels. Natural processes and watershed disturbances cannot account for the changes in water chemistry that have occurred, but they may play a role. Sediment core profiles of Pb, Cu, V, Zn, S, polycyclic aromatic hydrocarbons, magnetic particles, and coal and oil soot provide a clear record of increased atmospheric input of materials associated with the combustion of fossil fuels beginning in the late 1800s and early 1900s. The primary evidence for acidification occurs after that period, and the pattern of water chemistry response to increased acid inputs is consistent with current understanding of lake-watershed acidification processes.This is the second of a series of papers to be published by this journal which is a contribution of the Paleoecological Investigation of Recent Lake Acidification (PIRLA) project. Drs. D.F. Charles and D.R. Whitehead are guest editors for this series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号