首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gulf sturgeon,Acipenser oxyrinchus desotoi, forage extensively in the Suwannee River estuary following emigration out of the Suwannee River, Florida. While in the estuary, juvenile Gulf sturgeon primarily feed on benthic infauna. In June–July 2002 and February–April 2003, random sites within the estuary were sampled for benthic macrofauna (2002 n = 156; 2003 n = 103). A mean abundance of 2,562 ind m−2 (SE ± 204) was found in the summer, with significantly reduced macrofaunal abundance in the winter (mean density of 1,044 ind m−2, SE ± 117). Benthic biomass was significantly higher in the summer with an average summer sample dry weight of 5.92 g m−2 (SE ± 0.82) compared to 3.91 g m−2 (SE ± 0.67) in the winter. Amphipods and polychaetes were the dominant taxa collected during both sampling periods. Three different estimates of food availability were examined taking into account principal food item information and biomass estimates. All three estimates provided a slightly different view of potential resources but were consistent in indicating that food resource values for juvenile Gulf sturgeon are spatially heterogeneous within the Suwannee River estuary.  相似文献   

2.
The invasion ofPhragmites australis into tidal marshes formerly dominated bySpartina alterniflora has resulted in considerable interest in the consequences of this invasion for the ecological functions of marsh habitat. We examined the provision of trophic support for a resident marsh fish,Fundulus heteroclitus, in marshes dominated byP. australis, byS. alterniflora, and in restored marshes, using multiple stable isotope analysis. We first evaluated our ability to distinguish among potential primary producers using the multiple stable isotope approach. Within a tidal creek system we found significant marsh and elevation effects on microalgal isotope values, and sufficient variability and overlap in primary producer isotope values to create some difficulty in identifying unique end members. The food webs supportingF. heteroclitus production were examined using dual isotope plots. At both sites, the δ13C values ofF. heteroclitus were clustered over values for benthic microalgae (BMI) and approximately midway between δ13C values ofSpartina andPhragmites. Based on comparisons of fish and primary producer δ13C, δ15N, and δ34S values, and consideration ofF. heteroclitus feeding habits, we conclude that BMI were a significant component of the food web supportingF. heteroclitus in these brackish marshes, especially recently-hatched fish occupying pools on the marsh surface. A 2‰ difference in δ13C betweenFundulus occupying nearly adjacentSpartina andPhragmites marshes may be indicative of relatively less reliance on BMI and greater reliance onPhragmites production inPhragmites-dominated marshes, a conclusion consistent with the reduced BMI biomass found inPhragmites marshes. The mean δ13C value ofF. heteroclitus from restored marshes was intermediate between values of fish from naturally occurringSpartina marshes and areas invaded byPhragmites. We also examined the isotopic evidence for ontogenetic changes in the trophic position of larval and juvenileF. heteroclitus. We found significant positive relationships betweenF. heteroclitus δ15N values and total length, reflective of an increase in trophic position as fish grow.F. heteroclitus δ15N values indicate that these fish are feeding approximately two trophic levels above primary producers.  相似文献   

3.
The eastern Alaska Beaufort Sea coast is characterized by numerous shallow (2–5 m) estuarine lagoons, fed by streams and small rivers that drain northward from the Brooks Range through the arctic coastal plain, and bounded seaward by barrier islands and shoals. Millions of birds from six continents nest and forage during the summer period in this region using the river deltas, lagoons, and shoreline along with several species of anadromous and marine fish. We examined biogeochemical processes linking the benthic community to the overall food web structure of these poorly studied but pristine estuaries, which are largely covered by 1.8 m of ice for 10 months annually. In summer, these lagoons are relatively warm with brackish salinities (5–10°C, S = 10–25) compared to more open coastal waters (0–5°C, S > 27). The stable isotopic composition of organic materials in sediments (i.e., benthic particulate organic matter) and water column suspended particulate organic matter from both streams and lagoons are largely indistinguishable and reflect strong terrestrial contributions, based upon δ13C and δ15N values (−25.6‰ to −27.4‰ and 1.4‰ to 3.3‰, respectively). By comparison, shifts toward more heavy isotope-enriched organic materials reflecting marine influence are observed on the adjacent coastal shelf (−24.8‰ to −25.4‰ and 3.4‰ to 5.3‰, respectively). The isotopic composition of lagoon fauna is consistent with a food web dominated by omnivorous detritovores strongly dependent on microbial processing of terrestrial sources of carbon. Biomagnification of 15N in benthic organisms indicate that the benthic food web in lagoons support up to four trophic levels, with carnivorous gastropod predators and benthic fishes (δ15N values up to 14.4‰) at the apex.  相似文献   

4.
Egg production of planktonic copepods, is commonly measured as a proxy for secondary production in population dynamics studies and for quantifying food limitation. Although limitation of copepod egg production by food quantity or quality is common in natural waters, it appears less common or severe in estuaries where food concentrations are often high. San Francisco Estuary, California, has unusually low concentrations of chlorophyll compared to other estuaries. We measured egg production rates of three species ofAcartia, with dominate the zooplankton biomass at salinity above 15 psu, on 36 occasions during 1999–2002. Egg production was determined by incubating up to 40 freshly collected individual copepods for 24 h in 140 ml of ambient water. Egg production was less than 10 eggs female−1 d−1 most of the year, but as high as 52 eggs female−1 d−1 during month-long spring phytoplankton blooms. Egg production was a saturating function of total chlorophyll concentration with a mean of 30 eggs female−1 d−1 above a chlorophyll concentration of 12±6 mg chl m−3. We take chlorophyll to be a proxy for total food ofAcartia, known to feed on microzooplankton as well as phytoplankton. These findings, together with long-term records of chlorophyll, concentration and earlier studies of abundance of nauplius larvae in the estuary, imply chronic food limitation ofAcartia species, with sufficient food for maximum egg production <10% of the time over the last 25 yr. These results may show the most extreme example of food limitation of copepod reproduction in any temperate estuary. They further support the idea that estuaries may provide suitable habitat forAcartia species by virtue of other factors than high food concentration.  相似文献   

5.
We used growth rates of juvenile winter flounderPseudopleuronectes americanus to assess anthropogenic influence on habitat quality at three sites in Narragansett Bay, Rhode Island. The upper bay site, Gaspee Point, had the highest population density and concentration of total nitrogen; human inputs decreased down bay. Growth rates of individually marked fish were measured in three 15-d experiments from June 8 to July 6, 1998 in 1-m2 cages placed at upper, middle, and lower bay sites. Water temperature, salinity, dissolved oxygen (DO), and benthic food were also measured. Stable isotopes of nitrogen and carbon were measured in experimental fish as possible indicators of nutrient enrichment and to identify organic carbon sources. Growth rates were 0.22–0.60 mm d−1, with the highest average at the mid-bay site. Growth was initially fastest at Gaspee Point, but dropped off as DO concentrations fell. Step-wise multiple regression indicated that location (upper, middle, or lower bay) explained most of the variability in fish growth (40%). Coefficients of other significant variables indicated that fish grew faster at lower salinities, smaller sizes, and with decreased time that DO was below 2.3 mg l−1. Benthic prey varied among sites and there was significantly less food and fewer species at Gaspee Point.Polydora cornuta was a favored food at all sites and was found in over half the stomachs. Values of δ15N in fish and sediments did not reflect differences in total nitrogen concentrations recorded near the sites. We suggest that anthropogenic influences, such as nutrients and sewage, affected habitat quality by reducing DO, which lowered fish growth rates.  相似文献   

6.
The Laguna Madre of South Texas is a shallow coastal lagoon whose dominant primary producers shifted from seagrasses to phytoplankton with the onset of the Texas brown tide, which persisted from 1990 through 1997. Acartia tonsa is the dominant component of the mesozooplankton and forms an important link in both the phytoplankton and detritus-based pelagic food webs. Stable carbon isotope ratios of A. tonsa, as well as the two major primary producers: phytoplankton (as particulate organic carbon) and seagrasses, were measured from March 1989 to October 1991. Zooplankton samples were collected at four locations in the Laguna Madre: two in shallow water (c. 1 m) over seagrass beds and two in slightly deeper water (c. 2–3 m) over a muddy bottom in a secondary bay without seagrasses. We found seasonal trends in the isotopic composition of A. tonsa collected within both habitats as well as distinct differences between the average {ie995-1} values of individuals collected in the two regions. Isotopic ratios of animals collected during the summer months were generally 4–8‰ enriched in 13C compared with those collected in the winter, at all stations. A. tonsa collected over seagrass beds were 2–5‰ more enriched in 13C than those collected over muddy bottoms. These observations suggest carbon derived from seagrasses can be an important source of nutrition for these copepods in summer, especially for copepods living over seagrass beds. The effects of the persistent brown tide decreased the contribution of seagrasses as a carbon source for A. tonsa during the summer of 1991. The pathway by which seagrass carbon enters the diet of A. tonsa is unclear, but the two pathways considered most likely are through copepods feeding on microzooplankton that have fed on bacteria nourished on seagrass carbon, or by copepods feeding directly on particles of seagrass detritus.  相似文献   

7.
Dreissena larval fluxes were studied in the lower stretch of the Seine River in 1996–1998. Fluxes reached 150×1012 ind d−1, representing a larval concentration of 5,000 ind l−1 in the Seine estuary. We showed that a sampling frequency with a 3-d interval allowed us to adequately estimate the annual production of larvae. The water residence time in the Seine River and estuary is sufficient for theDreissena larvae to complete their cycle and settlement. High abundance of the larvae in the plankton samples from the Seine River and its estuary showed the existence of a large community of benthic adults, known to be powerful filter-feeders. The progenitor population and the geographical extent of the adultDreissena were estimated from cohort analyses of the planktonic larvae. The maximum density ofDreissena was found in the highly channelized part of the estuary (up to 4,500 ind m−2). Estimated values were compared with concentration of mussels in the benthic traps and samples. Calculated filtration rates of benthic mussels were compared with those of larvae at different stages and with filtration of the zooplankton community. The impact of theDreissena was much higher than that of zooplankton; the filtration of the larvae exceeded that of adults during short periods of maximum larval emission.  相似文献   

8.
The standing stocks of ciliates and phytoplankton together with physical variables (temperature and density) were measured biweekly from March 6, 1999, to March 22, 2000, in the marine-dominated region of the South Slough, the southern arm of the Coos Bay estuary (Oregon, United States). The abundance and biomass of naked ciliates correlated significantly with phytoplankton <5 μm (ultraphytoplankton) biomass throughout the sampling periods and with total phytoplankton biomass between October and march; possibly due to a compositional shift in the >5 μm phytoplankton fraction from diatoms in the spring-summer period to flagellates during this fall-winter period. Temperature could explain 49% of the variation of ultraphytoplankton and naked ciliate biomass across seasons and may be important in determining the rate of the ciliate numerical response to increases in ultraphytoplankton and its assimilation into ciliate biomass. High standing stocks of ciliates, their strong coupling with ultraphytoplankton across seasons, and the relatively higher contribution of ciliate carbon to the ciliate and >5 μm phytoplankton carbon pool in the October–March period suggest that ciliates are a significant component to the South Slough food web and may be particularly important during seasons of reduced phytoplankton biomass.  相似文献   

9.
Zooplankton are an important trophic link and a key food source for many larval fish species in estuarine ecosystems. The present study documents temporal and spatial zooplankton dynamics in Suisun Bay and the Sacramento–San Joaquin Delta—the landward portion of the San Francisco Estuary (California, USA)—over a 37-year period (1972–2008). The zooplankton community experienced major changes in species composition, largely associated with direct and indirect effects of introductions of non-native bivalve and zooplankton species. A major clam invasion and many subsequent changes in zooplankton abundance and composition coincided with an extended drought and accompanying low-flow/high-salinity conditions during 1987–1994. In the downstream mesohaline region, the historically abundant calanoid copepods and rotifers have declined significantly, but their biomass has been compensated to some extent by the introduced cyclopoid Limnothoina tetraspina. The more upstream estuary has also experienced long-term declining biomass trends, particularly of cladocerans and rotifers, although calanoid copepods have increased since the early 1990s due to the introduced Pseudodiaptomus spp. In addition, mysid biomass has dropped significantly throughout the estuary. Shifts in zooplankton species composition have also been accompanied by an observed decrease in mean zooplankton size and an inferred decrease in zooplankton food quality. These changes in the biomass, size, and possibly chemical composition of the zooplankton community imply major alterations in pelagic food web processes, including a drop in prey quantity and quality for foraging fish and an increase in the importance of the microbial food web for higher trophic levels.  相似文献   

10.
The composition of the zooplankton community in a macrotidal (8 m tidal range), tropical estuarine system (Darwin Harbour, Australia; 12o28′ S, 130o50′ E) was studied over a 2 year period with the goal of describing biodiversity and determining the environmental factors that have the greatest impact on community structure. Most (82–84%) of the >73 μm plankton was composed of copepod nauplii and copepodites, and plankton samples taken with larger, coarser meshed (150 and 350 μm) nets did not contain significant numbers of larger (non-copepod) organisms. In all, 32 copepod species were recorded, with small euryhaline marine copepod species such as Parvocalanus crassirostris, Bestiolina similis and Oithona aruensis dominating the zooplankton. Plankton abundances ranged between 30,000 and 110,000 m−3, and there were significant year (2003 > 2004), season (wet > dry) and site differences (inner harbour sites > outer harbour sites), but negligible diurnal differences. Multivariate analyses identified three sample groups: (1) middle and outer harbour sites, (2) inner harbour and river sites and (3) the river site during the wet seasons. Middle and outer harbour stations were characterised by a diverse mixture of coastal copepods, whereas inner harbour and river sites were dominated by P. crassirostris and O. aruensis. During the wet season, there was a distinct copepod community within the Blackmore River, dominated by Acartia sinjiensis, Oithona nishidai and Pseudodiaptomus spp. Environmental variables (nutrients and chlorophyll a) were correlated with salinity, which had the strongest influence on community structure. There was a significant drop in species richness from harbour to river sites. Small copepods of the families Paracalanidae and Oithonidae dominate tide-dominated Australian tropical estuaries, whereas copepods belonging to the family Centropagidae (such as Gladioferens spp.) appear to be characteristic of wave-dominated estuaries in southern Australia.  相似文献   

11.
An integrated faunal and geochemical dataset has been generated by the study of a late Miocene (early Tortonian) sedimentary section outcropping at Manassi, Levkas Island (eastern Mediterranean). Quantitative analysis of benthic foraminifers from the 25-m-thick section indicates changes of bottom palaeoecological conditions in this part of the eastern Mediterranean, during the analyzed time interval. Benthic foraminifer assemblages are typical of a bathyal environment and testify to relatively oxygenated conditions with low to moderate food supply alternating with periods with an increase in organic matter content. The long-term palaeoceanographic analyses indicate an anti-estuarine circulation model based on the benthic foraminifer and stable isotope results, which evolved in a strong estuarine circulation. The positive relationship existing between the plankton δ18O and δ13C, in most of the record, agrees well with the hypothesis of a variable contribution of runoff. In three stratigraphic levels, samples record heavy bottom water δ18O and δ13C values and light surface δ18O values, representing a wet, warm, estuarine climate with a stratified water column. In two stratigraphic levels, samples have depleted δ13C and δ18O values for both surface and bottom waters. These two samples represent wet, warm climates with some ocean mixing and stratification. The stable isotope signal of foraminifer tests from the Manassi section was influenced by the global temperature changes, but the local factors also played an important role. The palaeoenvironments derived from stable isotope analysis in this study are interpreted as responses to the local tectonic instability together with monsoon intensities that enhanced continental runoff, characteristic for the time interval studied in the study area. Due to the limited data available from this study, no correlations with the precessional, obliquity, or eccentricity cycles can be made.  相似文献   

12.
The biomass of phytoplankton, microzooplankton, copepods, and gelatinous zooplankton were measured in two tributaries of the Chesapeake Bay during the springs of consecutive dry (below average freshwater flow), wet (above average freshwater flow), and average freshwater flow years. The potential for copepod control of microzooplankton biomass in the dry and wet years was evaluated by comparing the estimated grazing rates of microzooplankton by the dominant copepod species (Acartia spp. andEurytemora affinis) to microzooplankton growth rates and by calculating the percent of daily microzooplanton standing stock removed through copepod grazing. There were significant increases in phytoplankton and copepod biomass, but not for microzooplankton biomass in the wet year as compared to the dry year. The ctenophoreMnemiopsis leidyi was present during the dry year but was absent during the sampling period of the wet and average freshwater flow years. Grazing pressure on microzooplankton was greatest in the wet year, withAcartia spp. andE. affinis ingesting 0.21–2.64 μg of microzooplankton C copepod−1 d−1 and removing up to 60% of the microzooplankton standing stock per day. In the dry year, these copepod species ingested 0.10–0.73 μg of microzooplankton C copepod−1 d−1 with a maximum daily removal of approximately 3% of the microzooplankton standing stock. Potential copepod grazing pressure was significantly less than microzooplankton growth in the dry year, but was equivalent to microzooplankton growth in the wet year, implying strong top-down control of the microzooplankton community in the wet year. These results suggest that increased grazing control of microzooplankton populations by more copepods in the wet year released top-down control of phytoplankton. Reduced microzooplankton grazing, in conjunction with increased nutrient availability, resulted in large increases in phytoplankton biomass in the wet year. Increased freshwater flow has the potential to influence trophic cascades and the partitioning of plankton production in estuarine systems.  相似文献   

13.
Hypoxia occurs during summer in the southeastern region of Corpus Christi Bay, Texas. The objectives of this study were to identify potential causes of recurrent hypoxic events, to determine hypoxic effects on benthic macroinfauna, and to develop models of benthic response. Long-term and short-term hydrographic surveys were performed, and macroinfaunal samples were collected from normoxic and hypoxic regions of the bay. Hypoxia occurred in seven of the nine summers sampled (1988 to 1996). In 1994, the hypoxic event persisted for approximately 3 wk. Hypoxic events were associated with water column stratification where the difference between bottom and surface salinity was as high as 7.2‰ and averaged 4.1‰ The salinity difference is surprising because water column stratification is not expected in shallow (< 4 m), windy (average 18.5 km h−1) bays. Stratification did occur—hypersaline bottom water in a relatively stagnant portion of the bay—in spite of mixing forces (i.e., high winds), giving rise to hypoxia. Benthic biomass decreased 12-fold, and abundance and diversity decreased 5-fold under hypoxic conditions. In addition, dominance patterns shifted as oxygen levels declined from 5 mg O2 1−1 to <1 mg O2 1−1. The polychaete Streblospio benedicti and oligochaetes tolerated low oxygen better than other infauna. Community response to hypoxic disturbance was fit to a nonparametric categorical model and a parametric logistic model. Biomass, abundance, and diversity exhibited a lag response at <3 mg l−1, and increased exponentially from 3 mg 1−1 to 6 mg 1−1. Based on both models, 3 mg 1−1 appears to define the breakpoint between normoxic and hypoxic benthic communities in Corpus Christi Bay. This value is higher than traditional definitions of hypoxia, <2 mg 1−1 or <2 ml 1−1 (ca. 2.8 mg 1−1). *** DIRECT SUPPORT *** A01BY085 00002  相似文献   

14.
To determine if toxaphene residues in edible fish tissue decreased after removal of contaminated sediments from an estuarine site in 1999, 51 composite samples representing six finfish species were collected in 2001 and analyzed using gas chromatography with electron capture and negative ion mass spectrometric detection. The grand mean total toxaphene residue concentration on a wet weight basis (ΣTOXwet) was 1,400 ± 3,500 ng g−1 (range: < 18 to 18,000 ng g−1) and was positively correlated with extractable lipid. On a lipid basis, the mean ΣTOXlip was 26 ± 33 μg g1, which decreased with increasing distance from the study site. Although benthically-oriented species, such as spot (Leiostomus xanthurus) and striped mullet (Mugil cephalus), exhibited higher mean ΣTOXwet than those of higher trophic level fish, mean ΣTOXlip were not significantly different among species. The grand mean ΣTOX for 2001 was 3.8 (wet) and 2.6 (lipid) times less than corresponding preremedial action (1997) concentrations, suggesting that bioavailable toxaphene residues in this system have been reduced. Forage species, such as croaker (Micropogonias undulatus), mullet, and spot, preferentially accumulate toxaphene residues in this system and may serve as vectors of organochlorine contaminants in the estuarine and coastal ocean food web.  相似文献   

15.
Bulk δ 34Srock values, sulfur contents, and magnetic susceptibility were determined for 12 gold-related granitoid intrusions in southwestern New Brunswick, the Canadian Appalachians. The sulfur isotope compositions of sulfide minerals in some of the granitoid samples were also analyzed. This new dataset was used to characterize two distinctive groups of granitoids: (1) a Late Devonian granitic series (GS) and (2) a Late Silurian to Early Devonian granodioritic to monzogranitic series (GMS). The GS rocks have a large range in δ 34S values of −7.1‰ to +13‰ with an average of 2.2 ± 5.0‰ (1σ), low bulk-S contents (33 to 7,710 ppm) and low magnetic susceptibility values (<10−4 SI), consistent with reduced ilmenite-series granites. The GMS rocks have a relatively narrower variation in δ 34S values of −4.4‰ to +7.3‰ with an average 1.2 ± 2.9‰ but with larger ranges in bulk-S contents (45 to 11,100 ppm) and high magnetic susceptibility values (>10−3 SI), indicative of oxidized magnetite-series granites. The exceptions for the GMS rocks are the Lake George granodiorite and Tower Hill granite that display reduced characteristics, which may have resulted from interaction of the magmas forming these intrusions with graphite- or organic carbon-bearing sedimentary rocks. The bulk δ 34S values and S contents of the GMS rocks are interpreted in terms of selective assimilation–fractional crystallization (SAFC) processes. Degassing processes may account for the δ 34S values and S contents of some GS rocks. The characteristics of our sulfur isotope and abundance data suggest that mineralizing components S and Au in intrusion-related gold systems are dominantly derived from magmatic sources, although minor contaminants derived from country rocks are evident. In addition, the molar sulfate to sulfide ratio in a granitic rock sample can be calculated from the δ 34Srock value of the whole-rock sample and the δ 34Ssulfide (or δ 34Ssulfate) value of sulfide and/or sulfate mineral in the sample on the basis of S-isotope fractionation and mass balance under the condition of magmatic equilibrium. This may be used to predict the speciation of sulfur in granitic rocks, which can be a potential exploration tool for intrusion-related gold systems.  相似文献   

16.
The present study focused on detecting variations in trophic relationships among blue crab (Callinectes sapidus) consumers according to water quality along two estuaries in North Carolina. Stable isotope (δ15N and δ13C) analyses of particulate organic matter and bivalve(Rangia cuneata andCorbicula fluminea) food sources were examined in combination with an Isosource mixing model. Results suggest that blue crab δ13C values increased significantly with increasing salinity from upper to lower sites along the Neuse River estuary (NRE; R2 = 0.87, p < 0.01) and Alligator River estuary (R2 = 0.92, p < 0.01). There was a positive relationship between blue crab δ15N values and nitrate concentrations for the NRE (R2 = 0.48, p = 0.12). This study found that blue crab δ13C values increased with salinity from upper to lower regions along both estuaries. Results suggest that blue crab production may have used alternative food sources that were isotopically (δ13C) depleted, especially in the upper NRE, and enriched sources in the mid to lower regions of both estuaries. Consumers sampled from the upper NRE may be influenced by higher nitrogen input from urban land use and municipal wastewater.  相似文献   

17.
Epiphytic microbial biomass (as chlorophylla) was measured monthly in North Inlet Estuary, South Carolina, for 16 months on spatially distinct stem sections (bottom and middle) of dead and livingSpartina alterniflora growth forms (tall, medium, and short) exposed at low tide. The highest biomass was located on the bottom section of tall plants, presumably due to their relatively longer contact with creek water and associated phytoplankton, and their closer proximity to marsh sediments with associated benthic microalgae, both recruitment sources for epiphytes. Dead plants left standing from the previous year’s growth cycle had higher epiphytic biomass than living plants, which occurred mostly in late spring through fall. Epiphytic biomass was highest in the winter (mean of 1.77 mg chla (m2 marsh)−1) and lowest in the summer (mean of 0.34 mg chla (m2 marsh)−1). Because phytoplankton andSpartina production are lowest in the winter, the results emphasize the relative importance of epiphytes to growth of herbivores in this season.  相似文献   

18.
Field experiments were conducted to examine spatial and temporal variation in chironomid (predominantlyTanypus clavatus) abundance, and their trophic relationship with benthic microalgae. High performance liquid chromatography (HPLC) analysis of chironomid gut pigments indicated that diatoms comprised the bulk of the microalgae ingested by chironomids.14C-feeding studies were used to obtain quantitative estimates of chironomid, copepod, ostracod, and nematode grazing on benthic microalgae. Daily consumption of standing microalgal biomass by chironomids ranged from 0.12% (January) to 125% (May), but was highly variable. There were no significant diel, temporal (over the scale of months), or spatial patterns in individual chironomid grazing rates. There was significant temporal variation in the proportion of microalgal biomass consumed by the total meiofaunal assemblage, and highest grazing impacts occurred in May, coincident with high abundances of chironomids, harpacticoid copepods, and ostracods. The grazing impact of chironomids was comparable to or greater than that of other known grazers of microalgae (copepods, ostracods). Functional-response experiments performed in the laboratory revealed that chironomid ingestion rates increased with increasing food availability over short (1 to 2 h) time scales. Field data did not indicate a functional response to food availability over longer (mo) time scales, possibly because of other environmental incluences. Gut residence time (determined using fluorescently labeled beads) changed with variable feeding rates, which were in turn a function of variable food availability. Chironomid larvae have the ability to consume significant fraction of the microphytobenthos in absolute terms, and relative to other meiofauna, indicating that they are an important component of the salt marsh food web.  相似文献   

19.
Florida Bay is Florida’s (USA) largest estuary and has experienced harmful picocyanobacteria blooms for nearly two decades. While nutrient loading is the most commonly cited cause of algal blooms in Florida Bay, the role of zooplankton grazing pressure in bloom occurrence has not been considered. For this study, the spatial and temporal dynamics of cyanobacteria blooms, the microbial food web, microzooplankton and mesozooplankton grazing rates of picoplankton, and the effects of nutrients on plankton groups in Florida Bay were quantified. During the study, cyanobacteria blooms (>3 × 105 cells mL−1) persisted in the eastern and central regions of Florida Bay for more than a year. Locations with elevated abundance of cyanobacteria hosted microzooplankton grazing rates on cyanobacteria that were significantly lower (p < 0.001) and less frequently detectable compared to sites without blooms. Consistent with this observation, cyanobacteria abundances were significantly correlated with ciliates and heterotrophic nanoflagellates at low cyanobacteria densities (p < 0.001) but were not correlated during bloom events. The experimental enrichment of mesozooplankton abundance during blooms yielded a significant decrease in the net growth rate of picoplankton but had the opposite effect when blooms were absent, suggesting that the cascading effect of mesozooplankton grazing on the microbial food web was also altered during blooms. While inorganic nutrient enrichment significantly increased the net growth rates of eukaryotic phytoplankton and heterotrophic bacteria, such nutrient loading had no effect on the net growth rates of cyanobacteria. Hence, this study demonstrates that low rates of zooplankton grazing and low rates of inorganic nutrient loading contribute to the persistence of cyanobacteria blooms in Florida Bay.  相似文献   

20.
Riparian wetlands have multiple source waters that require understanding to effectively manage water quantity and quality. Source waters were determined in an interception-wetland located a relatively flat clayey till terrain in southern Minnesota. Data loggers were used to measure precipitation, water stage from monitoring wells and a tile-drain outlet. Over 70 oxygen (δ18O), hydrogen (δD) and geochemical water samples were collected from seven locations over different seasons (9 events) from 1996 to 1999. Results indicate the dominant source water input to the wetland was drained shallow groundwater beneath intensively managed cropland (P = 0.000). Evapotranspiration was the dominant export pathway. Nitrate–nitrogen (NO3-N) concentrations significantly decreased (P = 0.000) in the cattail-willow portion of the wetland. Total phosphorous (TP) concentrations were relatively high in the grass portion of the wetland (673 ± 549 μg L−1), and relatively low in the cattail-willow portion of the wetland (139 ± 85 μg L−1) because source waters were low in TP. Overall, the interception-wetland design limited out-of-bank flooding, yet allowed sufficient gradient between the cropland and the wetland outlet to minimize potential crop damage and provide hydraulic storage for nutrient attenuation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号