首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bubble growth in rhyolitic melts: experimental and numerical investigation   总被引:2,自引:0,他引:2  
 Bubble growth controlled by mass transfer of water from hydrated rhyolitic melts at high pressures and temperatures was studied experimentally and simulated numerically. Rhyolitic melts were hydrated at 150 MPa, 780–850  °C to uniform water content of 5.5–5.3 wt%. The pressure was then dropped and held constant at 15–145 MPa. Upon the drop bubbles nucleated and were allowed to grow for various periods of time before final, rapid quenching of the samples. The size and number density of bubbles in the quenched glasses were recorded. Where number densities were low and run duration short, bubble sizes were in accord with the growth model of Scriven (1959) for solitary bubbles. However, most results did not fit this simple model because of interaction between neighboring bubbles. Hence, the growth model of Proussevitch et al. (1993), which accounts for finite separation between bubbles, was further developed and used to simulate bubble growth. The good agreement between experimental data, numerical simulation, and analytical solutions enables accurate and reliable examination of bubble growth from a limited volume of supersaturated melt. At modest supersaturations bubble growth in hydrated silicic melts (3–6 wt% water, viscosity 104–106 Pa·s) is diffusion controlled. Water diffusion is fast enough to maintain steady-state concentration gradient in the melt. Viscous resistance is important only at the very early stage of growth (t<1 s). Under the above conditions growth is nearly parabolic, R2=2Dtρm(C0–Cf)/ρg until the bubble approaches its final size. In melts with low water content, viscosity is higher and maintains pressure gradients in the melt. Growth may be delayed for longer times, comparable to time scales of melt ascent during eruptions. At high levels of supersaturation, advection of hydrated melt towards the growing bubble becomes significant. Our results indicate that equilibrium degassing is a good approximation for modeling vesiculation in melts with high water concentrations (C0>3 wt%) in the region above the nucleation level. When the melt accelerates and water content decreases, equilibrium can no longer be maintained between bubbles and melt. Supersaturation develops in melt pockets away from bubbles and new bubbles may nucleate. Further acceleration and increase in viscosity cause buildup of internal pressure in the bubbles and may eventually lead to fragmentation of the melt. Received: 19 June 1995 / Accepted: 27 December 1995  相似文献   

2.
Vesiculation and crystallization in ascending magmas are key processes that control the eruption behavior, and they interplay each other through the water exsolution process. We conducted a numerical study in order to quantitatively understand the water exsolution and crystallization processes in natural eruptions (decompression history is unknown) and in laboratory experiments (the amount of decompression is constant with time). The numerical results, which take into account homogeneous or heterogeneous nucleation and growth of bubbles with varying diffusivity of water, viscosity, and the amount of decompression, provide a quantitative understanding of their control on bubble formation and water exsolution in the constant amount of decompression. The bubble nucleation in the homogeneous nucleation can be divided into two regimes – the diffusion control regime and viscosity control regime – depending on the modified Peclet number and the effective supersaturation. In the cases of both homogeneous and heterogeneous nucleations, the bubble growth is controlled by diffusion or viscosity, depending on the modified Peclet number and bubble number density. The water exsolution rate, which is controlled by the modified Peclet number in the viscosity control regime and by the bubble number density and diffusive driving force in the diffusion control regime, acts as an effective cooling rate in a decompression-induced crystallization process. A comparison of the numerical results with the results of laboratory experiments suggests that water exsolution proceeds by the diffusion-limited growth of bubbles under disequilibrium vesiculation through the heterogeneous nucleation of bubbles, and this in turn controls the crystallization kinetics of microlite with the homogeneous nucleation of microlite and the diffusion-limited growth of crystal. The several orders of variation of microlite number density with the amount of decompression in laboratory experiments can be interpreted as the effect of the amount of decompression on the driving force for the diffusive bubble growth that controls the water exsolution rate.  相似文献   

3.
We present a visco-elastic bubble growth model, accounting for viscous and elastic deformations and for volatile mass transfer between bubbles and melt. We define the borders between previous bubble growth models accounting for incompressible viscous melt, and our new model accounting also for elastic deformation; this is done by a set of end-member analytical solutions and numerical simulations. Elastic deformation is most prominent for magma of small vesicularity, where the growth regime depends on the shear modulus. For high shear modulus, bubble growth is slow and follows an exponential law in a viscous growth regime, while for low shear modulus bubbles quickly follow a square-root diffusive solution. Our model provides all the elastic components (stresses, strains and strain rates) required for defining criteria for failure and magma fragmentation. We suggest two failure criteria, a stress related one based on the internal friction and the Mohr-Coulomb failure theory, and a strain related one based on fibre elongation experiments. We argue that both criteria are equivalent if we consider their shear modulus dependency and its effect on magma rheology. Last, we apply our model to the process of bubble nucleation. In the incompressible case, following nucleation, growth is slow and leads to long incubation times during which bubbles may be dissolved back into the melt. The elastic response in magmas with low shear modulus results in a short incubation time, increasing the probability of survival. The above effects emphasize the significance of visco-elasticity for the dynamic processes occurring in magmas during volcanic activity.  相似文献   

4.
Analytical models for decompressional bubble growth in a viscous magma are developed to establish the influence of high magma viscosity on vesiculation and to assess the time-scales on which bubbles respond to decompression. Instantaneous decompression of individual bubbles, analogous to a sudden release of pressure (e.g. sector collapse), is considered for two end-member cases. The infinite melt model considers the growth of an isolated bubble before significant bubble interaction occurs. The shell model considers the growth of a bubble surrounded by a thin shell and is analogous to bubble growth in a highly vesicular magmatic foam. Results from the shell model show that magmas less viscous than 109 Pa s can freely expand without developing strong overpressures. The timescales for pressure re-equilibration are shortened by increased ratios of bubble radius to shell thickness and by larger decompression. Time-scales for isolated bubbles in rhyolitic melts (infinite melt model) are significantly longer, implying that such bubbles could experience internal pressures greater than the ambient pressure for at least a few hours following a sudden release of pressure. The shell model is developed to assess bubble growth during the linear decompression of a magma body of constant viscosity. For the range of decompression rates and viscosities associated with actual volcanic eruptions, bubble growth continues at approximately the equilibrium rate, with no attendant excess of internal pressure. The results imply that viscosity does not have any significant role in preventing the explosive expansion of high viscosity foams. However, for viscosities of >109 Pa s there is the potential for a viscosity quench under the extreme decompression rates of an explosive eruption. It is proposed that the typical vesicularities of pumice of 0.7–0.8 are a consequence of the viscosity of the degassing magmas becoming sufficiently high to inhibit bubble expansion over the characteristic time-scale of eruption. For fully degassed silicic lavas with viscosities in the range 1010 to 1012 Pa s time-scales for decompression of isolated bubbles can be hours to many months.  相似文献   

5.
The style of magma eruption depends strongly on the character of melt degassing and foaming. Depending on the kinetics of these processes the result can be either explosive or effusive volcanism. In this study the kinetics of foaming due to the internal stresses of gas expansion of two types of obsidian have been investigated in time series experiments (2 min-24 h) followed by quenching the samples. The volumetric gas-melt ratio has been estimated through the density measurements of foamed samples.The variation of gas volume (per unit or rhyolite melt volume) with time may be described by superposition of two exponentials responsible for gas generation and gas release processes respectively. An observed difference in foaming style in this study is interpreted as the result of variations in initial contents of microlites that serve as bubble nucleation centers during devolatilization of the melts. Quantitatively the values of the gas generation rate constants (k g) are more than an order of magnitude higher in microlite-rich obsidian than in microlite-free obsidian. Possible origins of differences in the degassing style of natural magmas are discussed in the light of bubble nucleation kinetics in melts during foaming. In a complementary set of experiments the mechanical response of vesicular melt to external shear stress has been determined in a concentric cylinder viscometer. The response of vesicular melt to the pulse of shear deformation depends on the volume fraction of bubbles. The obtained response function can be qualitatively described by a Burgers body model. The experimental shear stress response function for bubble-bearing melt has an overshoot due to the strain-dependent rheology of a twophase liquid with viscously deformable inclusions.  相似文献   

6.
Vulcanian eruptions are common at many volcanoes around the world. Vulcanian activity occurs as either isolated sequences of eruptions or as precursors to sustained explosive events and is interpreted as clearing of shallow plugs from volcanic conduits. Breadcrust bombs characteristic of Vulcanian eruptions represent samples of different parts of these plugs and preserve information that can be used to infer parameters of pre-eruption magma ascent. The morphology and preserved volatile contents of breadcrust bombs erupted in 1999 from Guagua Pichincha volcano, Ecuador, thus allow us to constrain the physical processes responsible for Vulcanian eruption sequences of this volcano. Morphologically, breadcrust bombs differ in the thickness of glassy surface rinds and in the orientation and density of crack networks. Thick rinds fracture to create deep, widely spaced cracks that form large rectangular domains of surface crust. In contrast, thin rinds form polygonal networks of closely spaced shallow cracks. Rind thickness, in turn, is inversely correlated with matrix glass water content in the rind. Assuming that all rinds cooled at the same rate, this correlation suggests increasing bubble nucleation delay times with decreasing pre-fragmentation water content of the melt. A critical bubble nucleation threshold of 0.4–0.9 wt% water exists, below which bubble nucleation does not occur and resultant bombs are dense. At pre-fragmentation melt H2O contents of >∼0.9 wt%, only glassy rinds are dense and bomb interiors vesiculate after fragmentation. For matrix glass H2O contents of ≥1.4 wt%, rinds are thin and vesicular instead of thick and non-vesicular. A maximum measured H2O content of 3.1 wt% establishes the maximum pressure (63 MPa) and depth (2.5 km) of magma that may have been tapped during a single eruptive event. More common H2O contents of ≤1.5 wt% suggest that most eruptions involved evacuation of ≤1.5 km of the conduit. As we expect that substantial overpressures existed in the conduit prior to eruption, these depth estimates based on magmastatic pressure are maxima. Moreover, the presence of measurable CO2 (≤17 ppm) in quenched glass of highly degassed magma is inconsistent with simple models of either open- or closed-system degassing, and leads us instead to suggest re-equilibration of the melt with gas derived from a deeper magmatic source. Together, these observations suggest a model for the repeated Vulcanian eruptions that includes (1) evacuation of the shallow conduit during an individual eruption, (2) depressurization of magma remaining in the conduit accompanied by open-system degassing through permeable bubble networks, (3) rapid conduit re-filling, and (4) dome formation prior to the subsequent explosion. An important part of this process is densification of upper conduit magma to allow repressurization between explosions. At a critical overpressure, trapped pressurized gas fragments the nascent impermeable cap to repeat the process.  相似文献   

7.
Equilibrium and disequilibrium degassing of a volatile phase from a magma of K-phonolitic composition was investigated to assess its behavior upon ascent. Decompression experiments were conducted in Ar-pressurized externally heated pressure vessels at superliquidus temperature (1050 °C), in the pressure range 10–200 MPa using pure water as fluid phase. All experiments were equilibrated at 200 MPa and then decompressed to lower pressures with rates varying from 0.0028 to 4.8 MPa/s. Isobaric saturation experiments were performed at the same temperature and at 900–950 °C to determine the equilibrium water solubility in the pressure range 30–250 MPa. The glasses obtained from decompression experiments were analyzed for their dissolved water content, vesicularity and bubble size distribution. All decompressed samples presented a first event of bubble nucleation at the capsule–melt interface. Homogeneous bubble nucleation in the melt only occurred in fast-decompressed experiments (4.8 and 1.7 MPa/s), for ΔP ≅ 100 MPa. For these decompression rates high water over-saturations were maintained until a rapid exsolution was triggered at ΔP > 150 MPa. For slower rates (0.0028, 0.024, 0.17 MPa/s) the degassing of the melt took place by diffusive growth of the bubbles nucleating at the capsule–melt interface. This process sensibly reduced water over-saturation in the melt, preventing homogeneous nucleation to occur. For decompression rates of 0.024 and 0.17 MPa/s low water over-saturations were attained in the melt, gradually declining toward equilibrium concentrations at low pressures. A near-equilibrium degassing path was observed for a decompression rate of 0.0028 MPa/s. Experimental data combined with natural pumice textures suggest that both homogeneous and heterogeneous bubble nucleations occurred in the phonolitic magma during the AD 79 Vesuvius plinian event. Homogeneous bubble nucleation probably occurred at a depth of ∼ 3 km, in response to a fast decompression of the magma during the ascent.  相似文献   

8.
We have devised a new, simple and easy technique to measure the viscosity of hydrous silicate melts by combining an autoclave for melt hydration and the fiber elongation method for viscosity measurement. Using this, we measured the viscosity of hydrous rhyolitic melts whose water content ranges from 0.02 to 0.58 wt%. We observed a drastic decrease in viscosity against water content: 0.1 wt% water decreases the viscosity about an order of magnitude. Even when the water content is only 0.02 wt%, the viscosity decreased about half an order of magnitude. These results clearly demonstrate that the effect of water on viscosity should not be ignored even when it occurs as a trace constituent. We compared our experimental data with those derived from a non-Arrhenian viscosity model, which is considered to be applicable to calc-alkaline samples. This model succeeded in expressing the viscosity variation against water content but was unable to accurately predict the measured viscosity of liquids.Editorial responsibility: D. Dingwell  相似文献   

9.
Plinian/ignimbrite activity stopped briefly and abruptly 16 and 45 h after commencement of the 1912 Novarupta eruption defining three episodes of explosive volcanism before finally giving way after 60 h to effusion of lava domes. We focus here on the processes leading to the termination of the second and third of these three episodes. Early erupted pumice from both episodes show a very similar range in bulk vesicularity, but the modal values markedly decrease and the vesicularity range widens toward the end of Episode III. Clasts erupted at the end of each episode represent textural extremes; at the end of Episode II, clasts have very thin glass walls and a predominance of large bubbles, whereas at the end of Episode III, clasts have thick interstices and more small bubbles. Quantitatively, all clasts have very similar vesicle size distributions which show a division in the bubble population at 30 μm vesicle diameter and cumulative number densities ranging from 107–109 cm–3. Patterns seen in histograms of volume fraction and the trends in the vesicle size data can be explained by coalescence signatures superimposed on an interval of prolonged nucleation and free growth of bubbles. Compared to experimental data for bubble growth in silicic melts, the high 1912 number densities suggest homogeneous nucleation was a significant if not dominant mechanism of bubble nucleation in the dacitic magma. The most distinct clast populations occurred toward the end of Plinian activity preceding effusive dome growth. Distributions skewed toward small sizes, thick walls, and teardrop vesicle shapes are indicative of bubble wall collapse marking maturation of the melt and onset of processes of outgassing. The data suggest that the superficially similar pauses in the 1912 eruption which marked the ends of episodes II and III had very different causes. Through Episode III, the trend in vesicle size data reflects a progressive shift in the degassing process from rapid magma ascent and coupled gas exsolution to slower ascent with partial open-system outgassing as a precursor to effusive dome growth. No such trend is visible in the Episode II clast assemblages; we suggest that external changes involving failure of the conduit/vent walls are more likely to have effected the break in explosive activity at 45 h.  相似文献   

10.
This study focuses on constraining bubble nucleation and H2O exsolution processes in alkalic K-phonolite melts, using “white pumice” of the 79 AD eruption of Vesuvius as starting material. The first set of experiments consisted of H2O solubility runs at 1153 to 1250 K and pressures between 50 and 200 MPa, to constrain equilibrium water concentrations along the decompression pathways. The decompression experiments were equilibrated with H2O at 150 MPa and 1173 and 1223 K, and then decompressed at 3 to 17 MPa/s before rapid quenching. Experiments nucleated bubbles within the first 50 MPa pressure drop, producing maximum bubble number densities (NV), corrected to melt volume, of 3.8 × 1014 m− 3 at 1173 K and 4.3 × 1013 m− 3 at 1223 K. Most bubbles were not visibly attached to crystals, except for a subset attached to pyroxenes primarily in the 1173 K experiments. When compared with prior bubble nucleation studies, the reduced nucleation ΔP and relatively low NV observed indicate predominantly a heterogeneous nucleation mechanism. Melt–vapor–crystal wetting angles measured in 1173 K experiments from bubbles attached to pyroxene crystals are 36 to 69°, which are similar to those measured on titanomagnetite crystals in calc-alkaline dacite melts. The 1223 K experiments have porosities and water concentrations that largely track equilibrium, despite the rapid decompression rate. The 1173 K experiments deviate strongly from equilibrium trends in both porosity and water concentration, and slower H2O diffusion rates are likely the cause of the inhibited bubble growth. Bubble number densities from 79 AD Vesuvius natural EU2 pumice are relatively high (2 to 4 × 1015 m− 3; [Gurioli, L., Houghton, B.F., Cashman, K.V., Cioni, R., 2005. Complex changes in eruption dynamics during the 79 AD eruption of Vesuvius. Bull. Volcanol. 67: 144–159.]) when corrected to vesicularity. In comparison, corrected NV's from homogeneous and heterogeneous bubble nucleation experiments from this study and prior work are at least factor of 5 lower, indicating perhaps that the natural magmas initially nucleated bubbles in the presence of CO2. The disequilibrium H2O exsolution seen in the 1173 K experiments indicates that inhibited bubble growth could lead to delayed exsolution in the conduit in cooler K-phonolite magmas.  相似文献   

11.
This study assesses the effect of decompression rate on two processes that directly influence the behavior of volcanic eruptions: degassing and permeability in magmas. We studied the degassing of magma with experiments on hydrated natural rhyolitic glass at high pressure and temperature. From the data collected, we defined and characterized one degassing regime in equilibrium and two regimes in disequilibrium. Equilibrium bubble growth occurs when the decompression rate is slower than 0.1 MPa s–1, while higher rates cause porosity to deviate rapidly from equilibrium, defining the first disequilibrium regime of degassing. If the deviation is large enough, a critical threshold of super-saturation is reached and bubble growth accelerates, defining the second disequilibrium regime. We studied permeability and bubble coalescence in magma with experiments using the same rhyolitic melt in open degassing conditions. Under these open conditions, we observed that bubbles start to coalesce at ~43 vol% porosity, regardless of decompression rate. Coalescence profoundly affects bubble texture and size distributions, and induces the melt to become permeable. We determined coalescence to occur on a time scale (~180 s) independent of decompression rate. We parameterized and incorporated our experimental results into a 1D conduit flow model to explore the implications of our findings on eruptive behavior of rhyolitic melts with low crystal contents stored in the upper crust. Compared to previous models that assume equilibrium degassing of the melt during ascent, the introduction of disequilibrium degassing reduces the deviation from lithostatic pressure by ~25%, the acceleration at high porosities (>50 vol%) by a factor 5, and the associated decompression rate by an order of magnitude. The integration of the time scale of coalescence to the model shows that the transition between explosive and effusive eruptive regimes is sensitive to small variations of the initial magma ascent speed, and that flow conditions near fragmentation may significantly be affected by bubble coalescence and gas escape.Editorial responsibility: D. Dingwell  相似文献   

12.
When a highly viscous bubbly magma is sufficiently decompressed, layer-by-layer fracturing propagates through the magma at a certain speed (fragmentation speed). On the basis of a recent shock tube theory by Koyaguchi and Mitani [Koyaguchi, T., Mitani, N. K., 2005. A theoretical model for fragmentation of viscous bubbly magmas in shock tubes. Journal of Geophysical Research 110 (B10), B10202. doi:10.1029/2004JB003513.], gas overpressures at the fragmentation surface are estimated from experimental data on fragmentation speed in shock tube experiments for natural volcanic rocks with various porosities. The results show that gas overpressure at the fragmentation surface increases as initial sample pressure increases and sample porosity decreases. We propose a new fragmentation criterion to explain the relationship between the gas overpressure at the fragmentation surface, the initial pressure and the porosity. Our criterion is based on the idea that total fragmentation of highly viscous bubbly magmas occurs when the tensile stress at the midpoint between bubbles exceeds a critical value. We obtain satisfactory agreement between our simulation and experiment when we assume that the critical value is inversely proportional to the square root of bubble wall thickness. This fragmentation criterion suggests that long micro-cracks or equivalent flaws (e.g., irregular-shaped bubbles) that reach the midpoints between bubbles are a dominant factor to determine the bulk strength of the bubbly magma.  相似文献   

13.
The vesiculation of magma during the 1983 eruption of Miyakejima Volcano, Japan, is discussed based on systematic investigations of water content, vesicularity, and bubble size distribution for the products. The eruption is characterized by simultaneous lava effusion and explosive sub-plinian (‘dry’) eruptions with phreatomagmatic (‘wet’) explosions. The magmas are homogeneous in composition (basaltic andesite) and in initial water content (H2O = 3.9±0.9 wt%), and residual groundmass water contents for all eruption styles are low (H2O <0.4 wt%) suggestive of extensive dehydration of magma. For the scoria erupted during simultaneous ‘dry’ and ‘wet’ explosive eruptions, inverse correlation was observed between vesicularity and residual water content. This relation can be explained by equilibrium exsolution and expansion of ca. 0.3 wt% H2O at shallow level with different times of quenching, and suggests that each scoria with different vesicularity, which was quenched at a different time, provides a snapshot of the vesiculation process near the point of fragmentation. The bubble size distribution (BSD) varies systematically with vesicularity, and total bubble number density reaches a maximum value at vesicularity Φ ∼ 0.5. At Φ  ∼ 0.5, a large number of bubbles are connected with each other, and the average thickness of bubble walls reaches the minimum value below which they would rupture. These facts suggest that vesiculation advanced by nucleation and growth of bubbles when Φ < 0.5, and then by expansion of large bubbles with coalescence of small ones for Φ > 0.5, when bubble connection becomes effective. Low vesicularity and low residual water content of lava and spatter (Φ  < 0.1, H2O  < 0.1 wt%), and systematic decrease in bubble number density from scoria through spatter to lava with decrease in vesicularity suggest that effusive eruption is a consequence of complete degassing by bubble coalescence and separation from magma at shallow levels when magma ascent rate is slow.
T. ShimanoEmail:
  相似文献   

14.
 Experiments on degassing of water-saturated granite melts with a pressure drop from 100 and 450 MPa to 40 and 120 MPa, respectively, at temperatures close to feldspar liquidus (750–700  °C), were carried out to determine the modality of water exsolution and vesicle formation at the liquidus temperature. Pressure-drop rates as small as approximately 100 bar/day were used. Uniform space distributions of bubbles of exsolved water were obtained with starting glass containing a small fraction (≈0.5 vol.%) of trapped air bubbles. Volume crystallization of feldspar was observed in degassed melts supplied with seeds. Bubble size distributions (BSD) measured in granite glasses after degassing are presented. Data on vesicle characteristics (number, radius, area, elongation) were acquired on images digitized with standard software, while the reconstruction of size distributions was performed with the Schwartz-Saltikov "unfolding" procedure. Bubble size distributions of size classes in the range 5–1000 μm were acquired with proper magnification and satisfactory statistical reliability of determined number densities. The BSDs of the experimental samples are compared with the results of measurements of rapidly degassed products of Mt. Etna and Vulcano Island. Many particular features of the bubble nucleation and growth can be distinguished in an individual BSD. However, the general BSD of the whole data set, including natural ones, can be relatively well described with linear regression in bilogarithmic coordinates. The slope of this regression is approximately 2.8±0.1. This dependence is in striking contrast with distributions theoretically predicted with classical nucleation models based on homogeneous nucleation of vesicles. The theoretical distribution requires the occurrence of strong maxima that are not observed in our experimental and natural samples, thus arguing for heterogeneous nucleation mechanisms. Received: 1 October 1998 / Accepted: 25 June 1999  相似文献   

15.
Mechanisms of bubble coalescence in silicic magmas   总被引:1,自引:1,他引:0  
Bubble coalescence is an important process that strongly affects magmatic degassing. Without coalescence, bubbles remain isolated from one another in the melt, severely limiting gas release. Despite this fact, very little has been done to identify coalescence mechanisms from textures of magmatic rocks or to quantify the dynamics of bubble coalescence in melts. In this paper, we present a systematic study of bubble-coalescence mechanisms and dynamics in natural and experimentally produced bubbly rhyolite magma. We have used a combination of natural observations aided by high-resolution X-ray computed tomography, petrological experiments, and physical models to identify different types of bubble?Cbubble interaction that lead to coalescence on the timescales of magma ascent and eruption. Our observations and calculations suggest that bubbles most efficiently coalesce when inter-bubble melt walls thin by stretching rather than by melt drainage from between converging bubble walls. Orders of magnitude are more rapid than melt drainage, bubble wall stretching produces walls thin enough that inter-bubble pressure gradients may cause the melt wall to dimple, further enhancing coalescence. To put these results into volcanogical context, we have identified magma ascent conditions where each coalescence mechanism should act, and discuss the physical conditions for preserving coalescence structures in natural pumice. The timescales we propose could improve volcanic eruption models, which currently do not account for bubble coalescence. Although we do not address the effect of shear strain on bubble coalescence, the processes discussed here may operate in several different eruption regimes, including vesiculation of lava domes, post-fragmentation frothing of vulcanian bombs, and bubbling of pyroclasts in conduits.  相似文献   

16.
The viscosity of basalts (quartz and olivine tholeiite) was studied under pressure in dry conditions and in the presence of water. In dry conditions at 1400°C when pressure increases to 20 kbars the viscosity reduces by a factor of 2. In conditions of water saturation of basalt melts at 5 kbar the viscosity is smaller by a factor of ~ 50 than that in dry conditions. In the water undersaturated conditions when water content is fixed (3.3% H2O) in melt the viscosity considerably decreases with pressure and takes intermediate value between those in dry and water saturated conditions. Experimental data recently obtained permit us to consider the peculiarities of physical properties of magma in the presence of water on a new base. Ascending magma can reach critical velocities of transition to the turbulent regime under negligible pressure drop, as a result of low viscosity. It is known at present that water influences on the viscosity of acidic melt under pressure of 1–8 kbars and at temperatures between 800–1200°C. Various authors gave physico-chemical evaluation of the dynamics of granite melts on the basis of these data. The viscosity of basalt melts and their dynamics under normal pressure is also well-known. The known new experimental data of basaltic melt viscosity under pressure in dry conditions (Kushiro et al., 1976;Khitarov et al., 1978) and in the presence of water (Khitarov et al., 1976) embrace broader intervals of physico-chemical conditions as on the pressure (up to 20–30 kbar) as well on the content of water (from 3% up to 12 %). These data permitted to evaluate on a new base the dynamics of magmatic melts under pressure.  相似文献   

17.
 The vesiculation of a peralkaline rhyolite melt (initially containing ∼0.14 wt.% H2O) has been investigated at temperatures above the rheological glass transition (T g≈530  °C) by (a) in situ optical observation of individual bubble growth or dissolution and (b) dilatometric measurements of the volume expansion due to vesiculation. The activation energy of the timescale for bubble growth equals the activation energy of viscous flow at relatively low temperatures (650–790  °C), but decreases and tends towards the value for water diffusion at high temperatures (790–925  °C). The time dependence of volume expansion follows the Avrami equation ΔV (t)∼{1–exp [–(tav) n ]} with the exponent n=2–2.5. The induction time of nucleation and the characteristic timescale (τav) in the Avrami equation have the same activation energy, again equal to the activation energy of viscous flow, which means that in viscous melts (Peclet number <1) the vesiculation (volume expansion), the bubble growth process, and, possibly, the nucleation of vesicles, are controlled by the relaxation of viscous stresses. One of the potential volcanological consequences of such behavior is the existence of a significant time lag between the attainment of a super-saturated state in volatile-bearing rhyolitic magmas and the onset of their expansion. Received: March 20, 1995 / Accepted: October 24, 1995  相似文献   

18.
The viscosity of a series of six synthetic dacitic liquids, containing up to 5.04 wt% dissolved water, was measured above the glass transition range by parallel-plate viscometry. The temperature of the 1011 Pa s isokom decreases from 1065 K for the anhydrous liquid, to 864 K and 680 K for water contents of 0.97 and 5.04 wt% H2O. Including additional measurements at high temperatures by concentric-cylinder and falling-sphere viscometry, the viscosity (η) can be expressed as a function of temperature and water content w according to: where η is in Pa s, T is temperature in K, and w is in weight percent. Within the conditions of measurement, this parameterization reproduces the 76 viscosity data with a root-mean square deviation (RMSD) of 0.16 log units in viscosity, or 7.8 K in temperature. The measurements show that water decreases the viscosity of the dacitic liquids more than for andesitic liquids, but less than for rhyolites. At low temperatures and high water contents, andesitic liquids are more viscous than the dacitic liquids, which are in turn more viscous than rhyolitic liquids, reversing the trend seen for high temperatures and low water contents. This suggests that the relative viscosity of different melts depends on temperature and water content as much as on bulk melt composition and structure. At magmatic temperatures, rhyolites are orders of magnitude more viscous than dacites, which are slightly more viscous than andesites. During degassing, all three liquids undergo a rapid viscosity increase at low water contents, and both dacitic and andesitic liquids will degas more efficiently than rhyolitic liquids. During cooling and differentiation, changing melt chemistry, decreasing temperature and increasing crystal content all lead to increases in the viscosity of magma (melt plus crystals). Under closed system conditions, where melt water content can increase during crystallization, viscosity increases may be small. Conversely, viscosity increases are very abrupt during ascent and degassing-induced crystallization.  相似文献   

19.
This paper outlines methods for determining a bubble size distribution (BSD) and the moments of the BSD function in vesiculated clasts produced by volcanic eruptions. It reports the results of applications of the methods to 11 natural samples and discusses the implications for quantitative estimates of eruption processes. The analysis is based on a quantitative morphological (stereological) method for 2-dimensional imaging of cross-sections of samples. One method determines, with some assumptions, the complete shape of the BSD function from the chord lengths cut by bubbles. The other determines the 1st, 2nd and 3rd moments of distribution functions by measurement of the number of bubbles per unit area, the surface area per unit volume, and the volume fraction of bubbles. Comparison of procedures and results of these two distinct methods shows that the latter yields rather more reliable results than the former, though the results coincide in absolute and relative magnitudes. Results of the analysis for vesiculated rocks from eleven subPlinian to Plinian eruptions show some interesting systematic correlations both between moments of the BSD and between a moment and the eruption column height or the SiO2 content of magma. These correlations are successfully interpreted in terms of the nucleation and growth processes of bubbles in ascending magmas. This suggests that bubble coalescence does not predominate in sub-Plinian to Plinian explosive eruptions. The moment-moment correlations put constraints on the style of the nucleation and growth process of bubbles. The scaling argument suggests that a single nucleation event and subsequent growth with any kind of bubble interaction under continuous depressurization, which leads to an intermediate growth law between the diffusional growth ( ) at a constant depressurization rate and the Ostwald ripening ( ) under a constant pressure, where Rm and t are the mean radius of bubble and the effective time of diffusion respectively, occurred in the eruptions. It is emphasized that the BSD in vesiculated rocks from terrestrial volcanoes can be used to estimate quantitatively eruption processes such as the initial saturation pressure and magma ascent velocity in a volcanic conduit.  相似文献   

20.
Water dissolved in a silicate melt can strongly influence its physical properties and thus magma behavior during crystallization, degassing, foaming and fragmentation. Etna is a basaltic volcano whose activity is dominated by effusive eruptions which have long represented a threat to the densely populated, surrounding area. Recently, recognition of the products of a Plinian eruption (122 B.C.) has raised further issues for hazard assessment at Etna and other basaltic volcanoes. Constraining the behavior of Etna magma under conditions relevant to both effusive and explosive hazards requires viscosity data under conditions near the glass transition. Here we have investigated the viscosity of hydrous Etna lava in order to better understand eruptive processes which characterize this volcano. The experimental methods which have been used include piston cylinder synthesis of the hydrated melts, micropenetration viscometry for low-temperature viscosity measurements, and near-infrared spectroscopy for the evaluation of sample homogeneity and measurements of water content. Additionally, scanning calorimetric determinations were performed to check whether incipient crystallization had occurred. Sample compositions were determined using electron microprobe analysis and 57Fe Mössbauer spectroscopy. Results from this study are compared with previous reports of trachytic, phonolitic and model calc-alkaline rhyolite (HPG8) compositions. The viscosity of the basaltic melt (dry and wet) has been parameterized in terms of temperature and water content via the non-Arrhenian equation: log10-=-4.643+(5,812.44-427.042H2O)/(T(K)-499.31+28.742ln(H2O)) where - is the viscosity in Pa s, H2O is the water content in wt%, and T is the temperature in Kelvin. We observe that the viscosity of alkali basalt (at more than 0.5 wt% H2O) is similar to that of an alkaline trachyte (Agnano-Monte Spina eruption, Phlegrean Fields) and much higher than that of a peralkaline phonolite (Teide, Tenerife) at similar silica contents and NBO/T. For water contents above 1.5 wt%, the viscosity of the basalt is similar to that of rhyolitic melts with similar water contents. At temperatures ranging from 1,050 to 1,150 °C and with water contents between 0.5 and 2.3 wt% (eruptive conditions), the viscosities calculated using the equation defined in this study are (1) in reasonable agreement with those calculated using Shaw's model, and (2) much lower than those experimentally determined in a previous study. However, outside these temperature and water content ranges, the agreement with Shaw's model (1972) breaks down.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号