首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a Finite-Volume Community Ocean Model, we investigated the dynamic mechanism of the South China Sea Warm Current(SCSWC) in the northern South China Sea(NSCS) during winter monsoon relaxation. The model reproduces the mean surface circulation of the NSCS during winter, while model-simulated subtidal currents generally capture its current pattern. The model shows that the current over the continental shelf is generally southwestward, under a strong winter monsoon condition, but a northeastward counter-wind current usually develops between 50-and 100-m isobaths, when the monsoon relaxes. Model experiments, focusing on the wind relaxation process, show that sea level is elevated in the northwestern South China Sea(SCS), related to the persistent northeasterly monsoon. Following wind relaxation, a high sea level band builds up along the mid-shelf, and a northeastward current develops, having an obvious vertical barotropic structure. Momentum balance analysis indicates that an along-shelf pressure gradient provides the initial driving force for the SCSWC during the first few days following wind relaxation. The SCSWC subsequently reaches a steady quasi-geostrophic balance in the cross-shelf direction, mainly linked to sea level adjustment over the shelf. Lagrangian particle tracking experiments show that both the southwestward coastal current and slope current contribute to the northeastward movement of the SCSWC during winter monsoon relaxation.  相似文献   

2.
Type and evolution of landscapes of Nansha Islands   总被引:1,自引:0,他引:1  
TYPEANDEVOLUTIONOFLANDSCAPESOFNANSHAISLANDSZhaoHuanting(赵焕庭)SouthChinaSeaInstituteofOceanology,theChineseAcademyofSciences,Gu...  相似文献   

3.
Landscapes of the Nansha Islands may be divided into five types: tropical marine organism-breeding landscape of reef knoll like Zengmu Shoal, Wan’an Bank and so on; tropical marine organism-breeding landscape of atoll including all emerged reefs and most submerged reefs; tropical evergreen arbor-bush forest and phosphorous lime soil landscape of limesand Islets like Taiping Islet, Nanwei islet and so on; tropical shallow sea marine organism-breeding landscape of southern continental shelf; tropical oceanic and deep-sea marine organism landscape in middle and north parts of the Nansha Islands area. These five landscape types may be also summed up as two categories, one is tropical sea landscape including those in shallow and deep sea, the other is tropical coral reef landscape including those of reef knoll, atoll and limesand islet. This paper outlines the evolutional model of landscapes of the Nansha Islands. The distribution and evolution of landscape types are related with palaeogeography and modern environmental conditions. The former shallow sea of the Nansha islands was coastal zone in the Late Pleistocene epoch. Deep sea is evolved from shallow sea due to long and slow subsidence of crust. Modern coral reefs develop on old reef top of the Late pleistocene epoch or on baserock of continental shelf in the Holocene due to the rise of sea level in postglacial. Limesand islet is in the peak of developmental stage.  相似文献   

4.
As one of the biggest marginal seas in the western Pacific margin, the South China Sea (SCS) experienced continental rifting and seafloor spreading during the Cenozoic. The northern continental margin of the SCS is classified as a passive continental margin. However, its depositional and structural evolution remains controversial, especially in the deep slope area. The lack of data hindered the correlation between continental shelf and oceanic basin, and prevented the establishment of sequence stratigraphic frame of the whole margin. The slope basins in the mid-northern margin of SCS developed in the Cenozoic; the sediments and basin infill recorded the geological history of the continental margin and the SCS spreading. Using multi-channel seismic dataset acquired in three survey cruises during 1987 to 2004, combined with the data of ODP Leg 184 core and industrial wells, we carried out the sequence stratigraphic division and correlation of the Cenozoic in the middle-northern margin of SCS with seismic profiles and sedimentary facies. We interpreted the seismic reflection properties including continuity, amplitude, frequency, reflection terminals, and 15 sequence boundaries of the Cenozoic in the study area, and correlated the well data in geological age. The depositional environment changed from river and lake, shallow bay to open-deep sea, in correspondence to tectonic events of syn-rifting, early drifting, and late drifting stages of basin evolution.  相似文献   

5.
The northern slope region of the South China Sea(SCS) is a biological hot spot characterized by high primary productivity and biomasses transported by cross-shelf currents, which support the spawning and growth of commercially and ecologically important fish species. To understand the physical and biogeochemical processes that promote the high primary production of this region, we conducted a cruise from June 10 and July 2, 2015. In this study, we used fuzzy cluster analysis and optimum multiparameter analysis methods to analyze the hydrographic data collected during the cruise to determine the compositions of the upper 55-m water masses on the SCS northern slope and thereby elucidate the cross-slope transport of shelf water(SHW) and the intrusions of Kuroshio water(KW). We also analyzed the geostrophic currents derived from acoustic Doppler current profiler measurements and satellite data. The results reveal the surface waters on the northern slope of the SCS to be primarily composed of waters originating from South China Sea water(SCSW), KW, and SHW. The SCSW dominated a majority of the study region at percentages ranging between 60% and 100%. We found a strong cross-slope current with speeds greater than 50 cms~(-1) to have carried SHW into and through the surveyed slope area, and KW to have intruded onto the slope via mesoscale eddies, thereby dominating the southwestern section of the study area.  相似文献   

6.
On the basis of our study of the present sediments in the northern part of the continental shelf of the South China Sea, this article clarifies our views that a "three-zone pattern" is the basic feature of transgression-type sedimentation.The classification of transgression-type sedimentation of the present continental shelf is based on: the close relationships between the formation of the present continental shelf and the position of the low sea level of the Wiirrn glacial stage, the genetic types and environmental features of sedimentary zoning, the relationship between the formation of glauconite with different maturity and the migration of coastline, the speed of transgression, and the overlying speed of sedimentation. We put forward the genetic name of the "three-zone pattern" to denote:1.The inner zouu, river mouth-coastal current sedimentary area;2.The intermediate zone, coastal current-sea current scouring-sedimentary area;3.The outer zone, sea current scouring area.All these are of significance  相似文献   

7.
根据 1997年 12月至 1999年 6月在南海北部陆架区海域进行的底拖网渔业资源调查的资料 ,统计分析了南海北部陆架区海域深水金线鱼性腺成熟期的组成及分布、季节性变化和水深变化规律。结果表明 ,南海北部陆架区海域深水金线鱼的产卵场位于广东沿海水深 6 0~ 15 0m海区 ,尤其是珠江口外海区的群体更为密集 ;该生殖群体的产卵期较长 ,且分布范围大 ,未见有显著性变化。  相似文献   

8.
Using merged sea level anomaly and absolute geostrophic velocity products from satellite altimetry and Argos drifter data,we analyzed the reversal process of the South China Sea(SCS) western boundary current(SCSwbc) from a summer to winter pattern in 2011 and important oceanic phenomena during this process.Results show that the outbreak time of the northeast monsoon over the southern SCS lagged that over the northern SCS by about 1 month.During the SCS monsoon reversal period,the SCSwbc reversed rapidly into the winter pattern at the Guangdong continental slope in late September.Subsequently,the southward Vietnam coastal boundary current strengthened.However,the northward Natuna Current maintained a summer state until mid-October.Thus,the balance between the southward and northward currents was lost when they met,their junction moved gradually southward.However,a loop current formed southeast of Vietnam because the main stream of the Vietnam Offshore Current(VOC) remained near its original latitude.Meanwhile,the VOC and associated dipole circulation system strengthened.After midOctober,the northward Natuna Current began to weaken,the loop current finally shed,becoming a cool ring.The VOC and its associated dipole sub-basin circulation system also weakened gradually until it disappeared.  相似文献   

9.
The sea surface height oscillation with a quasi-four-month period (SSHO4) along continental slope in the northern South China Sea (NSCS) is detected using satellite altimeter data and an ocean model simulation. The SSHO4 is at southwest of Dongsha Island, and is characterized by a wavelength of ~600 km and a southwestward phase speed of ~0.1 m/s. Crossing the climatological background SST front, geostrophic currents corresponding to the SSHO4 generally induce sea surface temperature (SST) "tongues" during January-March. The cold and warm SST tongues appear southwest of cyclonic and anticyclonic eddies, respectively. The distance between the warm and cold SST tongues is about half the wavelength of the SSHO4. The geostrophic currents play an important role in lateral mixing, as manifested by the SST tongue phenomena in the NSCS.  相似文献   

10.
A three-dimensional baroclinic shelf sea model‘ s numerical simulation of the South China Sea (SCS) middle and deep layer circulation structure showed that: 1. In the SCS middle and deep layer, a seulhward boundary current exists along the east shore of the Indo-China Peninsula all year long.A cyclonic eddy (gyre) is formed by the current in the above sea areas except in the middle layer in spring, when an anticyclonic eddy exists on the eastern side of the current. In the deep layer, a larges-cale anticyclonic eddy often exists in the sea areas between the Zhongsha Islands and west shore of southern Luzon Island. 2. In the middle layer in snmmer and autumn, and in the deep layer in autumn and winter, there is an anticyclonic eddy (gyre) in the northeastern SCS, while in the middle layer in winter and spring, and in the deep layer in spring and snmmer, there is a cyclonic one. 3. In the middle layer,there is a weak northeastward current in the Nansha Trough in spring and snmmer, while in autumn and winter it evolves inl~ an anticyclonic eddy ( gyre), which then spreads westward l~ the whole western Nansha Islands sea areas.  相似文献   

11.
A three-dimensional baroclinic shelf sea model was employed to simulate the seasonal characteristics of the South China Sea (SCS) upper circulation. The results showed that: in summer, an anticyclonic eddy, after its formation between the Bashi Channel and Dongsha Islands in the northeastern SCS, moves southwestward until it disperses slowly. There exists a northward western boundary current along the east shore of the Indo-China Peninsula in the western SCS and an anticyclonic gyre in the southern SCS. But at the end of summer and beginning of autumn, a weak local cyclonic eddy forms in the Nansha Trough, then grows slowly and moves westward till it becomes a cyclonic gyre in the southern SCS in autumn. At the beginning of winter, there exists a cyclonic gyre in the northern and southern SCS, and there is a southward western boundary current along the east shore of the Indo-China Peninsula. But at the end of winter, an anticyclonic eddy grows and moves toward the western boundary after forming in the Nansha Trough. The eddy‘s movement induces a new opposite sign eddy on its eastern side, while the strength of the southward western boundary current gets weakened. This phenomenon continues till spring and causes eddies in the southern SCS.  相似文献   

12.
The concentrations of rare earth elements(REEs) in the bulk sediment of Core X2, which was collected from southeastern Hainan Island, were analyzed to investigate the relative contributions of various provenance regions since mid-Holocene. The results show that sediments in Core X2 were primarily derived from Hainan Island with lesser amounts from Taiwan and limited input from the Pearl River. Based on the application of quantitative inversion to model the REE data, the average contributions of river materials from southeastern Hainan Island and southwestern Taiwan to the study area were 68% and 32%, respectively. Furthermore, starting at 4.0 kyr BP, the transport of fluvial sediments from Taiwan to the study region increased due to enhanced hydrodynamics in South China Sea(SCS). These results indicate that the contributions of mountain river materials from Hainan Island and Taiwan to the continental shelf of northern SCS are non-negligible. Furthermore, these results demonstrate that mountain rivers can play an important role in the material cycle of continental margins and may feature a greater impact than large river systems in specific continental shelf areas.  相似文献   

13.
Typhoon is one of the frequent natural disasters in coastal regions of China.As shown in many studies,the impact of typhoons on the South China Sea(SCS) should not be overlooked.Super typhoon Rammasun(2014) was studied that formed in the northwestern Pacific,passed through the SCS,then landed in the Leizhou Peninsula.Remote sensing data and model products were used to analyze the spatiotemporal variations of the cold eddies,upwelling,sea surface temperature,mixed layer depth,rainfall,sea surface salinity,suspended sediment concentration,and surface-level anomaly.Results confirm the constant presence of upwelling and cold eddies in the southeast of Hainan(north of the Zhongsha Islands) and the southeast of Vietnam in July.In addition,we found the strengthening effect of super typhoon Rammasun on the upwelling and cold eddies in the SCS.The major reasons for the continuous decrease in sea surface temperature and the slow regaining of seawater temperature were the enhanced upwelling and vertical mixing caused by the typhoon.The increasing of the surface runoff in the Indochina Peninsula was mainly affected by the typhoon,with some contribution for the southeast of Vietnam's cold eddy and upwelling.  相似文献   

14.
We compared nonlinear principal component analysis (NLPCA) with linear principal component analysis (LPCA) with the data of sea surface wind anomalies (SWA), surface height anomalies (SSHA), and sea surface temperature anomalies (SSTA), taken in the South China Sea (SCS) between 1993 and 2003. The SCS monthly data for SWA, SSHA and SSTA (i.e., the anomalies with climatological seasonal cycle removed) were pre-filtered by LPCA, with only three leading modes retained. The first three modes of SWA, SSHA, and SSTA of LPCA explained 86%, 71%, and 94% of the total variance in the original data, respectively. Thus, the three associated time coefficient functions (TCFs) were used as the input data for NLPCA network. The NLPCA was made based on feed-forward neural network models. Compared with classical linear PCA, the first NLPCA mode could explain more variance than linear PCA for the above data. The nonlinearity of SWA and SSHA were stronger in most areas of the SCS. The first mode of the NLPCA on the SWA and SSHA accounted for 67.26% of the variance versus 54.7%, and 60.24% versus 50.43%, respectively for the first LPCA mode. Conversely, the nonlinear SSTA, localized in the northern SCS and southern continental shelf region, resulted in little improvement in the explanation of the variance for the first NLPCA.  相似文献   

15.
Impact of Kuroshio on the dissolved oxygen in the East China Sea region   总被引:1,自引:0,他引:1  
A marine survey was conducted from 18 May to 13 June 2014 in the East China Sea(ECS)and its adjacent Kuroshio Current to examine the spatial distribution and biogeochemical characteristics of dissolved oxygen(DO) in spring. Waters were sampled at 10-25 m intervals within 100 m depth, and at 25-500 m beyond 100 m. The depth, temperature, salinity, and density(sigma-t) were measured in situ with a conductivity-temperature-depth(CTD) sensor. DO concentrations were determined on board using traditional Winkler titration method. The results show that in the Kuroshio Current, DO content was the highest in the euphotic layer, then decreased sharply with depth to about 1 000 m, and increased with depth gradually thereafter. While in the ECS continental shelf area, DO content had high values in the coastal surface water and low values in the near-bottom water. In addition, a low-DO zone of f the Changjiang(Yangtze) River estuary was found in spring 2014, and it was formed under the combined influence of many factors, including water stratification, high primary productivity in the euphotic layers, high accumulation/sedimentation of organic matter below the euphotic layers, and mixing/transport of oceanic current waters on the shelf. Most notable among these is the Kuroshio intruded water, an oceanic current water which carried rich dissolved oxygen onto the continental shelf and alleviated the oxygen deficit phenomenon in the ECS, could impact the position, range, and intensity, thus the formation/destruction of the ECS Hypoxia Zone.  相似文献   

16.
In this paper, we apply an unstructured grid coastal ocean model to simulate variations in the sea level and currents forced by two typhoons in the northwestern South China Sea (SCS). The model simulations show distinct differences for the two cases in which the typhoon paths were north and south of the Qiongzhou (QZ) Strait. In both cases, coastal trapped waves (CTWs) are stimulated but their propagation behaviors differ. Model sensitivity simulations suggest the dominant role played by alongshore wind in the eastern SCS (near Shanwei) and southeast of Hainan Island. We also examine the influence of the Leizhou Peninsula by changing the coastline in simulation experiments. Based on our results, we can draw the following conclusions: 1) The CTWs stimulated by the northern typhoon are stronger than the southern CTW. 2) In the two cases, the directions of the current structures of the QZ cross-transect are reversed. The strongest flow cores are both located in the middle-upper area of the strait and the results of our empirical orthogonal function analysis show that the vertical structure is highly barotropic. 3) The simulated CTWs divide into two branches in the QZ Strait for the northern typhoon, and an island trapped wave (ITW) around Hainan Island for the southern typhoon. 4) The Leizhou Peninsula plays a significant role in the distribution of the kinetic energy flux between the two CTW branches. In the presence of the Leizhou Peninsula, the QZ branch has only 39.7 percent of the total energy, whereas that ratio increases to 72.2 percent in its absence.  相似文献   

17.
Wave simulation was conducted for the period 1976 to 2005 in the South China Sea (SCS) using the wave model, WAVEWATCH-III. Wave characteristics and engineering environment were studied in the region. The wind input data are from the objective reanalysis wind datasets, which assimilate meteorological data from several sources. Comparisons of significant wave heights between simulation and TOPEX/Poseidon altimeter and buoy data show a good agreement in general. By statistical analysis, the wave characteristics, such as significant wave heights, dominant wave directions, and their seasonal variations, were discussed. The largest significant wave heights are found in winter and the smallest in spring. The annual mean dominant wave direction is northeast (NE) along the southwest (SW)-NE axis, east northeast in the northwest (NW) part of SCS, and north northeast in the southeast (SE) part of SCS. The joint distributions of wave heights and wave periods (directions) were studied. The results show a single peak pattern for joint significant wave heights and periods, and a double peak pattern for joint significant wave heights and mean directions. Furthermore, the main wave extreme parameters and directional extreme values, particularly for the 100-year return period, were also investigated. The main extreme values of significant wave heights are larger in the northern part of SCS than in the southern part, with the maximum value occurring to the southeast of Hainan Island. The direction of large directional extreme H s values is focus in E in the northern and middle sea areas of SCS, while the direction of those is focus in N in the southeast sea areas of SCS.  相似文献   

18.
Wind measurements derived from QuikSCAT data were compared with those measured by anemometer on Yongxing Island in the South China Sea (SCS) for the period from April 2008 to November 2009. The comparison confirms that QuikSCAT estimates of wind speed and direction are generally accurate, except for the extremes of high wind speeds (>13.8m/s) and very low wind speeds (<1.5m/s) where direction is poorly predicted. In-situ observations show that the summer monsoon in the northern SCS starts between May 6 and June 1. From March 13, 2010 to August 31, 2010, comparisons of sea surface temperature (SST) and rainfall from AMSR-E with data from a buoy located at Xisha Islands, as well as wind measurements derived from ASCAT and observations from an automatic weather station show that QuikSCAT, ASCAT and AMSR-E data are good enough for research. It is feasible to optimize the usage of remote-sensing data if validated with in-situ measurements. Remarkable changes were observed in wind, barometric pressure, humidity, outgoing longwave radiation (OLR), air temperature, rainfall and SST during the monsoon onset. The eastward shift of western Pacific subtropical high and the southward movement of continental cold front preceded the monsoon onset in SCS. The starting dates of SCS summer monsoon indicated that the southwest monsoon starts in the Indochinese Peninsula and forms an eastward zonal belt, and then the belt bifurcates in the SCS, with one part moving northeastward into the tropical western North Pacific, and another southward into western Kalimantan. This largely determined the pattern of the SCS summer monsoon. Wavelet analysis of zonal wind and OLR at Xisha showed that intra-seasonal variability played an important role in the summer. This work improves the accuracy of the amplitude of intra-seasonal and synoptic variation obtained from remote-sensed data.  相似文献   

19.
The implications of climate change during the second half of the 20 th century have been reported throughout the world. Although marginal seas are sensitive to climate change and anthropogenic impacts, relatively little attention has been given to the South East Asian marginal seas. Thus, to bridge this gap in knowledge, a sediment core was collected from the coastal areas of the Leizhou Peninsula in the South China Sea(SCS) to study the inter-decadal climate change and its consequences using diatom species composition as a proxy record. Diatom absolute abundance varied from 2 300 to 68 000 and averaged 16 000 valves per gram of dry weight(v/gdw). The fractional dissolution index(Fi) was usually below 0.5, which indicates low to moderate preservation of diatom valves at coastal area of the SCS. At the inter-decadal time scale, total diatom abundance was high for the period after 1972, which coincided with 1) increased percentage of planktonic diatom abundance and Fi; 2) emergence and dominance of high productivity indicative cosmopolitan species such as T halassionema nitzschioides and Paralia sulcata(their relative abundance increased from 1.5% to 7% for the period before and after 1972, respectively); 3) decreased relative abundance of the small-sized eutrophication indicative species, C yclotella striata, from 70% to 40%. This study reveals that variations in the abundance of diatoms preserved in the sediment was a function of both production and dissolution/preservation of diatom valves, which in turn was intimately connected to the prevailing environmental/climatic conditions. In conclusion, these data reveal the existence of substantial changes in the coastal SCS in response to the 1970 s climate shift that was recorded in dif ferent parts of the world.  相似文献   

20.
Dongsha Island and the adjacent sea area locate at the northern continental margin of the South China Sea (SCS), and is connected to the east by the Manila Trench. Analyses of seismic stratigraphy and gravity, magnetic and drilling wells data led to the discovery of three post-fault sequences (Ⅴ, Ⅵ, Ⅶ). Extensive tectonic uplift, magma activity and erosion occurred in Dongsha Island and the adjacent area, where most of the faults in the northeastern SCS were still active during Pliocene and Quaternary. Two groups of faults trending NEE and NW were developed during Late Cenozoic. We conclude that three important tectonic movements, especially Dongsha movement(4.4 - 5.2 Ma) and Liuhua movement (1.4 - 1.89 Ma), controlled the structural framework in the Dongsha rise; whose deformation in the east is stronger than that in the west and whose stress field variation suggests that the tectonic uplift in the study area contributed to magmato-tectonic events correlated to the main collision phases between the East China and Taiwan 5 - 3 and 3 - 0 Ma ago.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号