首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long chain alkyl diols have shown important potential for the reconstruction of sea surface temperature, productivities and upwelling conditions in marine or lacustrine environments. However, little is known about the distribution and sources of the diols in eastern China marginal seas (CMS), which are areas of important organic carbon sink. Here the contents of C30 and C32 1,15-diols were analyzed in 181 surface sediments from eastern CMS. The similar distribution pattern and strong linear correlation between C30 and C32 diols indicated that they had similar biological source, with a dominance of C30 diol. Their contents ranged from 7–2726 ng g?1 for C30 diol and 5–669 ng g?1 for C32 diol, and both showed higher values mainly in the mud area of the Yellow Sea, while the TOC normalized contents showed a more obvious seaward increasing trend. The similar distribution pattern and significant positive correlation between diols and the other marine biomarkers (brassicasterol, dinosterol, C37 alkenones) indicated C30 and C32 diols in eastern CMS were mainly from marine algae. This conclusion was also supported by principal component analysis (PCA). Our results also showed that sediment diol contents were generally related to marine productivity, suggesting that diols could be applied for marine productivity reconstruction in eastern CMS.  相似文献   

2.
Terrestrial organic matter(TOM) is an important component of marine sedimentary OM, and revealing the origins and transport mechanisms of TOM to the East China Sea(ECS) is important for understanding regional carbon cycle. A novel approach combining molecular proxies and compound-specific carbon isotopes is used to quantitatively constrain the origins and transport mechanisms of TOM in surface sediments from the ECS shelf. The content of terrestrial biomarkers of(C_(27)+C_(29)+C_(31)) n-alkanes(52 to 580 ng g~(-1)) revealed a seaward decreasing trend, the δ~(13)CTOC values(-20.6‰ to-22.7‰) were more negative near the coast, and the TMBR(terrestrial and marine biomarker ratio) values(0.06 to 0.40) also revealed a seaward decreasing trend. These proxies all indicated more TOM(up to 48%) deposition in the coastal areas. The Alkane Index, the ratio of C_(29)/(C_(29)+C_(31)) n-alkanes indicated a higher proportion of grass vegetation in the coastal area; While the δ13C values of C_(29) n-alkane(-_(29).3‰ to-33.8‰) indicated that terrestrial plant in the sediments of the ECS shelf were mainly derived from C_3 plants. Cluster analysis afforded detailed estimates of different-sourced TOM contributions and transport mechanisms. TOM in the Zhejiang-Fujian coastal area was mostly delivered by the Changjiang River, and characterized by higher %TOM(up to 48%), higher %C_3 plant OM(68%-85%) and higher grass plant OM(56%-61%); TOM in the mid-shelf area was mostly transported by aerosols, and characterized by low %TOM(less than 17%), slightly lower C_3 plant OM(56%-72%) and lower grass plant OM(49%-55%).  相似文献   

3.
Algal biotechnology has advanced greatly in the past three decades. Many microalgae are now cultivated to produce bioactive substances. Odontella aurita is a marine diatom industrially cultured in outdoor open ponds and used for human nutrition. For the first time, we have systematically investigated the effects of culture conditions in cylindrical glass columns and fiat-plate photobioreactors, including nutrients (nitrogen, phosphorus, silicon, and sulfur), light intensity and light path, on O. aurita cell growth and biochemical composition (protein, carbohydrate, β-1,3-glucan, lipids, and ash). The optimal medium for photoautotrophic cultivation of O. aurita contained 17.65 mmol/L nitrogen, 1.09 mmol/L phosphorus, 0.42 mmol/L silicon, and 24.51 mmol/L sulfur, yielding a maximum biomass production of 6.1-6.8 g/L and 6.7-7.8 g/L under low and high light, respectively. Scale-up experiments were conducted with fiat-plate photobioreactors using different light-paths, indicating that a short light path was more suitable for biomass production of O. aurita. Analyses of biochemical composition showed that protein content decreased while carbohydrate (mainly composed of 15-1,3-glucan) increased remarkably to about 50% of dry weight during the entire culture period. The highest lipid content (19.7% of dry weight) was obtained under 0.11 mmol/L silicon and high light conditions at harvest time. Fatty acid profiles revealed that 80% were Cx4, C~6, and C20, while arachidonic acid and eicosapentaenoic acid (EPA) accounted for 1.6%-5.6% and 9%-20% of total fatty acids, respectively. High biomass production and characteristic biochemical composition profiles make O. aurita a promising microalga for the production ofbioactive components, such as EPA and D-1,3-glucan.  相似文献   

4.
Previous studies have indicated that the Yellow Sea underwent significant environmental changes during the Holocene, but many questions remain concerning the timing of the establishment of the modern circulation system, which would have major implications for the Yellow Sea ecosystem and carbon cycle. In this study, marine and terrestrial biomarkers were analyzed in Core YE-2 from a muddy area in the southern Yellow Sea to reconstruct Holocene environmental and phytoplankton community change. The content of three individual marine phytoplankton biomarkers (alkenones, brassicasterol and dinosterol) all display a similar trend, and their total contents during the early Holocene (362 ng/g) were lower than those during the mid-late Holocene (991 ng/g). On the other hand, the contents of terrestrial biomarkers (C27+C29+C31n-alkanes) during the early Holocene (1 661 ng/g) were about three times higher than those during the mid-late Holocene (499 ng/g). Our biomarker results suggest that the modern circulation system of the Yellow Sea was established by 5-6 ka, and resulted in higher marine productivity and lower terrestrial organic matter inputs. Biomarker ratios were used to estimate shifts in phytoplankton community structure in response to mid-Holocene (5-6 ka) environmental changes in the Yellow Sea, revealing a transition from a dinoflagellate-diatom dominant community structure during the early Holocene to a coccolithophore-dominant community structure during the mid-late Holocene.  相似文献   

5.
This study was conducted to compare lipid and fatty acid composition of cod, haddock and halibut. Three groups of cod (276 g ± 61 g), haddock (538 g ± 83 g) and halibut (3704 g ± 221 g) were maintained with commercial feeds mainly based on fish meal and marine fish oil for 12 weeks prior to sampling. The fatty acid compositions of muscle and liver were determined by GC/FID after derivatization of extracted lipids into fatty acid methyl esters (FAME). Lipids were also fractionated into neutral and polar lipids using Waters silica Sep-Pak?. The phospholipid fraction was further separated by high-performance thin-layer chromatography (HPTLC) and the FAME profile was obtained. Results of the present study showed that cod and haddock were lean fish and their total muscle lipid contents were 0.8% and 0.7%, respectively, with phospholipid constituting 83.6% and 87.5% of the total muscle lipid, respectively. Halibut was a medium-fat fish and its muscle lipid content was 8%, with 84% of the total muscle lipid being neutral lipid. Total liver lipid contents of cod, haddock and halibut were 36.9%, 67.2% and 30.7%, respectively, of which the neutral lipids accounted for the major fraction (88.1%–97.1%). Polyunsaturated fatty acids were the most abundant in cod and haddock muscle neutral lipid. Monounsaturated fatty acid level was the highest in halibut muscle neutral lipid. Fatty acid compositions of phospholipid were relatively constant. In summary, the liver of cod and haddock as lean fish was the main lipid reserve organ, and structural phospholipid is the major lipid form in flesh. However, as a medium-fat fish, halibut stored lipid in both their liver and muscle.  相似文献   

6.
Examination of solvent-extractable lipids in sediments from Beibu Gulf, South China Sea by capillary gas chromatography (GC) and capillary gas chromatography-mass spectrometry (GC-MS) resulted in the first identifications of β, γ-carotanes and their C19 to C31 homologs in the modern sediments from the China Seas. Distributional features of these (mainly triterpenoid and steroid hydrocarbons) biomarkers are discussed and the possibility of using these compounds as indicators of source of materials, diagenesis and depositional conditions is explored. It was found that the biomarkers in this region are mixtures of allochthonous (terrigenous and/or crude oil leak or pollution) and antochthonous (marine) organic components. The biomarders have proved to be of value for understanding sedimentation. Contribution No. 1888 from the Institute of Oceanology, Academia Sinica. This research is partially funded by the Organic Geochemistry Laboratory, Institute of Geochemistry. Academia Sinica.  相似文献   

7.
The ecological environment in the East China Sea (ECS) and the Yellow Sea (YS) has changed significantly due to sea-level rising and the Kuroshio incursion since the last deglaciation. In this study, biomarker records of core F10B from the mud area southwest off Cheju Island (MSWCI) were generated to evaluate phytoplankton productivity and community structure changes in response to environmental evolution during the last 14 kyr. The contents of diatom, dinoflagellate and haptophyte biomarkers (brassicasterol, dinosterol and C37 alkenones) display similar trends, with increasing phytoplankton productivity during the last 14 kyr due to the increased influences of the Kuroshio, and especially due to the eddy-induced upwelling during the late Holocene. On the other hand, the contents of terrestrial biomarkers (C28 +C30 +C32 n-alkanols) and terrestrial organic matter (TOM) proxies (TMBR’ and BIT) all reveal decreasing TOM input into the area around the sampling site for the 14 kyr, mostly due to sea-level rising. Phytoplankton biomarker ratios reveal a shift from a haptophyte-dominated community at 6.2–2.5 kyr BP to a diatom-dominated community at 2.5–1.45 kyr BP, likely caused by a stronger cold eddy circulation system at 2.5–1.45 kyr BP in the MSWCI.  相似文献   

8.
Cultural eutrophication caused by nutrient over-enrichment in coastal waters will lead to a cascading set of ecosystem changes and deleterious ecological consequences,such as harmful algal blooms(HABs) and hypoxia.During the past two decades since the late 1990s,recurrent large-scale HABs(red tides)and an extensive hypoxic zone have been reported in the coastal waters adjacent to the Changjiang River estuary.To retrieve the history of eutrophication and its associated ecosystem changes,a sediment core was collected from the "red-tide zone" adjacent to the Changjiang River estuary.The core was dated using the~(210)Pb radioisotope and examined for multiple proxies,including organic carbon(OC),total nitrogen(TN),stable isotopes of C and N,and plant pigments.An apparent up-core increase of OC content was observed after the 1970s,accompanied by a rapid increase of TN.The concurrent enrichment of δ~(13)C and increase of the C/N ratio suggested the accumulation of organic matter derived from marine primary production during this stage.The accumulation of OC after the 1970 s well reflected the significant increase of primary production in the red-tide zone and probably the intensification of hypoxia as well.Plant pigments,including chlorophyll a,p-carotene,and diatoxanthin,showed similar patterns of variation to OC throughout the core,which further confirmed the important contribution of microalgae,particularly diatoms,to the deposited organic matter.Based on the variant profiles of the pigments representative of different microalgal groups,the potential changes of the phytoplankton community since the 1970s were discussed.  相似文献   

9.
Compositional data on the sterol and alcohol fractions isolated from deep-sea marine sediments from the Okinawa Trough were obtained to determine the relative contribution from marine and terrestrial inputs. Following extraction, the sterol plus alcohol fraction was isolated by layer chromatography, derivatized with BSTFA and then analysed by capillary GC and GC—MS. A suite of C26−C29 stenols and stanols and C30−C32 keto—alcohols were identified in the sediments. The thermal stability of the compounds in these sediments was studied by heating portions of the surface sediment in glass tubes for 16 hours at temperatures from 50°C to 200°C. The C27 stanol/stenol ratio increased when temperatures went up to 175°C, but the distribution of C30−C32 Keto—alcohols remained unaffected. At 200°C most of the sterols and Keto—alcohols were destroyed. Supported by the National Natural Foundation of China.  相似文献   

10.
Relocation of the Yellow River estuary has significant impacts on not only terrestrial environment and human activities, but also sedimentary and ecological environments in coastal seas. The responses of regional geochemical characteristics to the relocation event, however, have not been well studied. In the present study, we performed detailed geochemical elemental analyses of a sediment core from the northern Yellow Sea and studied their geochemical responses to the 1855 AD relocation of the Yellow River estuary. The results show that TOC/TN, Co/Al2O3, Cr/Al2O3, Ni/Al2O3 and Se/Al2O3 ratios all decreased abruptly after 1855 AD, and similar decreases are observed in the sediments of the mud area southwest off the Cheju Island. These abrupt changes are very likely caused by the changes in source materials due to the relocation of the Yellow River estuary from the southern Yellow Sea to the Bohai Sea, which the corresponding decreasing trends caused by the changes in main source materials from those transported by the Liaohe River, the Haihe River and the Luanhe River to those by the Yellow River. Because the events have precise ages recorded in historical archives, these obvious changes in elemental geochemistry of sediments can be used to calibrate age models of related coastal sea sediments.  相似文献   

11.
This study was conducted to compare lipid and fatty acid composition of cod,haddock and halibut.Three groups of cod(276 g±61 g),haddock(538 g±83 g)and halibut(3704 g±221 g)were maintained with commercial feeds mainly based on fish meal and marine fish oil for 12 weeks prior to sampling.The fatty acid compositions of muscle and liver were determined by GC/FID after derivatization of extracted lipids into fatty acid methyl esters(FAME).Lipids were also fractionated into neutral and polar lipids using Waters silica Sep-Pak(R).The phospholipid fraction was further separated by high-performance thin-layer chromatography(HPTLC)and the FAME profile was obtained.Results of the present study showed that cod and haddock were lean fish and their total muscle lipid contents were 0.8% and 0.7%,respectively,with phospholipid constituting 83.6% and 87.5% of the total muscle lipid,respectively.Halibut was a medium-fat fish and its muscle lipid content was 8%,with 84% of the total muscle lipid being neutral lipid.Total liver lipid contents of cod,haddock and halibut were 36.9%,67.2% and 30.7%,respectively,of which the neutral lipids accounted for the major fraction(88.1%-97.1%).Polyunsaturated fatty acids were the most abundant in cod and haddock muscle neutral lipid.Monounsaturated fatty acid level was the highest in halibut muscle neutral lipid.Fatty acid compositions of phospholipid were relatively constant.In summary,the liver of cod and haddock as lean fish was the main lipid reserve organ,and structural phospholipid is the major lipid form in flesh.However,as a medium-fat fish,halibut stored lipid in both their liver and muscle.  相似文献   

12.
The vertical fluxes and molar ratios of carbon, nitrogen and phosphorus of suspended particulate matter in the Yellow Sea were studied based on the analysis of suspended particulate matter,sediments and sinking particles obtained by use of moored sediment traps. The POC : PON ratios indicate that most of the particulate organic matter in the Yellow Sea water column comes from marine life rather than the continent. The vertical fluxes of SPM, POC, PON and POP in the Yellow Sea are much higher than those in other seas over the world, and present a typical pattern in shallow epicontinental seas. The estimated residence time of the bioactive elements showed that the speed of the biogeochemical process of materials in the Yellow Sea is much shorter than that in the open ocean as there was high primary productivity in this region.  相似文献   

13.
Sediments have a significant influence on the cycling of nutrient elements in lake environments. In order to assess the distribution characteristics and estimate the bioavailability of phosphorus and nitrogen in Dianchi Lake, organic and inorganic phosphorus and nitrogen forms were analysed. The 210 Pb radiometric dating method was employed to study temporal changes in the phosphorus and nitrogen pools in Dianchi Lake. The result show that the total phosphorus(TP) and total nitrogen(TN) were both at high concentrations, ranging from 697.5–3210.0 mg/kg and 1263.7–7155.2 mg/kg, respectively. Inorganic phosphorus(IP) and total organic nitrogen(TON) were the main constituents, at percentages of 59%–78% and 74%–95%, respectively, in the sediments. Spatially, there was a decreasing trend in phosphorus and nitrogen contents from the south and north to the lake centre, which is related to the distribution pattern of local economic production. The burial rates of the various phosphorus and nitrogen forms increased in same spatially and over time. Particularly in the past two decades, the burial rates doubled, with that TN reached to 1.287 mg/(cm~2·yr) in 2014. As the most reactive forms, nitrate nitrogen(NO_3-N) and ammonia nitrogen(NH_4-N) were buried more rapidly in the south region, implying that the potential for releasing sedimentary nitrogen increased from north to south. Based on their concentrations and burial rates, the internal loads of phosphorus and nitrogen were analysed for the last century. A TP pool of 71597.6 t and a TN pool of 81191.7 t were estimated for Dianchi Lake. Bioavailable phosphorus and nitrogen pools were also estimated at 44468.0 t and 5429.7 t, respectively, for the last century.  相似文献   

14.
Large areas of muddy sediments on the coastal shelves of China provide important samples for studying climate and ecological changes. Analysis of a large number of such samples, which is essential for systematic study on environmental information recorded in mud areas because of complicated sedimentary environment and variable sedimentary rate, requires a fast and economical method. In this study, we investigated the potential of X-ray fluorescence core scanner (XRFS), a fast analytical instrument for measuring the elemental concentrations of muddy sediments, and observed a significant correlation between the element concentrations of muddy sediments determined by regular X-ray fluorescence spectrometer (XRF) and XRFS, respectively. The correlations are mainly determined by excitation energy of elements, but also influenced by solubility of element ions. Furthermore, we found a striking link between Al concentrations and marine-originated organic carbon (MOC), a proxy of marine primary productivity. This indicates that MOC is partly controlled by sedimentary characteristics. Therefore, XRFS method has a good potential in fast analysis of a large number of muddy sediment samples, and it can also be used to calibrate MOC in ecological study of coastal seas.  相似文献   

15.
The ratio of nitrogen/phosphorus (N/P) is known to affect cell proliferation of some marine micro algae. We evaluated the effect of N/P ratios on the proliferation and succession of phytoplankton using five marine micro algae species. We used two sources of nitrogen, NH4Cl (N1) and urea (N2), and a single source of phosphorous, NaH2PO4(P). The optimal N/P ratio that differed among the five species was affected by the source of nitrogen, being as follows (N1/P, N2/P in order): Thalassiosira sp. (30/1, 20/1), Heterosigma akashiwo (30/1, 30/1), Chroomonas salina (20/1, 30/1), Chaetoceros gracilis (40/1, 60/1), and Alexandrium sp. (10/1, 30/1). Thus, the source of nitrogen must be considered when analyzing the N/P ratio. Our results provide insight for predicting phytoplankton succession in coastal waters and may be used to forecast the potential risk of harmful algal blooms.  相似文献   

16.
Manila clam(Ruditapes philippinarum) was monthly sampled from its benthic aquaculture area in Jiaozhou Bay from May 2009 to June 2010. The annual variations of major elemental composition, organic content, fatness and element ratio of Manila clam were examined. The element removal effect of clam farming in Jiaozhou Bay was analyzed based on natural mortality and clam harvest. The results indicated that the variation trend of carbon content in shell(Cshell) was similar to that in clam(Cclam). Such a variation was higher in summer and autumn than in other seasons, which ranged from 9.10 ± 0.13 to 10.38 ± 0.09 mmol g-1 and from 11.28 ± 0.29 to 12.36 ± 0.06 mmol g-1, respectively. Carbon content of flesh(Cflesh) showed an opposite variation trend to that of shell in most months, varying from 29.42 ± 0.05 to 33.64 ± 0.62 mmol g-1. Nitrogen content of shell(Nshell) and flesh(Nflesh) changed seasonally, which was relatively low in spring and summer. Nshell and Nflesh varied from 0.07 ± 0.009 to 0.14 ± 0.009 mmol g-1 and from 5.46 ± 0.12 to 7.39 ± 0.43 mmol g-1, respectively. Total nitrogen content of clam ranged from 0.50 ± 0.003 to 0.76 ± 0.10 mmol g-1 with a falling tend except for a high value in March 2010. Phosphorus content of clam(Nclam) fluctuated largely, while phosphorus content of shell(Pshell) was less varied than that of flesh(Pflesh). Pshell varied from 0.006 ± 0.001 to 0.016 ± 0.001 mmol g-1; while Pflesh fluctuated between 0.058 ± 0.017 and 0.293 ± 0.029 mmol g-1. Pclam ranged from 0.015 ± 0.002 to 0.041 ± 0.006 mmol g-1. Carbon and nitrogen content were slightly affected by shell length, width or height. Elemental contents were closely related to the reproduction cycle. The removal amounts of carbon, nitrogen and phosphorus from clam harvest and natural death in Jiaozhou Bay were 2.92×104 t, 1420 t and 145 t, respectively. The nutrient removal may aid to reduce the concentrations of nitrogen and phosphorus, the main causes of eutrophication, and to maintain the ecosystem health of Jiaozhou Bay.  相似文献   

17.
Quantification of soil spatial and temporal variability at watershed scale is important in ecological modeling, precision agriculture, and natural resources management. The spatio-temporal variations of soil nitrogen under different land uses in a small watershed (12.10 km2) in the hilly area of purple soil at the upper reaches of the Yangtze River in southwestern China were investigated by using conventional statistics, geostatistics, and a geographical information system in order to provide information for land management and control of environmental issues. A total of 552 soil samples (0 to 15 cm) from 276 sites within the watershed were collected in April and August of 2011, and analyzed for soil total nitrogen (STN) and nitrate nitrogen (NO3-N). We compared spatial variations of STN and NO3-N under different land uses as well as the temporal variations in April (dry season) and August (rainy season). Results showed that STN contents were deeply affected by land-use types; median STN values ranged from 0.94 to 1.27 g·kg?1, and STN contents decreased in the following order: paddy field > forestland > sloping cropland. No significant difference was found for STN contents between April and August under the same land use. However, NO3-N contents were 23.26, 10.58, and 26.19 mg·kg?1 in April, and 1.34, 8.51, and 3.00 mg·kg?1 in August for the paddy field, sloping cropland and forestland, respectively. Nugget ratios for STN indicated moderate spatial dependence in the paddy field and sloping cropland, and a strong spatial dependence in forestland. The processes of nitrogen movement, transformation, absorption of plant were deeply influenced by land use types; as a result, great changes of soil nitrogen levels at spatial and temporal scales were demonstrated in the studied watershed.  相似文献   

18.
Fluorescence-based maximal photochemical efficiency, Fv/Fm, is widely used as an indicator to photosynthetic competence in marine systems. It has been considered a useful parameter diagnosing the nutrient stress on phytoplankton photosynthesis, but many studies argue its usefulness. In the present study, we try to find a temporal relationship between Fv/Fm and nitrogen concentration, and provide a possible explanation on the controversy. We continuously measured Fv/Fm and nitrogen concentration once every 10 days from September 2003 to March 2004 at two stations in Jiaozhou Bay, northern China. It was found that Fv/ffm did not significantly correlate to synchronous nitrogen concentration, but the variation (i.e. the change between two adjacent cruises) of nitrogen concentration of the previous cruise and the variation ofFv/Fm of the current cruise were strongly correlated. This result indicates that a time lag exists between the variation of nutrient status and the subsequent Fv/Fm response. Length of the time lag seems just matched the interval of our measurements (10 days). In the field, direct dependence of Fv/Fm on nitrogen concentration may not be found because of the lagged response of Fv/Fm to nitrogen concentration variations or physiological acclimation. Our results provide a possible way to explain the previously reported conflicting results on the relationship between Fv/Fm and nutrient status. To give a more-accurate estimate about the length of the time lag, an investigation that includes more frequent measurements is needed.  相似文献   

19.
Mangroves accumulate sedimentary sequences, where cores can provide historical records of mangrove evolution with past climate change and human activity. The study traced the history of mangrove evolution during the past one hundred years in a mangrove swamp of Maowei Sea, SW China. The sedimentation rates(0.38-0.95 cm yr~(-1)) were calculated on the basis of ln(~(210)Pb_(xs)/Al) and mass depth in the core sediments. Chemical tracers, such as δ~(13)C_(org) and C:N values, were utilized to trace the contribution of mangrove-derived organic matter using a ternary mixing model. Because of potential diagenetic alteration and / or overlap in the isotopic signatures of different components, simultaneous use of mangrove pollen diagrams can help to supplement some of these limitations. Combined with mangrove pollen, mangrove evolution was reconstructed and could be divided into three stages: flourishment(1886-1905 AD), slight degradation(1905-1949 AD) and rapid degradation period(1949-2007 AD), which was consistent with previous reports. The reclamation of mangrove swamps to shrimp ponds was the major reason for rapid degradation of mangrove ecosystems in recent years, rather than climate change in the region.  相似文献   

20.
The East Asian monsoon system influences the sedimentation and transport of organic matter in East Asian marginal seas that is derived from both terrestrial and marine sources. In this study, we determined organic carbon (OC) isotope values, concentrations of marine biomarkers, and levels of OC and total nitrogen (TN) in core YSC-1 from the central South Yellow Sea (SYS). Our objectives were to trace the sources of OC and variations in palaeoproductivity since the middle Holocene, and their relationships with the East Asian monsoon system. The relative contributions of terrestrial versus marine organic matter in core sediments were estimated using a two-end-member mixing model of OC isotopes. Results show that marine organic matter has been the main sediment constituent since the middle Holocene. The variation of terrestrial organic carbon concentration (OCter) is similar to the EASM history. However, the variation of marine organic carbon concentration (OCmar) is opposite to that of the EASM curve, suggesting OCmar is distinctly influenced by terrestrial material input. Inputs of terrestrial nutrients into the SYS occur in the form of fluvial and aeolian dust, while concentrations of nutrients in surface water are derived mainly from bottom water via the Yellow Sea circulation system, which is controlled by the East Asian winter monsoon (EAWM). Variations in palaeoproductivity represented by marine organic matter and biomarker records are, in general, consistent with the recent EAWM intensity studies, thus, compared with EASM, EAWM may play the main role to control the marine productivity variations in the SYS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号