首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 1991–1993 eruption was probably the largest on Mt. Etna for 300 years. Since then the volcano has entered an unusually quiescent period. A comprehensive record of gravity and ground deformation changes presented here bracket this eruption and give valuable insight into magma movements before, during and after the eruption. The gravity and deformation changes observed before the eruption (1990–1991) record the intrusion of magma into the summit feeder and the SSE-trending fracture system which had recently been active in 1978, 1979, 1983 and 1989, creating the feeder dyke for the 1991–1993 eruption. In the summit region gravity changes between 1992 and 1993 (spanning the end of the eruption) reflect the withdrawal of magma from the conduit followed more recently (1993–1994) by the re-filling of magma in the conduit up to pre-eruption levels. In contrast, in the vicinity of the fracture zone, gravity has remained at the 1991–1992 level, indicating that no withdrawal has occurred here. Rather, magma has solidified in the fracture system and sealed it such that the 1993–1994 increase in magma level in the conduit was not accompanied by further intrusion into the flanks. Mass calculations suggest that a volume of at least 107 m3 of magma has solidified within the southeastern flank of the volcano.  相似文献   

2.
Ground deformation occurring on the southern flank of Mt Etna volcano during the July–August 2001 eruption was monitored by GPS measurements along an E–W profile crossing the fissure system. This profile was measured eight times during the eruption, using the 'stop and go' semi-kinematic technique. Horizontal and vertical displacements between GPS surveys are reported for each station. The most significant event is a deformation episode occurring during the first week of the eruption, between 25–27 July. Displacements were measured on benchmarks close to the eruptive fissure and the tensile 1989 fracture. Data inversions for measured displacements were performed using the Okada model. The model shows the narrowing of the 2001 dyke accompanied by a dextral dislocation along an east-dipping fault, parallel to the 1989 fracture.Editorial responsibility: T. Druitt  相似文献   

3.
Shallow shear-type seismic activity occurring beneath the Etna volcano during 1990–1995 has been analysed for hypocenter locations, focal mechanisms and stress tensor inversion. The results have been examined jointly with Electronic Distance Measurements and tiltmeter data collected in the same period and reported in the literature. Significant seismicity located in the upper 10 km was found to be confined to the time intervals in which ground deformation data indicated inflation of the volcano edifice (e.g., the periods preceding the December 1991–March 1993 and August 1995–March 1996 eruptive phases). The shocks mostly occurred in a sector approximately centered on the crater area and elongated in the East–West direction. The causative seismogenic stress shows a low-dip East–West orientation of σ1. In agreement with existing knowledge on relationships between local fault systems and magma uprise processes, the shallow seismicity in question is tentatively explained as being due to lateral compression by magma inside a nearly North–South system. The volcano deflation phase revealed by Electronic Distance Measurements and tilt data during the 1991–1993 major eruption was not accompanied by any significant shear-type shallow event. Below the depth of 10 km, the North–South prevailing orientation of σ1 reflects the dominant role of the regional stress.  相似文献   

4.
We carried out a study of the seismicity and ground deformation occurring on Mt. Etna volcano after the end of the 2002–2003 eruption and before the onset of the 2004–2005 eruption. Data were recorded by the permanent local seismic network run by Istituto Nazionale di Geofisica e Vulcanologia – Sezione di Catania and by geodetic surveys carried out in July 2003 and July 2004 on the GPS network. Most earthquakes were grouped in two main clusters located in the northeastern and southeastern sectors of the volcano. The areal distribution of seismic energy associated with the recorded earthquakes allowed us to highlight the main seismogenic areas of Mt. Etna. In order to better understand the kinematic processes of the volcano, 3D seismic locations were used to compute fault plane solutions, and a selected dataset was inverted to determine stress and strain tensors. The focal mechanisms in the northeastern sector show clear left-lateral kinematics along an E-W fault plane, consistent with events occurring along the Pernicana Fault system. The fault plane solutions in the southeastern sector show mainly right-lateral kinematics along a NNE and ENE fault plane and left lateral-kinematics along NW fault planes that together suggest roughly E-W oriented compression. Surface ground deformation affecting Mt. Etna measured by GPS surveys highlighted a marked inflation during the same period and exceptionally strong seawards motion of its eastern flank. The 2D geodetic strain tensor distribution was calculated and the results show mainly ENE-WSW extension coupled with WNW-ESE contraction, indicating right-lateral shear along a NW-SE oriented fault plane. The different deformation of the eastern sector of the volcano, as measured by seismicity and ground deformation, must be interpreted by considering the different depths of the two signals. Seismic activity in the southeastern sector of volcano is located between 3 and 8 km b.s.l. and can be associated with a very strong additional E-W compression induced by a pressurizing source just westwards and at the same depth, located by inverting GPS data. Ground deformation, in contrast, is mainly affected by the shallower dynamics of the fast moving eastern flank which produces a shallower opposing E-W extension. The entire dataset shows that two different processes affect the eastern flank at the same time but at different depths; the boundary is clearly located at a depth of 3 km b.s.l. and could represent the décollement surface for the mobile flank.  相似文献   

5.
On December 4, 1983 an eruption started at vents located 1.5 km southwest of the summit of Piton de la Fournaise at the base of the central cone. After 31 months of quiescence this was one of the longest repose period in the last fifty years. The eruption had two phases: December 4 to January 18 and January 18 to February 18. Phase 1 produced about 8 × 106 m3 of lava and Phase II about 9 × 106 m3. The erupted lava is an aphyric basalt whose mineralogical and geochemical composition is close to that of other lavas emitted since 1977.The precursors of the December 4 outbreak were limited to two-week shallow (1.5–3 km) seismic crisis of fewer than 50 events. No long-term increase was noted in the local seismicity which is very quiet during repose periods and no long-term ground inflation preceded the eruption. Outbreaks of Phases I and II were preceded by short (2.5 hours and 1.5 hours) seismic swarms corresponding to the rise of magma toward the surface from a shallow reservoir. Large ground deformation explained by the emplacement of the shallow intrusions, was recorded during the seismic swarms. A summit inflation was observed in early January, before the phase II outbreak, while the phase I eruption was still continuing.Piton de la Fournaise volcanological observatory was installed in 1980. Seismic and ground deformation data now available for a period of 4 years including the 1981 and the 1983–1984 eruptions, allow us to describe the physical behavior of the volcano during this period. These observations lead us to propose that the magma transfer from deep levels to the shallow magma reservoir is not a continuous process but a periodic one and that the shallow magma reservoir was not resupplied before the 1981 and 1983–1984 eruptions. Considerations on the eruptive history and the composition of recent lavas indicate that the reservoir was refilled in 1977.  相似文献   

6.
The character and location of seismic activity accompanying the onset of the 1991–1993 eruption at Mt. Etna are compatible with the surface evidence of the volcanic pile rupture. Both the epicentral distribution and the focal mechanisms of a swarm that occurred on December 14, 1991, agree with magma ascent occurring along the main NNW-SSE-trending structure of the volcano and the consequent opening of a system of effusive fissures with the same trend. A typical mainshock-aftershock sequence, recorded the day after and indicating transcurrent displacement occurring along the second-principal structure of Etna (NE-SW), depicts the tectonic response of the volcanic pile and the underlying basement to major stresses applied by the magma push.  相似文献   

7.
Following 198 years of dormancy, a small phreatic eruption started at the summit of Unzen Volcano (Mt. Fugen) in November 1990. A swarm of volcano-tectonic (VT) earthquakes had begun below the western flank of the volcano a year before this eruption, and isolated tremor occurred below the summit shortly before it. The focus of VT events had migrated eastward to the summit and became shallower. Following a period of phreatic activity, phreatomagmatic eruptions began in February 1991, became larger with time, and developed into a dacite dome eruption in May 1991 that lasted approximately 4 years. The emergence of the dome followed inflation, demagnetization and a swarm of high-frequency (HF) earthquakes in the crater area. After the dome appeared, activity of the VT earthquakes and the summit HF events was replaced largely by low-frequency (LF) earthquakes. Magma was discharged nearly continuously through the period of dome growth, and the rate decreased roughly with time. The lava dome grew in an unstable form on the shoulder of Mt. Fugen, with repeating partial collapses. The growth was exogenous when the lava effusion rate was high, and endogenous when low. A total of 13 lobes grew as a result of exogenous growth. Vigorous swarms of LF earthquakes occurred just prior to each lobe extrusion. Endogenous growth was accompanied by strong deformation of the crater floor and HF and LF earthquakes. By repeated exogenous and endogenous growth, a large dome was formed over the crater. Pyroclastic flows frequently descended to the northeast, east, and southeast, and their deposits extensively covered the eastern slope and flank of Mt. Fugen. Major pyroclastic flows took place when the lava effusion rate was high. Small vulcanian explosions were limited in the initial stage of dome growth. One of them occurred following collapse of the dome. The total volume of magma erupted was 2.1×108 m3 (dense-rock-equivalent); about a half of this volume remained as a lava dome at the summit (1.2 km long, 0.8 km wide and 230–540 m high). The eruption finished with extrusion of a spine at the endogenous dome top. Several monitoring results convinced us that the eruption had come to an end: the minimal levels of both seismicity and rockfalls, no discharge of magma, the minimal SO2 flux, and cessation of subsidence of the western flank of the volcano. The dome started slow deformation and cooling after the halt of magma effusion in February 1995.  相似文献   

8.
We present reults from simultaneous precise levelling and gravity surveys on Mount Etna covering the period August 1980–August 1981. The flank eruption of March 1981 erupted 18–35 × 105m3 of lava. Following it, upward movements of more than 17 cm were observed close to the new fissure and a broad, apparently independent, uplift of 5 cm was observed 4 km to the west. A zone of about 2 cm depression to the east of the fissure is insufficient to account for the volume of magma erupted. Gravity results show positive changes of up to 63 microgal, and display good positive correlation with elevation changes. Both sets of measurements appear to be due to new intrusion of magma rather than subsurface magma drainage. Ground deformation close to the new fissure is well modelled by intrusion of a dyke in the zone 100–500 m below the surface, striking along the fissure and of dip between 75–90°. The gravity changes are modelled as due to a deeper intrusion of magma, along the same line but some 1500 m below the surface. The changes were not present immediately after the eruption but occurred during the ensuing 5 months. It is proposed that this introduction of matter occurred by crack propagation along the fissure in the aftermath of the eruption. Towards the west of the fissure, and some 4 km west of the summit, ground deformation is modelled by intrusion of a dyke in the zone 300–1500 m below the surface and dipping at 80–85°. Again, gravity changes appear to be due to magma intrusion at greater depth, close to sea level. In this case gravity changes are interpreted as due to magma density changes, as a result of pressure increase in a larger scale fissure zone. This same pressure increase may be forcing the new intrusion close to the surface, and makes this part of the volcano a region of especially high risk.  相似文献   

9.
The July 17 – August 9, 2001 flank eruption of Mt. Etna was preceded and accompanied by remarkable changes in volcanic tremor. Based on the records of stations belonging to the permanent seismic network deployed on the volcano, we analyze amplitude and frequency content of the seismic signal. We find considerable changes in the volcanic tremor which mark the transition to different styles of eruptive activity, e.g., lava fountains, phreatomagmatic activity, Strombolian explosions. In particular, the frequency content of the signal decreases from 5 Hz to 3 Hz at our reference station ETF during episodes of lava fountains, and further decreases at about 2 Hz throughout phases of intense lava emission. The frequency content and the ratios of the signal amplitude allow us to distinguish three seismic sources, i.e., the peripheral dike which fed the eruption, the reservoir which fed the lava fountains, and the central conduit. Based on the analysis of the amplitude decay of the signal, we highlight the migration of the dike from a depth of ca. 5 km to about 1 km between July 10 and 12. After the onset of the effusive phase, the distribution of the amplitude decay at our stations can be interpreted as the overall result of sources located within the first half kilometer from the surface. Although on a qualitative basis, our findings shed some light on the complex feeding system of Mt. Etna, and integrate other volcanological and geophysical studies which tackle the problem of magma replenishment for the July–August, 2001 flank eruption. We conclude that volcanic tremor is fundamental in monitoring Mt. Etna, not only as a marker of the different sources which act within the volcano edifice, but also of the diverse styles of eruptive activity. An erratum to this article is available at .  相似文献   

10.
The 2000 Hekla eruption took place from February 26 to March 8. Its seismic expressions were a swarm of numerous small earthquakes related to its onset, and low-frequency volcanic tremor that continued throughout the eruption. A swarm of small earthquakes was observed some 80 min before the onset of the eruption, and the size of the events increased with time. Low-frequency volcanic tremor, with a characteristic frequency band of 0.5–1.5 Hz and dominant spectral peak(s) at 0.7–0.9 Hz, became visible at 18:19 GMT on February 26, marking the onset of the eruption. The tremor amplitude rose quickly and was very high in the beginning of the eruption. However, it soon began to decrease after about an hour. In general, the seismic activity related to the 2000 Hekla eruption was very similar to what was observed in the previous eruption in 1991. Based on knowledge gained from seismicity and strain observations from 1991, this was the first time that a Hekla eruption was predicted.Editorial responsibility: J Stix  相似文献   

11.
Flank instability and collapse are observed at many volcanoes. Among these, Mt. Etna is characterized by the spreading of its eastern and southern flanks. The eastern spreading area is bordered to the north by the E–W-trending Pernicana Fault System (PFS). During the 2002–2003 Etna eruption, ground fracturing along the PFS migrated eastward from the NE Rift, to as far as the 18 km distant coastline. The deformation consisted of dextral en-echelon segments, with sinistral and normal kinematics. Both of these components of displacement were one order of magnitude larger (~1 m) in the western, previously known, portion of the PFS with respect to the newly surveyed (~9 km long) eastern section (~0.1 m). This eastern section is located along a pre-existing, but previously unknown, fault, where displaced man-made structures give overall slip rates (1–1.9 cm/year), only slightly lower than those calculated for the western portion (1.4–2.3 cm/year). After an initial rapid motion during the first days of the 2002–2003 eruption, movement of the western portion of the PFS decreased dramatically, while parts of the eastern portion continued to move. These data suggest a model of spreading of the eastern flank of Etna along the PFS, characterized by eruptions along the NE Rift, instantaneous, short-lived, meter-scale displacements along the western PFS and more long-lived centimeter-scale displacements along the eastern PFS. The surface deformation then migrated southwards, reactivating, one after the other, the NNW–SSE-trending Timpe and Trecastagni faults, with displacements of ~0.1 and ~0.04 m, respectively. These structures, along with the PFS, mark the boundaries of two adjacent blocks, moving at different times and rates. The new extent of the PFS and previous activity over its full length indicate that the sliding eastern flank extends well below the Ionian Sea. The clustering of seismic activity above 4 km b.s.l. during the eruption suggests a deep décollement for the moving mass. The collected data thus suggests a significant movement (volume >1,100 km3) of the eastern flank of Etna, both on-shore and off-shore.Editorial responsibility: R. Cioni  相似文献   

12.
After the major 1991–1993 eruption, Mt. Etna resumed flank activity in July 2001 through a complex system of eruptive fissures cutting the NE and the S flanks of the volcano and feeding effusive activity, fire fountains, Strombolian and minor phreatomagmatic explosions. Throughout the eruption, magmas with different petrography and composition were erupted. The vents higher than 2,600 m a.s.l. (hereafter Upper vents, UV) erupted porphyritic, plagioclase-rich trachybasalt, typical of present-day summit and flank activity. Differently, the vents located at 2,550 and 2,100 m a.s.l. (hereafter Lower vents, LV) produced slightly more primitive trachybasalt dominated by large clinopyroxene, olivine and uncommon minerals for Etna such as amphibole, apatite and orthopyroxene and containing siliceous and cognate xenoliths. Petrologic investigations carried out on samples collected throughout the eruption provided insights into one of the most intriguing aspects of the 2001 activity, namely the coeval occurrence of distinct magmas. We interpret this evidence as the result of a complex plumbing system. It consists in two separate magma storage systems: a shallow one feeding the activity of the UV and a deeper and more complex storage related to the activity of LV. In this deep storage zone, which is thermally and compositionally zoned, the favourable conditions allow the crystallization of amphibole and the occurrence of cognate xenoliths representing wall cumulates. Throughout 2001 eruption, UV and LV magmas remain clearly distinct and ascended following different paths, ruling out the occurrence of mixing processes between them. Furthermore, integrating the 2001 eruption in the framework of summit activity occurring since 1995, we propose that the 2001 magma feeding the vents lower than 2,600 m a.s.l. is a precursor of a refilling event, which reached its peak during the 2002–2003 Etna flank eruption.  相似文献   

13.
Wide variations were measured in the diffuse CO2 flux through the soils in three selected areas of Mt Etna between August 1989 and March 1993. Degassing of CO2 from the area of Zafferana Etnea-S. Venerina, on the eastern slope of the volcano, has been determined to be more strongly influenced by meteorological parameters than the other areas. The seasonal component found in the data from this area has been excluded using a filtering algorithm based on the best fitting equation calculated from the correlation between CO2 flux values and those of air temperature. The filtered data appear to have variations temporally coincident with those from the other areas, thus suggesting a common and probably deep source of gas. The highest fluxes measured in the two most peripheral areas may correlate well with other geophysical and volcanological anomalous signals that preceded the strong eruption of 1991–1993 and that were interpreted as deep pressure increases. Anomalous decreases in CO2 fluxes accompanied the onset and the evolution of that eruption and have been interpreted as a sign of upward migration of the gas source. The variations of CO2 flux at the 1989 SE fracture have also given interesting information on the timing of the magmatic intrusion that has then fed the 1991–1993 eruption.  相似文献   

14.
The magma generation at Unzen volcano may be considered as the product of crustal material mixed with mantle magma accompanied by fractional crystallization (AFC). The magma in the Unzen volcano is estimated to consist of about 50–80% of residual magma (F) and about 30–70% assimilated crustal material (A) relative to the original magma. Concerning the 1991–1995 eruption, it is estimated that the magma formed as the result of mixing of about 50–60% crustal material and about 55–65% of residual magma. An alternative magma eruption model for the 1991–1995 eruption is proposed here. In the early stage, the isotopic characteristics of 1991 eruption are defined by AFC process in the deeper magma chamber. Later, the magma ascended through the conduit and quiescently stayed for a long time in a shallow reservoir before eruption. The minerals continuously crystallized as phenocrysts especially at the chilled top and outer margin in the shallow chamber. The crystallized phenocryst mush was reworked into the central part of the magma chamber by means of magma convection and rapid magma ascent. Therefore, the reaction between phenocrysts and melt occurs only in internal chemical disequilibrium in the magma chamber. In contrast, the isotopic compositions of the original magma shall be little influenced by the above processes throughout its eruptive history. The 1991–1995 eruptive rocks of the Unzen volcano show their characteristics in Sr and Nd isotopic values independent of their two previous eruptions. However, the isotopic values of early eruptive product could represent the original magma value. This result also supports the previous work of Chen et al. (1993) [Chen, C.H., DePaolo, D.J., Nakada, S., Shieh, Y.N., 1993. Relationship between eruption volume and neodymium isotopic composition at Unzen volcano. Nature 362, 831–834], that suggested the Nd of early or precursory eruptive products could be a qualitative indicator of the maximum size of a continuing or impending eruption.  相似文献   

15.
 Results are presented from 11 microgravity surveys on Mt. Etna between 1987 and 1993, a period including the major 1989 and 1991–1993 flank eruptions and subordinate 1990 activity. Measurements were made with LaCoste and Romberg D-62 and D-157 gravity meters along a network around the volcano between 1000 and 1900 m a.s.l. and, since 1992, a N–S summit profile. Gravity changes of as much as 200 μGal were observed at scales from the size of the summit region to that of the volcano. None was associated with significant changes in ground elevation. The data show an increase in gravity for 2 years before the 1989 eruption. The increase is attributed to the accumulation of magma (0.25–1.7×109 m3) in an elongate zone, oriented NNW–SSE, between 2.5 and 6 km below sea level. Part of this magma was injected into the volcanic pile to supply the 1989 and 1990 eruptions. It also probably fed the start of the 1991–1993 eruption, since this event was not preceded by significant gravity changes. A large gravity increase (up to 140 μGal) detected across the volcano between June and September 1992 is consistent with the arrival in the accumulation zone of 0.32–2.2×109 m3 of new magma, thus favoring continued flank effusion until 1993. A large gravity decrease (200 μGal) in the summit region marked the closing stages of the 1991–1993 event and is associated with magma drainage from the upper levels of Etna's central feeding system. Received: 15 July 1995 / Accepted: 27 October 1997  相似文献   

16.
During the early part of a seismic swarm preceding eruption and caldera formation at Miyakejima Volcano, discoloured sea surfaces were observed 1.5 km off the western coast of Miyakejima on 27 June 2000. A later survey of the area using a multi-beam side scan sonar and a remotely operated small submarine revealed four craters of 20–30 m diameter aligned east-west in a 100×10–30 m area on the seafloor, with hot water at 140°C being released from one of the centres. Each crater consists of submarine spatter overlain in part by scoria lapilli. Dredged spatter from the craters was fresh, and there was no evidence of activity of marine organisms on the spatter surface, indicating that the discoloured sea surface resulted from magmatic eruption on the seafloor. This eruption occurred when a westward-propagating seismic swarm, initiated beneath Miyakejimas summit, passed through the area. Finding new magma on the seafloor demonstrates that this seismic swarm was associated with intruding magma, moving outward from beneath Miyakejima. Submarine spatter shows flattened shapes with a brittle crust formed by cooling in water, and its composition is aphyric andesite of 54 wt% SiO2. The spatter is similar in whole rock and mineral composition to spatter erupted in 1983. However, the wide range of Cl in melt inclusions in plagioclase of the 27 June submarine spatter shows that it is not simply a remnant of the 1983 magma, which has only high Cl melt inclusions in plagioclase. The mixed character of melt inclusions suggests involvement of a magma with low Cl melt inclusions. The magma erupted explosively on 18 August from Miyakejimas summit, considered as the second juvenile magma in this eruption, contains low Cl melt inclusions in plagioclase. Based on these observations and the eruption sequence, we present the following model: (1) A shallow magma chamber was filled with a remnant of 1983 magma that had evolved to a composition of 54–55 wt% SiO2. (2) Injection of the 18 August magma into this chamber generated a mixed magma having a wide range of Cl in melt inclusions contained plagioclase. The magma mixing might have occurred shortly before the submarine eruption and could have been a trigger for the initiation of the removal of magma from the chamber as an extensive dyke, which eventually led to caldera subsidence.Editorial responsibility: S Nakada, T Druitt  相似文献   

17.
Preceded by four days of intense seismicity and marked ground deformation, a new eruption of Mt. Etna started on 17 July and lasted until 9 August 2001. It produced lava emission and strombolian and phreatomagmatic activity from four different main vents located on a complex fracture system extending from the southeast summit cone for about 4.5 km southwards, from 3000 to 2100 m elevation (a.s.l.). The lava emitted from the lowest vent cut up an important road on the volcano and destroyed other rural roads and a few isolated country houses. Its front descended southwards to about 4 km distance from the villages of Nicolosi and Belpasso. A plan of intervention, including diversion and retaining barriers and possibly lava flow interruption, was prepared but not activated because the flow front stopped as a consequence of a decrease in the effusion rate. Extensive interventions were carried out in order to protect some important tourist facilities of the Sapienza and Mts. Silvestri zones (1900 m elevation) from being destroyed by the lava emitted from vents located at 2700 m and 2550 m elevation. Thirteen earthen barriers (with a maximum length of 370 m, height of 10–12 m, base width of 15 m and volume of 25 000 m3) were built to divert the lava flow away from the facilities towards a path implying considerably less damage. Most of the barriers were oriented diagonally (110–135°) to the direction of the flow. They were made of loose material excavated nearby and worked very nicely, resisting the thrust of the lava without any difficulty. After the interventions carried out on Mt. Etna in 1983 and in 1991–1992, those of 2001 confirm that earthen barriers can be very effective in controlling lava flows.  相似文献   

18.
The March–August, 1983 eruption of Mt. Etna can be considered as one of the most important in the last years.The analysis of seismic activity during the three months immediately before the eruption showed interesting variations of theb coefficient, in the frequency-magnitude relationship, that have been linked to possible changes of the stress field in the Etnean region.The eruption start was also preceded by a strong seismic crisis with epicenters mostly on the southern, eastern and southwestern flanks of the volcano, and characterized by the shallowness of most of the events (h3 km).The data analysis has led to a hypothesis on the eruption occurrence based on a model of dynamic evolution of the stress field acting on Mt. Etna.  相似文献   

19.
The 2002–03 flank eruption of Etna was characterized by two months of explosive activity that produced copious ash fallout, constituting a major source of hazard and damage over all eastern Sicily. Most of the tephra were erupted from vents at 2750 and 2800 m elevation on the S flank of the volcano, where different eruptive styles alternated. The dominant style of explosive activity consisted of discrete to pulsing magma jets mounted by wide ash plumes, which we refer to as ash-rich jets and plumes. Similarly, ash-rich explosive activity was also briefly observed during the 2001 flank eruption of Etna, but is otherwise fairly uncommon in the recent history of Etna. Here, we describe the features of the 2002–03 explosive activity and compare it with the 2001 eruption in order to characterize ash-rich jets and plumes and their transition with other eruptive styles, including Strombolian and ash explosions, mainly through chemical, componentry and morphology investigations of erupted ash. Past models explain the transition between different styles of basaltic explosive activity only in terms of flow conditions of gas and liquid. Our findings suggest that the abundant presence of a solid phase (microlites) may also control vent degassing and consequent magma fragmentation and eruptive style. In fact, in contrast with the Strombolian or Hawaiian microlite-poor, fluidal, sideromelane clasts, ash-rich jets and plumes produce crystal-rich tachylite clasts with evidence of brittle fragmentation, suggesting that high groundmass crystallinity of the very top part of the magma column may reduce bubble movement while increasing fragmentation efficiency.  相似文献   

20.
Extensive measurements of ground deformation at the Krafla volcano, Iceland, have been made since the beginning in 1975 of a series of eruptions and intrusions into the fissure system that extends north and south of the volcano. I concentrate on measurements before and after the eruption of September 1984, the last event of this series when the largest volume of lava was erupted. The patterns of ground deformation associated with the 1984 eruption, determined by precision levelling, electronic distance measurements and lake level observations, were similar to earlier intrusions and eruptions, in that the surface of the volcano subsided and the fissure system widened as magma moved laterally from a shallow central reservoir into the fissure system. The shallow magma reservoir of Krafla continued to expand for about five years after the eruption, but a slow subsidence of the central area began in 1989. Besides the presence of an inflating and deflating shallow magma reservoir at a depth of 2.5 km beneath the Krafla caldera, another inflating magma reservoir may exist at much greater depth below Krafla. The accumulation of compressive strain by numerous rift intrusions and eruptions since 1975 along the flanks of the north-south Krafla fissure swarm is being released slowly and will probably be reflected in the results of deformation measurements near Krafla for the next several decades. The total horizontal extension of the Krafla rift system in 1975–1984 was about 9 m, equal to about 500 years of constant plate divergence. The extension is twice the accumulated divergence since previous rifting events and eruptions in 1724–1729  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号