首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

流体饱和度会改变裂缝性储层的纵波速度,从而影响地层速度的频散特性及各向异性程度,导致储层地震响应特征复杂,储层预测多解性强,流体识别难度大.本文根据多相流体饱和裂缝性储层的特点,借助于Norris和KG模型,建立部分饱和裂缝-孔隙等效介质模型,给出频变地震波速度随流体饱和度变化的精确关系式.数值模拟结果表明,当气、水两相共存时,随着含水饱和度的增加,高频段纵波相速度逐渐增大,各向异性程度逐渐减小;低频段纵波相速度逐渐减小,各向异性程度不变;相速度频散及其各向异性程度逐渐增强.组合已有的孔隙弹性理论模型,对实验室人工裂缝-孔隙砂岩岩样的纵波速度进行拟合,计算得到的曲线与实验室测量散点值吻合度较高,表明组合模型在给定参数下的有效性.该研究能够为多相流体饱和裂缝性储层的地震响应特征分析奠定扎实的理论基础,为提高储层预测的确定性和流体识别的准确性提供可靠的理论依据.

  相似文献   

2.
以非弹性层状介质为模型,基于广义传播矩阵理论计算地震波频变反射系数,算法中同时考虑了与频散和衰减有关的地层岩性因素,以及与薄互层有关的地层结构因素.实现了岩石物理模型、反射系数这两个计算过程的"无缝"连接,精确考虑了由复数弹性模量表示的地层非弹性因素,也为在同一反射模型中考虑源于不同物理机制的频散与衰减提供了方法.数值模拟结果验证了算法的有效性和稳定性,计算结果表明,非弹性薄层的反射振幅随频率先增加后减小,不一定表现常规"低频亮点"异常;同时,薄互层条件下的频散与衰减使得地震反射波的频谱以及AVO特征呈现与频率相关的复杂变化.本文完善了频变AVO算法,为含油气储层频变AVO响应的模拟和分析提供了方法.  相似文献   

3.
In 2005, a multicomponent ocean bottom node data set was collected by BP and BHP Billiton in the Atlantis field in the Gulf of Mexico. Our results are based on data from a few sparse nodes with millions of shots that were analysed as common receiver azimuthal gathers. A first‐order look at P‐wave arrivals on a common receiver gather at a constant offset reveals variation of P‐wave arrival time as a function of azimuth indicating the presence of azimuthal anisotropy at the top few layers. This prompted us to investigate shear arrivals on the horizontal component data. After preliminary processing, including a static correction, the data were optimally rotated to radial (R) and transverse (T) components. The R component shows azimuthal variation of traveltime indicating variation of velocity with azimuth; the corresponding T component shows azimuthal variation of amplitude and phase (polarity reversal). The observed shear‐wave (S‐wave) splitting, previously observed azimuthal P‐wave velocity variation and azimuthal P‐wave amplitude variation, all indicate the occurrence of anisotropy in the shallow (just below the seafloor) subsea sediment in the area. From the radial component azimuthal gather, we analysed the PP‐ and PS‐wave amplitude variation for the first few layers and determined corresponding anisotropy parameter and VP/VS values. Since fracture at this depth is not likely to occur, we attribute the observed azimuthal anisotropy to the presence of microcracks and grain boundary orientation due to stress. The evidence of anisotropy is ubiquitous in this data set and thus it argues strongly in favour of considering anisotropy in depth imaging for obtaining realistic subsurface images, at the least.  相似文献   

4.
Monitoring of induced seismicity is gaining importance in a broad range of industrial operations from hydrocarbon reservoirs to mining to geothermal fields. Such passive seismic monitoring mainly aims at identifying fractures, which is of special interest for safety and productivity reasons. By analysing shear‐wave splitting it is possible to determine the anisotropy of the rock, which may be caused by sedimentary layering and/or aligned fractures, which in turn offers insight into the state of stress in the reservoir. We present a workflow strategy for automatic and effective processing of passive microseismic data sets, which are ever increasing in size. The automation provides an objective quality control of the shear‐wave splitting measurements and is based on characteristic differences between the two independent eigenvalue and cross‐correlation splitting techniques. These differences are summarized in a quality index for each measurement, allowing identification of an appropriate quality threshold. Measurements above this threshold are considered to be of good quality and are used in further interpretation. We suggest an automated inversion scheme using rock physics theory to test for best correlation of the data with various combinations of fracture density, its strike and the background anisotropy. This fully automatic workflow is then tested on a synthetic and a real microseismic data set.  相似文献   

5.
Knowledge about the spatial distribution of the fracture density and the azimuthal fracture orientation can greatly help in optimizing production from fractured reservoirs. Frequency-dependent seismic velocity and attenuation anisotropy data contain information about the fractures present in the reservoir. In this study, we use the measurements of velocity and attenuation anisotropy data corresponding to different seismic frequencies and azimuths to infer information about the multiple fracture sets present in the reservoir. We consider a reservoir model with two sets of vertical fractures characterized by unknown azimuthal fracture orientations and fracture densities. Frequency-dependent seismic velocity and attenuation anisotropy data is computed using the effective viscoelastic stiffness tensor and solving the Christoffel equation. A Bayesian inversion method is then applied to measurements of velocity and attenuation anisotropy data corresponding to different seismic frequencies and azimuth to estimate the azimuthal fracture orientations and the fracture densities, as well as their uncertainties. Our numerical examples suggest that velocity anisotropy data alone cannot recover the unknown fracture parameters. However, an improved estimation of the unknown fracture parameters can be obtained by joint inversion of velocity and attenuation anisotropy data.  相似文献   

6.
The purpose of this paper is the comparison of P‐wave velocity and velocity anisotropy, measured at different scales under laboratory and field conditions. A shallow seismic refraction survey with shot/receiver spacing of up to 10 m was carried out on a flat outcrop of lhertzolite in the southern part of the Balmuccia massif. Oriented rock samples were also obtained from the locality. The particular advantage of the laboratory method used is the possibility of measuring velocity in any direction under controlled conditions. Laboratory tests were made on spherical peridotite samples, 50 mm in diameter, by ultrasonic velocity measurements in 132 directions (meridian and parallel networks) under confining stress ranging from atmospheric to 400 MPa. The mean P‐wave velocity of the field and laboratory data differed by between 20–30%. In addition, P‐wave velocity anisotropy of 25% was detected in the field data. Whereas the anisotropy in the laboratory samples in the same orientation as the field surveys was less than 2%. This observed scaling factor is related to the different sampling sizes and the difference in frequencies of applied elastic waves. With an ultrasonic wavelength of 10 mm, laboratory samples represent a continuum. The field velocities and velocity anisotropy reflect the presence of cracks, which the laboratory rock samples do not contain. Three sub‐vertical fracture sets with differing strikes were observed in the field outcrop. Estimates of fracture stiffness from the velocity anisotropy data are consistent with other published values. These results highlight the difficulty of using laboratory velocity estimates to interpret field data.  相似文献   

7.
Understanding fracture orientations is important for optimal field development of fractured reservoirs because fractures can act as conduits for fluid flow. This is especially true for unconventional reservoirs (e.g., tight gas sands and shale gas). Using walkaround Vertical Seismic Profiling (VSP) technology presents a unique opportunity to identify seismic azimuthal anisotropy for use in mapping potential fracture zones and their orientation around a borehole. Saudi Aramco recently completed the acquisition, processing and analysis of a walkaround VSP survey through an unconventional tight gas sand reservoir to help characterize fractures. In this paper, we present the results of the seismic azimuthal anisotropy analysis using seismic traveltime, shear‐wave splitting and amplitude attenuation. The azimuthal anisotropy results are compared to the fracture orientations derived from dipole sonic and image logs. The image log interpretation suggests that an orthorhombic fracture system is present. VSP data show that the P‐wave traveltime anisotropy direction is NE to SW. This is consistent with the cemented fractures from the image log interpretation. The seismic amplitude attenuation anisotropy direction is NW to SE. This is consistent with one of the two orientations obtained using transverse to radial amplitude ratio analysis, with the dipole sonic and with open fracture directions interpreted from image log data.  相似文献   

8.
Anisotropic variations in attenuation are of interest since they can give information on the fracture system and may be more amenable to measurement than absolute attenuation values. We examine methods for detecting changes in relative attenuation with azimuth from VSP data, and validate the techniques on synthetic data. Analysis of a multi‐azimuth walkaway VSP data set from a fractured hydrocarbon reservoir indicates that such azimuthal variations in P‐wave attenuation are observable. The effects are localized in the reservoir, and analysis allows the prediction of a fracture strike direction, which agrees with geological information. The observed effects can be modelled under reasonable assumptions, which suggests the validity of the link between the anisotropic attenuation and the fracturing.  相似文献   

9.
孙振添  魏东平  韩鹏  刘鎏 《地震学报》2013,35(6):785-798
利用收集到的各种来源共计7 959组的地震各向异性观测数据和21 750组应力场数据,结合板块绝对运动模型计算给出的各板块的运动规律,分别统计分析了板块运动与地震各向异性及应力场的相关性,并对板块运动对地震各向异性及应力场特征产生的影响进行了分析. 统计结果表明,阿拉伯、 加勒比、 胡安德富卡、 北美、 纳兹卡、 太平洋和南美板块上地震各向异性与板块运动均具有较好的相关性,而非洲、 南极洲、 澳大利亚、 欧亚、 印度和菲律宾板块上二者的相关性则相对较差. 讨论分析发现,板块运动拖动软流圈流动、 橄榄岩晶格优选方位、 化石各向异性和地幔流动或岩石圈流动等因素均在一定程度上控制并影响着地震各向异性与板块运动的一致性. 而板块基底拖曳力、 洋脊推力、 浮力作用和碰撞及俯冲作用等多种因素共同制约了板块运动与应力场的相关性,使得非洲、 可可斯、 欧亚、 胡安德富卡、 北美、 纳兹卡、 菲律宾和南美板块上二者的相关性较好,其它板块上其相关性则较差. 对于俯冲带地区,由于俯冲机制的复杂性和软流圈、 岩石圈地幔流动方向的不确定性,其板块运动与地震各向异性及应力场的相关性图像表现复杂,需要结合具体的俯冲带构造进行近一步研究.  相似文献   

10.
We investigate the dependence of quasi P-wave phase velocity propagating in orthotropic media on particular elasticity parameters. Specifically, due to mathematical facilitation, we consider the squared-velocity difference, , resulted from propagation in two mutually perpendicular symmetry planes. In the context of the effective medium theory, may be viewed as a parameter evaluating the influence of cracks – embedded in the background medium – parallel to one or both aforementioned planes. Our investigation is both theoretical and numerical. Based on Christoffel's equations, we propose two accurate approximations of . Due to them, we interpret the aforementioned squared-velocity difference as being twice more dependent on , than on . To describe the magnitude of the dependence, we consider the proportions between the partial derivatives of . Further, it occurs that is influenced by the ratio of vertically propagating quasi P-wave to vertically propagating quasi S-wave. Anomalously high might be caused by the low P/S ratio, which in turn can be an indicator of the presence of gas in natural fractures or aligned porosity. Also, we carry out numerical sensitivity study, according to which is approximately twice more dependent on than on , twice more sensitive to than to , and equally dependent on as on . The dependence on and can be neglected, especially for small phase angles. We verify the approximations and perform the sensitivity study, using eight examples of the elasticity tensors.  相似文献   

11.
青藏高原东缘上地幔顶部Pn波速度结构及各向异性研究   总被引:3,自引:2,他引:3  
黎源  雷建设 《地球物理学报》2012,55(11):3615-3624
本研究使用中国地震局地壳应力研究所2010—2011年期间在云南地区布设流动地震台站以及青藏高原周边地区固定地震台站记录到的波形资料,提取了大量高质量Pn波到时资料.联合中国地震台网观测报告,我们获得了一个新的青藏高原东缘上地幔顶部Pn波速度和各向异性结构模型.结果显示,研究区内上地幔顶部存在明显横向不均匀性.古老盆地和稳定地台区如四川盆地、柴达木盆地、拉萨地块和阿拉善块体呈现为明显高波速异常,而祁连山至西秦岭褶皱带和川滇菱形块体北部等为相对弱高波速异常.在龙日坝断裂带以东的松潘—甘孜地块往南沿安宁河—则木河断裂至川滇菱形块体南部显示为一条近南北向明显低波速异常.三江褶皱系、缅甸弧俯冲带以及四川盆地东南等地区为明显低波速异常.地壳强震多发生在高波速异常边缘或高低波速异常过渡带上,表明地壳强震的孕育可能还与地幔构造作用存在一定相关性.青藏高原东构造结的各向异性快波方向呈顺时针旋转分布,与印度—欧亚碰撞密切相关.龙门山断裂带东西两侧的各向异性快波方向发生明显变化,由其西侧松潘—甘孜地块下方的NE向转变为四川盆地下方的近EW向,说明青藏高原物质流动遇四川盆地后分为NE和SW向两支.在川滇地区26°N以南地区上地幔顶部各向异性呈现近NS向与地表GPS观测相一致,但与SKS分裂结果存在较大差异,可能表明地壳与上地幔顶部形变表现为耦合现象,而上地幔顶部至岩石圈内部则存在解耦现象.  相似文献   

12.
First-arrival traveltimes from a multi-offset vertical seismic profile (VSP) were used to estimate velocity anisotropy in the presence of a vertical velocity gradient. A numerical model consisting of two layers with vertical velocity gradients of 3.1 and 1.2 s−1, respectively, and global anisotropy parameters of =0.12±0.02 and δ=0.30±0.06 yielded first-arrival traveltimes that matched the observed traveltimes well. Shallow receivers were found to be crucial for constraining the vertical velocity field and for determining the parameters of anisotropy at depth.  相似文献   

13.
针对微地震裂缝解释的复杂性,从震源矢量场的重建开始研究,在研究VTI介质速度模型各向异性条件下的走时和透射系数的变化特征基础上,形成了各向异性条件下的群、相速度及透射系数的计算方法.针对多级检波器水平分量朝向的多向性特点,提出了多级检波器水平分量的偏振分析方法,得到了完整的水平特征矢量,克服了单级检波器水平分量偏振分析构建特征矢量信息不全的问题,形成了高精度微地震事件定位方法,实现各向异性VTI介质速度模型的高斯束微地震格林函数正演模拟.利用格林函数模拟场、观测记录场,从构建完整场研究入手,重建震源矢量场.根据重建的震源矢量场,提出了裂缝解释的全新的系列方法,包括单条裂缝、裂缝网络的解释方法.通过实际资料的测试分析,验证了研究技术的实用性.  相似文献   

14.
Seismic monitoring of reservoir and overburden performance during subsurface CO2 storage plays a key role in ensuring efficiency and safety. Proper interpretation of monitoring data requires knowledge about the rock physical phenomena occurring in the subsurface formations. This work focuses on rock stiffness and elastic velocity changes of a shale overburden formation caused by both reservoir inflation induced stress changes and leakage of CO2 into the overburden. In laboratory experiments, Pierre shale I core plugs were loaded along the stress path representative for the in situ stress changes experienced by caprock during reservoir inflation. Tests were carried out in a triaxial compaction cell combining three measurement techniques and permitting for determination of (i) ultrasonic velocities, (ii) quasistatic rock deformations, and (iii) dynamic elastic stiffness at seismic frequencies within a single test, which allowed to quantify effects of seismic dispersion. In addition, fluid substitution effects connected with possible CO2 leakage into the caprock formation were modelled by the modified anisotropic Gassmann model. Results of this work indicate that (i) stress sensitivity of Pierre shale I is frequency dependent; (ii) reservoir inflation leads to the increase of the overburden Young's modulus and Poisson's ratio; (iii) in situ stress changes mostly affect the P‐wave velocities; (iv) small leakage of the CO2 into the overburden may lead to the velocity changes, which are comparable with one associated with geomechanical influence; (v) non‐elastic effects increase stress sensitivity of an acoustic waves; (iv) and both geomechanical and fluid substitution effects would create significant time shifts, which should be detectable by time‐lapse seismic.  相似文献   

15.

地下介质中存在黏弹性和各向异性,在应用最小二乘逆时偏移时,如果没有对黏弹性和各向异性的影响进行校正,在观测数据和模拟数据的匹配过程中就会发生错误,最终使得最小二乘逆时偏移无法得到准确的成像结果.因此,本论文首先对最小二乘逆时偏移的黏弹性和各向异性进行分别校正,然后对两种影响进行同时校正.在实际资料试算部分,通过对渤海湾数据进行测试,分别采用常规声波最小二乘逆时偏移、补偿黏弹性的最小二乘逆时偏移、校正各向异性的最小二乘逆时偏移及同时校正两种性质的最小二乘逆时偏移进行比较测试,证明了在同时校正了黏弹性和各向异性影响之后,最小二乘逆时偏移得到了更高质量的成像结果,具体表现在低频噪音压制、震源效应压制、深部能量改善、分辨率提升、目的层刻画等方面都明显优于其他三种最小二乘逆时偏移的成像结果,同时也证明了同时校正黏弹性和各向异性最小二乘逆时偏移方法的正确性及在实际资料处理中的适用性.

  相似文献   

16.

背景噪声成像能够为地壳内部结构提供地震波速的观测证据,能够增进对地壳结构与物性的认识.本文利用背景噪声成像方法对合肥-金华流动地震台阵55个台站数据进行了分析反演,获得了华北克拉通与华南块体东部构造边界附近区域的地壳S波速度与径向各向异性结构.成像结果表明,以东经118°-118.5°附近为界,西北部表现为地壳低速异常和中下地壳正的径向各向异性,东南部表现为地壳高速异常,下部地壳存在负的径向各向异性.由此,本文推测地震波速结构差异反映了地壳内部物质与温度的差异,这种差异与两个地区自中生代晚期以来经历了截然不同的岩浆活动相关.

  相似文献   

17.
利用甘肃和青海两省固定宽频带地震台记录的远震波形资料,挑选高质量SKS震相,联合使用最小切向能量方法和旋转互相关方法获得230对高信噪比分裂参数;同时对接收函数中Pms震相随方位角的变化进行拟合,得到了24个台站的地壳各向异性分裂参数.整个区域SKS分裂快波方向均值为123°,Pms分裂快波方向均值为132°,且大部分区域SKS、Pms快波方向与地表构造走向相一致,说明青藏高原东北缘以岩石圈垂直连贯变形为主,地壳上地幔相互耦合.SKS、Pms分裂时差均值分别为1.0s和0.6s,显示地壳各向异性对于SKS分裂时差有较大贡献.昆仑断裂附近Pms、SKS分裂快波方向与昆仑断裂走向基本一致,说明昆仑断裂可能是岩石圈尺度深大断裂;而阿尔金断裂东缘二者快波方向显著差异意味着阿尔金断裂在东缘可能仅为地壳尺度的断裂.  相似文献   

18.
各向异性层状介质中视电阻率与磁场响应研究   总被引:9,自引:4,他引:9       下载免费PDF全文
针对任意各向异性地层,利用极向型和环向型标量位函数,导出相应的直流电视电阻率和磁电阻率的磁场响应关系.计算了各向异性地层的直流电视电阻率和磁电阻率响应特征,重点分析了电阻率测深方法与磁电阻率探测方法对地下各向异性介质的探测能力.文中采用状态矩阵的分析方法,首先采用极向型和环向型标量位构造了各向异性层状介质电场与磁场的通解,利用各层界面电场、磁场的连续性及地面激励源的耦合条件,推导了不同层之间电磁场的状态矩阵,建立了空间电场与磁场的递归计算关系.其次,针对递归计算中指数项数值计算的不稳定性,借用状态矩阵的性质,导出了将不稳定指数计算项转化为稳定的指数项的转换关系.针对横向各向同性(TI)介质中极向位与环向位解耦的特点,导出了电磁场的直接积分解.最后,采用解析解验证了算法的正确性,给出了多层各向异性地层模型的视电阻率和磁场响应曲线,分析了直流电法探测裂缝性地层、估计裂缝分布性状的可能性.  相似文献   

19.
The S wave velocity structure of the earth below Eastern Southeast Asia has been investigated by analyzing the seismogram from surface wave to multiple depth waves in the time domain and three Cartesian components simultaneously. The wave passes across the front area of subduction zone between the Philippine plate and the Asian plate. The main data are waveform comparisons, instead of the arrival times. The synthetic seismogram is calculated using the GEMINI method. The synthetic seismogram constructed by PREMAN global earth model deviates greatly from the measured one. To solve this problem, corrections are needed for the β speed structure. Corrections cover the gradient change of βh, which turns from negative to positive in upper mantle layers as in the PREMAN, change of earth crust depth and change of zero order coefficients of β velocity function in all earth mantle layers. So, the fitting is obtained, as well as the arrival time or the waveform of Love and Rayleigh surface waves, the S wave and the repetitive depth waves ScS2 and ScS3. This result reveals that the Southeast Asia, being stretched due to tectonic release, has a mantle in some parts with negative anomaly of S wave velocity and vertical anisotropy in all earth mantle layers.  相似文献   

20.

本文通过对出露于青藏高原东南缘云南六合地区的新生代深源岩石包体(斜长角闪岩、角闪石岩和石榴石透辉岩)的显微组构和地震波各向异性的研究来约束新生代青藏高原东南缘的地壳各向异性.通过角闪石地质压力计计算得知斜长角闪岩、角闪石岩和石榴石透辉岩包体来源于地壳28~36 km,为中-下地壳岩石包体.EBSD测量结果显示包体中角闪石的CPO(晶格优选定向)为Type-Ⅳ型和(100)[001]滑移,单斜辉石的CPO为SL型和(100)[001]滑移,暗示中-下地壳为高温强变形的特征.通过CPO数据计算获得斜长角闪岩、角闪石岩和石榴石透辉岩包体全岩VP各向异性为1.9%~13.3%,最大分裂的剪切波各向异性(AVS)为1.17%~8.01%.结合前人的研究结果,该地区的地壳岩石能够解释利用Pms震相测量获得的分裂延迟时间,表明云南西北地区的壳内各向异性源于中-下地壳矿物的定向排列.云南西北地区的Pms快波方向近NW-SE向分布并与SKS的快波方向相近,暗示岩石圈变形是耦合的,受控于青藏高原向东南挤出的构造背景.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号