首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the aim of obtaining Tertiary palaeomagnetic directions for the Adriatic Foreland of the Dinaric nappe system, we carried out a palaeomagnetic study on platform carbonates from stable Istria, from the northwestern and the Central Dalmatia segment of imbricated Adria. Despite the weak to very weak natural remanences of these rocks, we obtained tectonically useful palaeomagnetic directions for 25 sites from 20 localities. All exhibit westerly declinations, both before and after tilt correction. Concerning the age of the magnetizations, we conclude that five subhorizontal and magnetite bearing Eocene localities from stable Istria are likely to carry primary remanence, whereas three tilted and hematite-bearing ones were remagnetized. In the northwestern segment of imbricated Adria the cluster of the mean directions improved after tectonic correction indicating pre-tilting magnetization. In contrast, Maastrichtian–Eocene platform carbonates from Central Dalmatian were remagnetized in connection with the late Eocene–Oligocene deformation or Miocene hydrocarbon migration. Based on the appropriate site/locality means, we calculate mean palaeomagnetic directions for the above three areas and suggest an alternative interpretation of the data of Kissel et al. [J. Geophys. Res. 100 (1995) 14999] for the flysch of Central Dalmatia. The four area mean direction define a regional palaeomagnetic direction of Dec=336°, Inc=+52°, k=107, α95=9°. From these data we conclude that stable Istria, in close coordination with imbricated Adria, must have rotated by 30° counterclockwise in the Tertiary, relative to Africa and stable Europe. We suggest that the latest Miocene–early Pliocene counterclockwise rotations observed in northwestern Croatia and northeastern Slovenia were driven by that of the Adriatic Foreland, i.e. the rotation of the latter took place between 6 and 4 Ma.  相似文献   

2.
In order to test different hypotheses concerning the Paleozoic evolution of the Ural–Mongol belt (UMB) and the amalgamation of Eurasia, we studied Middle Devonian basalts from two localities (11 sites) and Lower Silurian volcanics, redbeds, and intra-formational conglomerates from three localities (20 sites) in the Chingiz Range of East Kazakhstan. The Devonian rocks prove to be heavily overprinted in the late Paleozoic, and a high-temperature, presumably primary, southerly, and down component is isolated at only four sites from a homoclinal section. Most Silurian redbeds are found to be remagnetized in the late Paleozoic; in contrast, a bipolar near-horizontal remanence, isolated from Silurian volcanics, is most probably primary as indicated by positive tilt and conglomerate tests. Analysis of paleomagnetic data from the Chingiz Range shows that southward-pointing directions in Ordovician, Silurian, and Devonian rocks are of normal polarity and hence indicate large-scale rotations after the Middle Devonian. The Chingiz paleomagnetic directions can be compared with Paleozoic data from the North Tien Shan and with the horseshoe-shaped distribution of subduction-related volcanic complexes in Kazakhstan. Both paleomagnetic and geological data support the idea that today's strongly curved volcanic belts of Kazakhstan are an orocline, deformed mostly before mid-Permian time. Despite the determination of nearly a dozen new Paleozoic paleopoles in this study and other recent publications by our team, significant temporal and spatial gaps remain in our knowledge of the paleomagnetic directions during the middle and late Paleozoic. However, the paleomagnetic results from the Chingiz Range and the North Tien Shan indicate that these areas show generally coherent motions with Siberia and Baltica, respectively.  相似文献   

3.
As part of a program to investigate archaeomagnetic secular variation in Israel and implications for archaeomagnetic dating, we have identified “anomalous” results that have yielded information about site formation processes. Stereonets, vector demagnetization diagrams, and sample location maps are most useful in examining stability of magnetization and consistency of archaeomagnetic directions with each other and with what would be expected from normal secular variation. A collection of examples is presented, including: strong and hard remanence due to vitrification, unstable magnetization due to lightning strikes, superimposed thermal magnetizations, chemical remagnetization, magnetization of a hearth fragment before falling, magnetization of a hot brick after falling, and mechanical deformation of an archaeomagnetic feature. © 1999 John Wiley & Sons, Inc.  相似文献   

4.
The Appalachian fold–thrust belt is characterized by a sinuous trace in map-view, creating a series of salients and recesses. The kinematic evolution of these arcuate features remains a controversial topic in orogenesis. Primary magnetizations from clastic red beds in the Pennsylvania salient show Pennsylvanian rotations that account for about half of the curvature, while Kiaman-aged (Permian) remagnetizations display no relative rotation between the limbs. The more southern Tennessee salient shows a maximum change in regional strike from ~ 65° in Virginia to ~ 10° in northern Georgia. Paleomagnetic results from thirty-two sites in the Middle to Upper Ordovician Chickamauga Group limestones and twenty sites from the Middle Cambrian Rome Formation red beds were analyzed to constrain the relative age of magnetization as well as the nature of curvature in the Tennessee salient. Results from three sites of the Silurian Red Mountain Formation were added to an existing dataset in order to determine whether the southern limb had rotated.After thermal demagnetization, all three sample suites display a down and southeasterly direction, albeit carried by different magnetic minerals. The syn-tilting direction of the Chickamauga limestones lies on the Pennsylvanian segment of the North American apparent polar wander path (APWP), indicating that deformation was about half completed by the Late Pennsylvanian. The Rome and Red Mountain Formations were also remagnetized during the Pennsylvanian. Both the Chickamauga limestones and Rome red beds fail to show a correlation between strike and declination along the salient, suggesting either that the salient was a primary, non-rotational feature or that secondary curvature occurred prior to remagnetization, as it did in Pennsylvania. Moreover, remagnetized directions from the Red Mountain sites show no statistical difference between the southern limb of the salient and the more northeasterly trending portion of the fold–thrust belt in Alabama. Thus, all of the studied units in the Tennessee salient are remagnetized and show no evidence for rotation. This confirms that remagnetization was widespread in the southern Appalachians and that any potential orogenic rotation must have occurred prior to the Late Pennsylvanian.  相似文献   

5.
Palaeomagnetism of 273 specimens from 24 sites isolated a well‐defined characteristic remanent magnetization (ChRM) direction on AF and thermal demagnetization in seven host carbonate and 14 ore mineralization sites from the Galmoy Zn–Pb deposit. Thermal decay and saturation remanence data show that the ChRM is carried dominantly by single domain magnetite. Palaeomagnetic field stability tests indicate a post‐brecciation and post‐folding ChRM. The ChRM directions from the host rock and mineralized sites are indistinguishable at 95% confidence and give a palaeopole at 41.5°S, 8.4°W (dp = 1.5°, dm = 3.0°) with an age of 290 ± 9 Ma on the Laurentian apparent polar wander path. This Early Permian age at Galmoy records Variscan orogenesis and suggests an epigenetic model in which mineralization occurred during cooling from the regional Variscan thermal episode.  相似文献   

6.
Syngenetic, diagenetic and epigenetic models have been proposed for the Cu?CZn?CPb Kupferschiefer mineralization at Sangerhausen, Germany. Paleomagnetic and rock magnetic measurements have been made on 205 specimens from mine workings on the margin of the Sangerhausen Syncline. The mineralization is richest in the ??0.5-m-thick Upper Permian (258?±?2?Ma) Kupferschiefer black marly shale (nine sites) and dies out over ??0.2?m in the underlying Weisliegend sandstones (three sites) and overlying Zechstein carbonates (two sites). Except for one site of fault zone gypsum, characteristic remanent magnetization directions were isolated for all 14 sites using alternating field and thermal step demagnetization. These directions provide a negative fold test, indicating that the remanence postdates Jurassic fault block tilting. Rock magnetic measurements show that the Kupferschiefer shale marks a redox front between the oxidized Weissliegend sandstones and non-oxidized Zechstein carbonates. The 14 site directions give a Late Jurassic paleopole at 149?±?3?Ma. It is significantly different from the paleopole reported by E.C. Jowett and others for primary or early diagenetic Rote F?ule alteration that gives an age of 254?±?6?Ma on the current apparent polar wander path and is associated with Kupferschiefer mineralization. We suggest that the Late Jurassic extensional tectonic event that formed the nearby North German Basin also reactivated Variscan basement faults and extended them up through the overlying strata, thereby allowing hydrothermal basement fluids to ascend and epigenetically mineralize the Kupferschiefer shale. The possibility of a 53?±?3?Ma mineralization age is also considered.  相似文献   

7.

The Hastings Terrane comprises two or three major fragments of the arc‐related Tamworth Belt of the southern New England Orogen, eastern Australia, and is now located in an apparently allochthonous position outboard of the subduction complex. A palaeomagnetic investigation of many rock units has been undertaken to shed light on this anomalous location and orientation of this terrane. Although many of the units have been overprinted, pre‐deformational magnetizations have been isolated in red beds of the Late Carboniferous Kullatine Formation from the northern part of the terrane. After restoring these directions to their palaeohorizontal (pre‐plunging and pre‐folding) orientations they appear to have been rotated 130° clockwise (or 230° anti‐clockwise) when compared with coeval magnetizations from regions to the west of the Hastings Terrane. Although these data are insensitive to translational displacements, a clockwise rotation is incompatible with models previously proposed on geological grounds. While an anti‐clockwise rotation is in the same sense as these models the magnitude appears to be too great by about 100°. Nevertheless, the palaeomagnetically determined rotation brings the palaeoslopes of the Tamworth Belt, facing east, and the Northern Hastings Terrane, facing west before rotation and facing southeast after rotation, into better agreement. A pole position of 14.4°N, 155.6°E (A95 = 6.9°) has been determined for the Kullatine Formation (after plunge and bedding correction but not corrected for the hypothetical rotation). Reversed magnetizations interpreted to have formed during original cooling are present in the Werrikimbe Volcanics. The pole position from the Werrikimbe Volcanics is at 31.6° S, 185.3° E (A95 = 26.6°). These rocks are the volcanic expression of widespread igneous activity during the Late Triassic (~ 226 Ma). While this activity is an obvious potential cause of the magnetic overprinting found in the older units, the magnetic directions from the volcanics and the overprints are not coincident. However, because only a few units could be sampled, the error in the mean direction from the volcanics makes it difficult to make a fair comparison with the directions of overprinted units. The overprint poles determined from normal polarity magnetizations of the Kullatine Formation is at 61.0°S, 155.6°E (A95 = 6.9°) and a basalt from Ellenborough is at 50.7° S, 148.8° E (A95 = 15.4°), and from reversed polarity magnetizations, also from the basalt at Ellenborough is at 49.4° S, 146.2° E (A95 = 20.4°). These are closer to either an Early Permian or a mid‐Cretaceous position, rather than a Late Triassic position, on the Australian apparent polar wandering path. Therefore, despite their mixed polarity, and global observations that the Permian and mid‐Cretaceous geomagnetic fields were of constant polarities, the age of these overprint magnetizations appears to be either Early Permian or mid‐Cretaceous.  相似文献   

8.
The northern part of the West Siberian geosyneclise is characterized by a thick sedimentary cover and widespread Triassic sedimentary and volcanosedimentary rocks and Paleozoic platform structures. New targets have been recognized in the basement and deeply buried horizons of the geosyneclise cover. Reservoirs might be found in the following formations: Paleozoic cover deposits, weathering crusts, zones of Paleozoic rock deconsolidation, Triassic sedimentary and volcanosedimentary deposits, buried structures in the lower part of the cover, Lower and Middle Jurassic basal layers, pinch-outs of Jurassic horizons, Upper Jurassic bituminous shales and cavernous carbonates. Exploration of these potential structures will change the structure of the existing resource base toward the long-term replenishment of hydrocarbon resources and a stable rate of production replacement.  相似文献   

9.
Paleomagnetic results from Upper Jurassic to Paleocene rocks in Peninsular Malaysia show counter clockwise (CCW) rotations, while clockwise rotations (CW) are predominantly found in older rocks. Continental redbeds of the Upper Jurassic to Lower Cretaceous Tembeling Group have a post folding remagnetization, giving a VGP at N54°E29°, corresponding to approximately 40° of CCW rotation relative to Eurasia and 60° CCW relative to the Indochina block (Khorat Plateau). Samples from Cretaceous to Paleocene mafic volcanics of the Kuantan dike swarm and the Segamat basalts give VGPs at N59°E47° and N34°E36°, respectively. These Malayasian data are indistinguishable from the Late Eocene and Oligocene VGPs reported for Borneo and the Celebes Sea and are similar to the Eocene VGPs reported for southwest Sulawesi and southwest Palawan. The occurrence of CCW deflected data over this large region suggests that much of Malaysia, Borneo, Sulawesi, and the Celebes Sea rotated approximately 30° to 40° CCW relative to the Geocentric Axial Dipole (GAD) between the Late Eocene and the Late Miocene, although not necessarily synchronously, nor as a single rigid plate. These regional CCW rotations are not consistent with simple extrusion based tectonic models. CW declinations have been measured in Late Triassic granites, Permian to Triassic volcanics, and remagnetized Paleozoic carbonates. The age of this magnetization is poorly understood and may be as old as Late Triassic, or as young as Middle or Late Cretaceous. The plate, or block rotations, giving rise to these directions are correspondingly weakly constrained.  相似文献   

10.
Comparison of results for the original burial rate of carbonate sediments over Phanerozoic time, as calculated using the GEOCARBSULFvolc model, with their rate of preservation to the present (survival rate) shows a considerable loss of mass, partly by subduction of oceanic crust, during the past 250 million years. Before that time, despite the evidence that preserved Paleozoic carbonates appear to have been deposited only in shallow water, we contend that there was also inorganic deposition of carbonates in the Paleozoic deep sea with subsequent loss by subduction. Inorganic carbonate deposition may have been abetted by the vastly different seawater and atmospheric composition for most of the Paleozoic than those of post-Cretaceous and end Paleozoic–early Mesozoic times. The hypothesis helps to explain the loss of mass greater than that predicted for shallow-water carbonates prior to 250 Ma.  相似文献   

11.
Paleomagnetism (18 sites, 231 specimens) of Lower Carboniferous carbonates in Northern Ireland reveals three characteristic remanent magnetization (ChRM) components. Six sites from Brigantian limestones have a Middle Triassic (239 ± 7 Ma) secondary chemical remanent magnetization (CRM) in hematite, likely from alteration of the limestones by oxidizing meteoric fluids when continental red beds were deposited immediately above. Twelve sites from early Asbian limestones retain ChRM directions residing in pyrrhotite and magnetite. Their paleopoles are statistically indistinct, but suggest that the pyrrhotite remanence (326 ± 4 Ma) is about a million years younger than the magnetite remanence (327 ± 3 Ma). More importantly, the primary ChRM in these limestones was reset 3 or 4 Ma after deposition, probably by fluids involved in their diagenesis, giving secondary CRMs that are 8 Ma younger than those observed in the Lower Carboniferous carbonates that host the Navan Zn–Pb deposit in the Irish Midlands, suggesting two unrelated fluid histories.  相似文献   

12.
Seventy oriented basaltic samples were collected from six sites from the Wadi Budra and Farsh El Azraq areas of the west-central part of Sinai. Rock magnetic properties such as Curie temperatures and hysteresis parameters, as well as microscopic observations, point to magnetite as the main carrier of the remanent magnetization. The stress sensitivity of basaltic rocks is relatively low. High stress produces an increase in the remanent and induced magnetizations perpendicular to the applied stress axis and a decrease parallel to it. The change of magnetization during stress action ranges from 1.1% to 3.5% for a stress of 100?bar. The differential total magnetic intensity field with time (within 2?years) was observed through 80 magnetic observation points set up on both sites of the basaltic sheet at the studied area. The observed temporal variations of magnetization can be interpreted as stress loading parallel to the regional stress field in the order of 50?±?20?bar, according to the stress sensitivity of the precursor basalt.  相似文献   

13.
A paleomagnetic study of subsurface core samples from dolomitized carbonates of two producing reservoirs in the Upper Ordovician Trenton Formation, collected from four wells in southwestern Ontario yielded a paleomagnetic direction of D = 152.3°, I = − 12.3° (N = 49, α95 = 8.7). This characteristic remanent magnetization (ChRM) direction was azimuth-corrected by aligning the viscous remanence magnetization (VRM) with the present Earth's magnetic field direction. A drilling-induced magnetization (VRMdi) was present in less than half the specimens sampled in this study. In addition, where the VRM correction could not be made, a paleolatitudinal arc calculated from the inclination-only mean of I = − 9.0° (N = 34, α95 = 3.0°) intersected the apparent polar wander path in the Late Permian–Early Triassic. These paleodirections are similar to the paleomagnetic directions observed in Ordovician Trenton carbonates from the Michigan Basin and New York State, U.S.A., suggesting a related regional late Paleozoic remagnetization.  相似文献   

14.
A total of 81 samples (244 specimens) from Upper Cretaceous Indus Molasse and Middle to Upper Cretaceous Dras Flyschoids of the Indus-Tsangpo suture zone in Ladakh (northwest Himalaya) has been studied by thermal demagnetization methods.Both formations showed a characteristic magnetization component indicative for equatorial to low northern palaeolatitudes of acquisition. Similar palaeolatitudes have been obtained before from secondary magnetization components of Early Tertiary age in the Ladakh Intrusives and in the Tibetan Sedimentary Series of central Nepal. The present characteristic components are interpreted likewise as secondary magnetizations which stabilized between 50 and 60 m.y. ago, during Greater India's collision with Asia's southern margin.The Dras Flyschoids show another magnetic component which, in case of primary origin, indicates acquisition at a low southern palaeolatitude. If correct, this interpretation supports recent suggestions for Late Cretaceous obduction of an island arc on Greater India's northern margin.  相似文献   

15.
J.J. Schott  A. Peres 《Tectonophysics》1987,140(2-4):179-191
The paleomagnetic analysis of the Permo-Triassic redbeds outcropping in the western part of the Cantabric Chain and the small Mesozoic basin from the Asturias shows that these formations have a history of complex magnetization. Only a few sites did not experience the remagnetization processes and retained original directions. The most reliable results yield a paleomagnetic pole located at: lat. 49° N, long. 217° E (n = 11, 95 = 3.7°), which is suggested as reliable Permo-Triassic data for the Iberian plate. Two remagnetization phases are recognized: a moderate phase predating the folding gave rise to a first overprinting. It is connected with the distension which occurred in the Pyreneo-Cantabrian region during the upper Jurassic-lower Cretaceous. The main remagnetization phase which occurred after the folding is dated from the lower Tertiary, and can be related to the compression induced on the northern boundary of Iberia from upper Cretaceous onwards. In some cases this phase led to a complete replacement of the primary magnetization.

Previously published data, which were at the time interpreted as being European-like in direction, are attributed to this phase. Hence, our results do not support the hypothesis of a micro-plate called “le Danois block”, which was suggested in order to explain these results. We believe that there is no paleomagnetic evidence supporting the existence of a complicated boundary between Europe and Iberia during the mid-Cretaceous opening of the Bay of Biscay.  相似文献   


16.
The Fars area is the main target for Permian gas exploration in the Zagros fold belt. It contains approximately 15 percent of the world’s proven gas reserves. The geometrical characteristics of the folded structures change dramatically across the N–S trending Gavbandi High. We used seismic profiles, well data, magnetic survey information and field observations to show that thickness variation of the sedimentary pile inherited from basement geometry is the main reason behind structural style variation in this area which occurred during the Zagros folding. Differences in thickness were more significant in Early-Middle Paleozoic time and decreased considerably upward in time. The total thickness of the Lower Paleozoic succession in the eastern side of the Gavbandi High is approximately 40–50% thicker than on the summit of this basement high. Sedimentary pinch-outs through Cretaceous and Tertiary times indicate that the activity of the basement faults decreased but did not stop. The impact on hydrocarbon traps of the pre-folding basin architecture and the differences in the behavior of the sedimentary cover after Miocene folding is discussed and documented.  相似文献   

17.
吕洪波 《地质论评》2009,55(4):473-483
笔者在山东省淄博市博山区中奥陶统马家沟群白云岩和上石炭统本溪组石灰岩中识别出垂直缝合线。垂直缝合线都借助于平面X剪节理发育,缝合面上的“牙齿”与缝合面本身多呈斜交状态,其延伸方向代表着变形期最大主压应力轴(σ1)方向。根据垂直缝合面“牙齿”的突出方向判别:以山东博山地区为代表的华北东部地区在古生代中期和末期先后两次受到NNE—SSW方向的水平挤压作用。其中第一次挤压事件与遍布华北东部的中奥陶统—上石炭统(C2—O2)平行不整合抬升相关,而第二次则与华北东部古生代末期的褶皱隆起相联系。本文的研究为垂直缝合线在盆地构造演化研究中的应用提供了良好的研究实例。  相似文献   

18.
Samples collected from the Upper Ordovician Red River carbonates in a well at the centre of the Williston Basin revealed two paleomagnetic components with different inclinations, 60.3 ± 3.9° (k = 70.7, N = 12) and 20.4 ± 3.3° (k = 141.2, N = 8), but similar declination values in individual specimens. Inclination-only analysis indicates two possible scenarios for the age of these two magnetizations: in scenario (a) the timing of magnetization happened sometime between Late Ordovician to Devonian; and in scenario (b) there are two different remagnetizations, one that overlaps Pennsylvanian to Permian time while the other can have either a Late Jurassic or a Tertiary age. Whereas dolomitization and some isotopic data tend to support scenario (a), previous paleomagnetic data from the Williston Basin and from younger units in the same well, the tectonic evolution of the basin, and the hydrocarbon maturation pattern in the Red River carbonates all favour chemical remagnetization(s) driven by orogenic fluids during the Alleghenian and Laramide orogenies.  相似文献   

19.
The analysis of paleomagnetic data available for the southern Primiorye region revealed that the studied objects were magnetized under regional remagnetization presumably during the Late Mesozoic folding and this magnetization can be interpreted as being synfolding. The interpretation is based on the parameter that characterizes the folding completion degree immediately before regional remagnetization. It is shown that the relaxation of Late Mesozoic horizontal stresses was irregular. The obtained estimates of the degree of folding completion are consistent with the available geological data and Talitskii’s model for tectonic deformations.  相似文献   

20.
Palaeomagnetic data were acquired from eighteen sampling sites situated in the main zone of the eastern Bushveld Complex, Transvaal, South Africa. Specimens were subjected to alternating field and thermal demagnetization. Two mean magnetization directions, which are approximately antipodal, were found. One direction represents subzone B of the main zone in the eastern Bushveld Complex and yields a palaeomagnetic pole at . The second direction represents subzone C of the main zone in the eastern Bushveld Complex with virtual geomagnetic pole at . The positions of these poles on the apparent polar wander path (APW) for Africa indicate that the critical zone had acquired its remanent magnetization before the main zone. Fold tests prove that the main zone in the eastern Bushveld Complex had acquired its remanent magnetization with the igneous layering in a horizontal position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号