共查询到20条相似文献,搜索用时 15 毫秒
1.
Absorption and fluorescence of chromophoric dissolved organic matter (CDOM) and dissolved organic carbon (DOC) measurements were performed during three oceanographic surveys in 1994 in the southern Baltic Sea (Polish area of the Baltic Proper). DOC was measured both by high-temperature catalytic oxidation (HTCO) and low-temperature oxidation (LTO) conventional persulphate methods. CDOM fluorescence was shown to be highly correlated with absorption, with the same regression parameters, despite the seasonal change in different hydrographic conditions and the fluorescence quantum yield variations (1.23 ± 0.07 in April and 0.97 ± 0.12 in September). The results show a good correlation between the optical parameters and DOC although ˜ 70% of the DOC does not display significant absorption in the UV-visible range (350–750 nm). The non-absorbing DOC measured with HTCO method appears unaffected by seasonal changes. Consequently, total DOC can be predicted by optical methods using remote sensing techniques. The non-absorbing DOC measured by LTO method varies from 62% (April) to 76% (September), which implies that there is requirement for estimates on a seasonal basis. 相似文献
2.
We analyze a two-year time-series of chromophoric dissolved organic matter (CDOM) light absorption measurements in the upper 400 m of the water column at the BOUSSOLE site in the NW Mediterranean Sea. The seasonal dynamics of the CDOM light absorption coefficients at 440 nm (acdom(440)) is essentially characterized by (i) subsurface maxima forming in spring and progressively reinforcing throughout summer, (ii) impoverishment in the surface layer throughout summer and (iii) vertical homogeneity in winter. Seasonal variations of the spectral dependence of CDOM absorption, as described by the exponential slope value (Scdom), are characterized by highest values in summer and autumn at the surface and low values at the depths of acdom(440) subsurface maxima or just below them. Variations of acdom(440) are likely controlled by microbial digestion of phytoplankton cells, which leads to CDOM production, and by photochemical destruction (photobleaching), which leads to CDOM degradation. Photobleaching is also the main driver of Scdom variations. Consistently with previous observations, acdom(440) for a given chlorophyll a concentration is higher than expected from Case I waters bio-optical models. The total non-water light absorption budget shows that surface waters at the BOUSSOLE site are largely dominated by CDOM during all seasons but the algal bloom in March and April. These results improve the knowledge of CDOM absorption dynamics in the Mediterranean Sea, which is scarcely documented. In addition, they open the way to improved algorithms for the retrieval of CDOM absorption from field or satellite radiometric measurements. 相似文献
3.
Photoreactivity of chromophoric dissolved organic matter transported by the Mackenzie River to the Beaufort Sea 总被引:3,自引:0,他引:3
The photoreactivity of chromophoric dissolved organic matter (CDOM) transported to Arctic shelf environments by rivers has only recently been studied and its quantitative role in Arctic shelf biogeochemistry has received little attention. Sunlight exposure experiments were performed on CDOM collected over a three year period (2002 to 2004) from river, estuary, shelf, and gulf regions of the Western Canadian Arctic. Decreases in CDOM absorption, synchronous fluorescence (SF), and dissolved organic carbon (DOC) concentration were followed after 3 days of exposure, and in two experiments, six optical cutoff filters were used to incrementally remove ultraviolet radiation incident on the samples. Apparent quantum yields for CDOM photobleaching (AQYble) and for DOC photomineralization (AQYmin) were computed, as were two AQY spectra (ble and min) for the Mackenzie River and a sample from the Mackenzie Shelf. The photoreactivity of Mackenzie River CDOM was highest after break-up and peak discharge and lowest in late summer. The half-lives of CDOM and DOC were estimated at 3.7 days and 4.8 days, respectively, when Mackenzie River water was exposed to full sunlight. Photobleaching of Mackenzie River CDOM fluorescence after most UV-B wavelengths were removed increased the correlation between the river and offshore waters in the Beaufort Sea. When light attenuation from particle- and CDOM-rich river water was considered for the Mackenzie Shelf, our photodegradation models estimated around 10% loss of absorption and < 1% DOC loss, suggesting that sunlight exposure does not substantially degrade CDOM on Arctic shelves. 相似文献
4.
Photochemical production of ammonium and transformation of dissolved organic matter in the Baltic Sea 总被引:13,自引:1,他引:13
Colin A. Stedmon Stiig Markager Lars Tranvik Leif Kronberg Tove Sltis Winnie Martinsen 《Marine Chemistry》2007,104(3-4):227-240
The release of ammonium from the photochemical degradation of dissolved organic matter (DOM) has been proposed by earlier studies as a potentially important remineralisation pathway for refractory organic nitrogen. In this study the photochemical production of ammonium from Baltic Sea DOM was assessed in the laboratory. Filtered samples from the Bothnian Bay, the Gulf of Finland and the Arkona Sea were exposed to UVA light at environmentally relevant levels, and the developments in ammonium concentrations, light absorption, fluorescence and molecular size distribution were followed. The exposures resulted in a decrease in DOM absorption and loss of the larger sized fraction of DOM. Analysis of the fluorescence properties of DOM using parallel factor analysis (PARAFAC) identified 6 independent components. Five components decreased in intensity as a result of the UVA exposures. One component was produced as a result of the exposures and represents labile photoproducts derived from terrestrial DOM. The characteristics of DOM in samples from the Bothnian Bay and Gulf of Finland were similar and dominated by terrestrially derived material. The DOM from the Arkona Sea was more autochthonous in character. Photoammonification differed depending on the composition of DOM. Calculated photoammonification rates in surface waters varied between 121 and 382 μmol NH4+ L− 1 d− 1. Estimated areal daily production rates ranged between 37 and 237 μmol NH4+ m− 2 d− 1, which are comparable to atmospheric deposition rates and suggest that photochemical remineralisation of organic nitrogen may be a significant source of bioavailable nitrogen to surface waters during summer months with high irradiance and low inorganic nitrogen concentrations. 相似文献
5.
Christopher J. Hulatt David N. ThomasDavid G. Bowers Louiza NormanChi Zhang 《Estuarine, Coastal and Shelf Science》2009
The quantity of chromophoric or coloured dissolved organic matter (CDOM) released by eleven species of intertidal and sub-tidal macroalgae commonly found on UK shores was investigated. The subsequent breakdown of CDOM was also measured by exposing collected CDOM samples to light and dark conditions for over two weeks. CDOM absorption properties were compared at a fixed wavelength of 440 nm and across two integrated wave - bands; UV-A (400–315 nm) and UV-B (315–280 nm). Absorption spectra of macroalgal CDOM samples were typically characterized by peaks and shoulders in the UV bands, features which were species specific. The spectral slope, derived using the log-linear method, proved to be very specific to the species and to the effect of light. Slope measurements ranged from 0.010 to 0.027 nm−1, in the range of normal seawater values. Significantly more CDOM was produced by algae which were illuminated, providing evidence for a light driven exudation mechanism. Averaged across all species, exudation in the dark accounted for 63.7% of that in the light in the UV-B band. Interspecific differences in exudation rate encompassed an order of magnitude, with the highest absorption measurements attributable to brown algae. However, some brown algae produced considerably less CDOM (e.g. Pelvetia canaliculata), which were more comparable to the green and red species. Over an exposure time of 16 days, significant photochemical degradation of CDOM was observed using a natural summer sunlight regime, showing that natural solar radiation could be an important removal mechanism for newly produced algal CDOM. Though the most obvious effect was a decrease in absorption, photo-bleaching also caused a significant increase in the spectral slope parameter of 0.004 nm−1. 相似文献
6.
Gary L. Hitchcock Robert F. Chen G. Bernard Gardner William J. Wiseman Jr. 《Marine Chemistry》2004,89(1-4):225
In April 2001, three instrumented surface drifters were deployed in the Mississippi River plume near the mouth of Southwest Pass. The plume was characterized by strong surface gradients of salinity, temperature, and chromophoric dissolved organic matter fluorescence (FCDOM). The drifters initially headed west and attained peak speeds of 1 m s−1 within 5 h after release. Thereafter, velocity decreased as the triad headed north in the Louisiana Bight. Linear relationships between FCDOM and salinity identified two subsurface sources of high salinity water (salinity >35) underlying the surface plume. The platforms stalled in a surface front about 40 h after deployment, and then slowly drifted south along the eastern perimeter of the plume. Shoreward of the plume front there were patches of low-salinity, high FCDOM ‘patches’ of surface waters that likely originated in the marshes, bayous, and other smaller distributaries of the delta. 相似文献
7.
首次通过2008-2009年在西北地中海和东地中海海域投放的两台Bio-Argo浮标的观测数据,分析与研究了该海区黄色物质次表层极大值的季节变化规律.研究表明次表层黄色物质在夏季开始爆发,伴随着叶绿素a浓度的逐渐降低;到冬季在强烈的垂向混合作用下结束.且黄色物质极大值的深度与叶绿素a浓度极大值(DCM)的深度基本一致,说明虽然黄色物质与浮游植物之间并不存在直接联系,但浮游植物的降解是黄色物质的主要来源.文中推测,可能由于该海区浮游植物与微生物的强耦合,导致了黄色物质与叶绿素a之间存在明显的反变关系. 相似文献
8.
Time series of chromophoric dissolved organic matter (CDOM) light absorption coefficients indicate a local origin for a large fraction of the CDOM in the upper water column of the Sargasso Sea. In the present study, we demonstrate that CDOM is produced in bacterial culture experiments using Sargasso Sea water and naturally occurring microbial assemblages. Seawater cultures were prepared and grown at in situ temperatures in the dark for periods of weeks. Selected cultures were treated with amendments including inorganic nutrients, glucose, phytoplankton exudates, and zooplankton excretia. In all experiments, when bacterial biomass increased, CDOM increased during the first week of the experiment, followed by a decrease over a longer period of time. Cultures amended with both glucose and inorganic nitrogen and phosphorus produced more CDOM than controls or cultures amended with glucose or inorganic nutrients alone. However, when complex DOM substrates (derived from phytoplankton or zooplankton cultures) were added to seawater cultures, there was a net accumulation of CDOM over the course of the experiments. These data suggest that, in addition to microbial growth, the quality of the substrate plays an important role in net CDOM production. ‘New’ CDOM produced in culture was spectroscopically similar to CDOM appearing below the surface during summer stratification. The results of the present study support a new paradigm for CDOM in the open ocean, which allows for local origin and significant dynamics. Appreciation of CDOM dynamics will, in turn, add to our understanding of microbial productivity, photochemical rate processes, and ultraviolet radiation availability in the global ocean. 相似文献
9.
The absorption coefficient of chromophoric dissolved organic matter (aCDOM) has been found to be correlated with fluorescence emission (excitation at 355 nm). In the coastal European Atlantic area and in the Western Mediterranean Sea (Gulf of Lions), a significant statistical dependence has been found between aCDOM and fluorescence with dissolved organic carbon (DOC) concentration. The relationship shows that, in the river plume areas (Rhine in the North Sea and Rhône in the Gulf of Lions), a consistent fraction of DOC (from 40% to 60% of the average of the DOC measured) is non-absorbing in visible light range, where the dissolved organic matter (DOM) is typically absorbent. In comparison, in the open sea, apparently not affected by the continental inputs, the entire DOC belongs to the chromophoric DOM whose specific absorption is lower (5 to 10 times) than that found in the river plume areas. 相似文献
10.
Characterization of dissolved organic matter fluorescence in the South Atlantic Bight with use of PARAFAC model: Interannual variability 总被引:13,自引:0,他引:13
Piotr Kowalczuk Michael J. Durako Heather Young Amanda E. Kahn William J. Cooper Michael Gonsior 《Marine Chemistry》2009,113(3-4):182-196
Systematic water sampling for characterization of chromophoric dissolved organic matter (CDOM) in the coastal South Atlantic Bight, was conducted as part of the long term Coastal Ocean Research and Monitoring Program (CORMP). Water samples were collected during a 3.5 year period, from October 2001 until March 2005, in the vicinity of the Cape Fear River (CFR) outlet and in adjacent Onslow Bay (OB). During this study there were two divergent hydrological and meteorological conditions in the CFR drainage area: a severe drought in 2002, followed by the very wet year of 2003. CDOM was characterized optically by the absorption coefficient at 350 nm, the spectral slope coefficient (S), and by Excitation Emission Matrix (EEM) fluorescence. Parallel Factor Analysis (PARAFAC) was used to assess CDOM composition from EEM spectra and six components were identified: three terrestrial humic-like components, one marine humic-like component and two protein-like components. Terrestrial humic-like components contributed most to dissolved organic matter (DOM) fluorescence in the low salinity plume of the CFR. The contribution of terrestrial humic-like components to DOM fluorescence in OB was much smaller than in the CFR plume area. Protein-like components contributed significantly to DOM fluorescence in the coastal ocean of OB and they dominated DOM fluorescence in the Gulf Stream waters. Hydrological conditions during the observation period significantly impacted both concentration and composition of CDOM found in the estuary and coastal ocean. In the CFR plume, there was an order of magnitude difference in CDOM absorption and fluorescence intensity between samples collected during the drought compared to the wet period. During the drought, CDOM in the CFR plume was composed of equal proportions of terrestrial humic-like components (ca. 60% of the total fluorescence intensity) with a significant contribution of proteinaceous substances (ca. 20% of the total fluorescence). During high river flow, CDOM was composed mostly of humic substances (nearly 75% of total fluorescence) with minor contributions by proteinaceous substances. The impact of changes in fresh water discharge patterns on CDOM concentration and composition was also observed in OB, though to a lesser degree. 相似文献
11.
J. Foden D.B. Sivyer D.K. Mills M.J. Devlin 《Estuarine, Coastal and Shelf Science》2008,79(4):707-717
Vertical attenuation of light through the water column (Kd) is attributable to the optically active components of phytoplankton, suspended particulate material (SPM) and chromophoric dissolved organic matter (CDOM). Of these, CDOM is not routinely monitored and was the main focus of this study. Concentrations and spatio-temporal patterns of CDOM fluorescence were investigated between August 2004 and March 2006, to quantify the correlation coefficient between CDOM and salinity and to better characterise the contribution of CDOM to Kd. Sampling was conducted at a broad range of UK and Republic of Ireland locations; these included more than 15 estuaries, 30 coastal and 70 offshore sites in the southern North Sea, Irish Sea, Liverpool Bay, Western Approaches and the English Channel.An instrument package was used; a logger with multi-sensor array was deployed vertically through the water column and concurrent water samples were taken to determine salinity, CDOM fluorescence and SPM. Surface CDOM fluorescence values ranged between 0.05 and 16.80 S.Fl.U. (standardised fluorescence units). A strong, negative correlation coefficient of CDOM to salinity (r2 = 0.81) was found. CDOM absorption (aCDOMλ) was derived from fluorescence measurements and was in the range 0.02–2.2 m−1 with mean 0.15 m−1. These results were comparable with direct measurements of aCDOMλ in the same geographic regions, as published by other workers.Spatial differences in CDOM fluorescence were generally explicable by variation in salinity, in local conditions or catchment areas; e.g. CDOM at the freshwater end was 3.54–11.30 S.Fl.U., reflecting the variety of rivers sampled and their different catchments. Temporal changes in CDOM fluorescence were related to salinity. A significant and positive correlation was found between CDOM and Kd, and although CDOM was found to be less influential than SPM on Kd, it was still of significance particularly in coastal and offshore waters of lower turbidity. 相似文献
12.
Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy 总被引:34,自引:0,他引:34
Dissolved organic matter (DOM) is a complex and poorly understood mixture of organic polymers that plays an influential role in aquatic ecosystems. In this study we have successfully characterised the fluorescent fraction of DOM in the catchment of a Danish estuary using fluorescence excitation–emission spectroscopy and parallel factor analysis (PARAFAC). PARAFAC aids the characterisation of fluorescent DOM by decomposing the fluorescence matrices into different independent fluorescent components. The results reveal that at least five different fluorescent DOM fractions present (in significant amounts) in the catchment and that the relative composition is dependent on the source (e.g. agricultural runoff, forest soil, aquatic production). Four different allochthonous fluorescent groups and one autochthonous fluorescent group were identified. The ability to trace the different fractions of the DOM pool using this relatively cheap and fast technique represents a significant advance within the fields of aquatic ecology and chemistry, and will prove to be useful for catchment management. 相似文献
13.
14.
依据2017年8—9月对黄海海域溶解有机物(DOM)的调查,探讨了夏季黄海海水中溶解有机碳(DOC)和有色溶解有机物(CDOM)的空间分布特征。在表层海水中,受陆源影响较大的近岸海域CDOM含量相对较高,北黄海冷水团区域由于水产养殖的饵料引起DOC浓度升高,且该部分DOC以无色为主。DOC浓度随深度逐渐降低,而CDOM逐渐升高,该特征在冷水团区域更为显著,因此DOC和CDOM在冷水团区域的表底差异远大于浅水区的非冷水团区域。陆源输入和初级生产是引起表层DOC升高的主要原因,而光漂白则引起CDOM降低,同时光漂白还导致表层水体中CDOM分子量和芳香性低于底层。底层溶解氧饱和度在冷水团为80%~93%,均表现为弱不饱和状态。层化不仅阻碍了O2向底层水体输送,还抑制了DOC和CDOM的垂向混合,这是引起冷水团区域表底层DOC和CDOM差异较大的主要原因。 相似文献
15.
16.
LIU Qiong PAN Delu BAI Yan WU Kai CHEN Chen-Tung Arthur SUN Jun ZHANG Lin 《海洋学报(英文版)》2013,32(2):1-11
The retrieval of dissolved organic carbon (DOC) distribution by remote sensing is mainly based on the empirical relationship of DOC concentration and colored dissolved organic matter (CDOM) concentration in many literatures. To investigate the nature of this relationship, the distributions and mixing behaviors of DOC and CDOM are reviewed in the world’s major estuaries and bays. It is found that, generally, the CDOM concentration is well correlated with the salinity in most estuaries, while DOC usually shows a nonconservative behavior which leads to a weak correlation between the DOC concentration and the CDOM concentration. To establish a good satellite reversion of the DOC concentration, the East China Sea(ECS) was taken as an example, and the mixing behavior of DOC and CDOM as well as the influence of biogeochemical processes were analyzed except for the physical mixing process with the data from late autumn (November, 2010) and winter (December, 2009) cruises. In the two ECS cruises, the CDOM concentration was found to be tightly correlated with the salinity, influenced little by the photochemical or biological processes. The data from the winter cruise show that DOC followed a conservative mixing along the salinity gradient, while in the late autumn cruise it was significantly affected by the biological activities, resulting in a poor correlation between the DOC and the CDOM. Accordingly, an improved DOC algorithm (CSDM) was proposed: when the biological influence was significant (Chl a greater than 0.8 μg/dm3 ), DOC was retrieved by the conservative and biological model, and if the conservative mixing was dominant (Chl a less than 0.8 μg/dm3 ), the direct DOC concentration and CDOM concentration relationship was used. Based on the proposed algorithm, a reasonable DOC distribution for the ECS from satellite was obtained in this study, and the proposed method can be applied to the other large river-dominant marginal sea. 相似文献
17.
胶州湾海水中溶解有色物质的光脱色对光致生成一氧化碳速率的影响 总被引:3,自引:2,他引:3
利用在胶州湾中不同位置取得的3个水样,对溶解有色物质进行了不同时间的光脱色,探讨了有机物含量随脱色时间的变化趋势,得出有机物吸光系数和溶解有机碳随脱色时间的增长而呈指数减小,说明光脱色可以明显降低溶解有机物的含量。对不同光脱色程度的水样进行了光化学降解,测定了其主要产物一氧化碳的光致生成速率,发现在8个不同波段下一氧化碳光致生成速率与350 nm的吸光系数和溶解有机碳之间均有良好的线性关系。350 nm的吸光系数和溶解有机碳含量在一定程度上均可较好地表示海水中CDOM的含量。 相似文献
18.
Martin Hassellv 《Marine Chemistry》2005,94(1-4):111
A new method for the characterization of chromophoric colloidal organic matter in seawater has been applied to samples from the Baltic Sea, Kattegatt and Skagerrak seas. Size fractionation of the sample by Flow Field-Flow Fractionation and measurement of the fluorescent and UV absorbing properties of the individual size fractions result in a relative molar mass distribution (RMM) of the optical properties. The RMM distributions have been used to estimate number and weight average relative molar masses, and polydispersity indices. At least two sources of coloured organic matter were identified from the ratio of fluorescence to UV: the Baltic surface water and the Skagerrak deep water. The dominating processes were mixing and dilution, but processes such as photo bleaching of fluorescence are also believed to be important. The RMM distribution derived from UV detection (1150–1300 Dalton) increased with increasing salinity while that derived for fluorescence (1500–1250 Dalton) decreased with increasing salinity. The specific UV absorbance taken as a proxy of the aromaticity of the chromophoric organic material showed decreasing trend with both increasing salinity and increasing UV derived weight average relative molar mass. Increasing polydispersity of the colloidal material was also observed as a function of salinity. 相似文献
19.
The spectral absorption properties of chromophoric dissolved organic matter (CDOM) and their distributions in two Chinese estuaries, the Yangtze River Estuary and the Jiulong River Estuary, were studied during August 2003 (wet season) and during different seasons between 2003−2005, respectively. The CDOM concentrations (a355) of fresh end members in the Jiulong River Estuary varied seasonally, while its quality remained relatively stable. However, the a355 of the marine end members exhibited less variability. Application of a conservative mixing model indicated that CDOM behaved conservatively in the Yangtze River Estuary. No photobleaching removal was observed at high salinity region of this estuary. Although CDOM showed conservative behavior for many cruises in the Jiulong River Estuary, there was evidence for removal in the low salinity regions during some cruises. Laboratory mixing experiments and a salt addition experiment suggested that particle sorption of CDOM maybe the possible reason for the removal. These results showed that absorption properties of CDOM can be used as a tool to observe the quantitative and qualitative dynamics of DOM during estuarine mixing. 相似文献
20.
河口有色溶解有机物(colored dissolved organic matter,CDOM)的分布是各种物理-生物地球化学过程共同作用的结果。为实现河口高动态变化CDOM的监测,遥感是一种重要的手段。由珠江口四个不同季节的航次获得的实测数据,本文构建了一个遥感算法以反演CDOM在400 nm的吸收系数(aCDOM (400))。该算法使用以波段反射率比值Rrs (667)/Rrs (443)和Rrs (748)/Rrs (412)为自变量。将构建的算法应用于2002-2014年的MODIS/Aqua数据,本文计算了珠江口不同季节的aCDOM (400)气候态分布。CDOM的分布主要受珠江径流量和区域水下地形特征的影响。沿着垂直于水深梯度的断面,气候态aCDOM (400)呈指数减少(y=aebx,b<0),但不同季节差异很大。珠江口CDOM主要是河流淡水输运而来。其中,富里酸比例随盐度的增加而降低。基于构建的算法、CDOM保守混合方程和径流量,本文由MODIS/Aqua数据进一步估算了2002-2014年夏季和冬季珠江DOC的有效入海浓度和有效入海通量。珠江的有效入海浓度和有效入海通量都与流量存在正相关关系,且在夏季的相关性更明显,R2分别为0.698和0.9657。 相似文献