首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 573 毫秒
1.
The Friction Pendulum System (FPS) isolator is commonly used as a base isolation system in buildings. In this paper, a new tunable FPS (TFPS) isolator is proposed and developed to act as a semi‐active control system by combining the traditional FPS and semi‐active control concept. Theoretical analysis and physical tests were carried out to investigate the behavior of the proposed TFPS isolator. The experimental and theoretical results were in good agreement, both suggesting that the friction force of the TFPS isolator can be tuned to achieve seismic isolation of the structure. A series of numerical simulations of a base‐isolated structure equipped with the proposed TFPS isolator and subjected to earthquake ground motions were also conducted. In the analyses, the linear quadratic regulator (LQR) method was adopted to control the friction force of the proposed TFPS, and the applicability and effectiveness of the TFPS in controlling the structure's seismic responses were investigated. The simulation results showed that the TFPS can reduce the displacement of the isolation layer without significantly increasing the floor acceleration and inter‐story displacement of the superstructure, confirming that the TFPS can effectively control a base‐isolated structure under earthquake ground motions.  相似文献   

2.
Abstrect The recent developments of theoretical research, model tests and engineering applications of structural control in mainland China are reviewed in this paper. It includes seismic isolation, passive energy dissipation, active and semi-active control, smart materials and smart structural systems. It can be seen that passive control methods, such as seismic isolation and energy dissipation methods, have developed into the mature stage in China. At the same time, great progress has been made in active and semi-active control, and smart actuators or smart dampers and smart structural systems. Finally, some future research initiatives for structural control in civil engineering are suggested. Supported by : National Natural Science Foundation of China (Grant No. 50025821)  相似文献   

3.
Seismic performance attributes of multi‐story passive and semi‐active tuned mass damper (PTMD and SATMD) building systems are investigated for 12‐story moment resisting frames modeled as ‘10+2’ stories and ‘8+4’ stories. Segmented upper portion of the stories are isolated as a tuned mass, and a passive viscous damper or semi‐active resetable device is adopted as energy dissipation strategy. The semi‐active approach uses feedback control to alter or manipulate the reaction forces, effectively re‐tuning the system depending on the structural response. Optimum tuned mass damper control parameters and appropriate matching SATMD configurations are adopted from a companion study on a simplified two‐degree‐of‐freedom system. Statistical performance metrics are presented for 30 probabilistically scaled earthquake records from the SAC project. Time history analyses are used to compute response reduction factors across a wide range of seismic hazard intensities. Results show that large SATMD systems can effectively manage seismic response for multi‐degree‐of freedom systems across a broad range of ground motions in comparison to passive solutions. Specific results include the identification of differences in the mechanisms by which SATMD and PTMD systems remove energy, based on the differences in the devices used. Additionally, variability is seen to be tighter for the SATMD systems across the suites of ground motions used, indicating a more robust control system. While the overall efficacy of the concept is shown the major issues, such as isolation layer displacement, are discussed in detail not available in simplified spectral analyses, providing further insight into the dynamics of these issues for these systems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Passive supplemental damping in a seismically isolated structure provides the necessary energy dissipation to limit the isolation system displacement. However, damper forces can become quite large as the passive damping level is increased, resulting in the requirement to transfer large forces at the damper connections to the structure which may be particularly difficult to accommodate in retrofit applications. One method to limit the level of damping force while simultaneously controlling the isolation system displacement is to utilize an intelligent hybrid isolation system containing semi-active dampers in which the damping coeffic ient can be modulated. The effectiveness of such a hybrid seismic isolation system for earthquake hazard mitigation is investigated in this paper. The system is examined through an analytical and computational study of the seismic response of a bridge structure containing a hybrid isolation system consisting of elastomeric bearings and semi-active dampers. Control algorithms for operation of the semi-active dampers are developed based on fuzzy logic control theory. Practical limits on the response of the isolation system are considered and utilized in the evaluation of the control algorithms. The results of the study show that both passive and semi-active hybrid seismic isolation systems consisting of combined base isolation bearings and supplemental energy dissipation devices can be beneficial in reducing the seismic response of structures. These hybrid systems may prevent or significantly reduce structural damage during a seismic event. Furthermore, it is shown that intelligent semi-active seismic isolation systems are capable of controlling the peak deck displacement of bridges, and thus reducing the required length of expansion joints, while simultaneously limiting peak damper forces. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
Passive and semi‐active tuned mass damper (PTMD and SATMD) building systems are proposed to mitigate structural response due to seismic loads. The structure's upper portion self plays a role either as a tuned mass passive damper or a semi‐active resetable device is adopted as a control feature for the PTMD, creating a SATMD system. Two‐degree‐of‐freedom analytical studies are employed to design the prototype structural system, specify its element characteristics and effectiveness for seismic responses, including defining the resetable device dynamics. The optimal parameters are derived for the large mass ratio by numerical analysis. For the SATMD building system the stiffness of the resetable device design is combined with rubber bearing stiffness. From parametric studies, effective practical control schemes can be derived for the SATMD system. To verify the principal efficacy of the conceptual system, the controlled system response is compared with the response spectrum of the earthquake suites used. The control ability of the SATMD scheme is compared with that of an uncontrolled (No TMD) and an ideal PTMD building systems for multi‐level seismic intensity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
从能量的角度研究对隔震换能控制系统对建筑结构的减震控制作用,它既能通过转换地震能量来减轻结构的振动,又可以利用转换来的能量作进一步的振动控制.通过研究换能装置的控制力与隔震层刚度比的关系,提出了换能装置控制力的建议公式,并研究了不同换能装置与隔震层设计组合对换能效率和控制效果的影响,给出了隔震换能系统的设计流程,可使隔震换能系统换能效率达到70%左右,振动控制效果达到65%以上.  相似文献   

7.
Centralized semi‐active control is a technique for controlling the whole structure using one main computer. Centralized control systems introduce better control for relatively short to medium high structures where the response of any story cannot be separated from the adjacent ones. In this paper, two centralized control approaches are proposed for controlling the seismic response of post‐tensioned (PT) steel frames. The first approach, the stiffness control approach, aims to alter the stiffness of the PT frame so that it avoids large dynamic amplifications due to earthquake excitations. The second approach, deformation regulation control approach, aims at redistributing the demand/strength ratio in order to provide a more uniform distribution of deformations over the height of the structure. The two control approaches were assessed through simulations of the earthquake response of semi‐actively and passively controlled six‐story post‐tensioned steel frames. The results showed that the stiffness control approach is efficient in reducing the frame deformations and internal forces. The deformation regulation control approach was found to be efficient in reducing the frame displacements and generating a more uniform distribution of the inter‐story drifts. These results indicate that centralized semi‐active control can be used to improve the seismic performance of post‐tensioned steel frames. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
The safety of structures built in seismic regions can be improved by energy absorbing devices. Passive isolation systems such as base isolators are suitable for low-rise structures, but they provide only a partial solution to the problem. Three active control techniques for reducing the dynamic response of machine supporting foundations using various control strategies are presented. The active tendon, active mass damper and active base control systems are studied for active control of machine foundations in seismic regions. Numerical simulations show that active control can reduce the dynamic response of turbomachine foundations under seismic loads. This reduction in dynamic response can limit damage to power plants during earthquakes and restore their operation in a short time.  相似文献   

9.
To limit the response of structures during external disturbances such as strong winds or large seismic events, structural control systems can be used. In the structural engineering field, attention has been shifted from active control to semi‐active control systems. Unlike active control system devices, semi‐active devices are compact, have efficient power consumption characteristics and are less expensive. As a result, an environment of a large number of actuators and sensors will result, rendering a complex large‐scale dynamic system. Such a system is best controlled by a decentralized approach such as market‐based control (MBC). In MBC, the system is modelled as a market place of buyers and sellers that leads to an efficient allocation of control power. The resulting MBC solution is shown to be locally Pareto optimal. This novel control approach is applied to three linear structural systems ranging from a one‐storey structure to a 20‐storey structure, all controlled by semi‐active hydraulic dampers. It is shown that MBC is competitive in the reduction of structural responses during large seismic loadings as compared to the centralized control approach of the linear quadratic regulation controller. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
This paper describes a proposed methodology, referred to as probabilistic seismic control analysis, for the development of probabilistic seismic demand curves for structures with supplemental control devices. The resulting curves may be used to determine the probability that any response measure, whether for a structure or control device, exceeds a pre‐determined allowable limit. This procedure couples conventional probabilistic seismic hazard analysis with non‐linear dynamic structural analyses to provide system specific information. This method is performed by evaluating the performance of specific controlled systems under seismic excitations using the SAC Phase II structures for the Los Angeles region, and three different control‐systems: (i) base isolation; (ii) linear viscous brace dampers; and (iii) active tendon braces. The use of a probabilistic format allows for consideration of structural response over a range of seismic hazards. The resulting annual hazard curves provide a basis for comparison between the different control strategies. Results for these curves indicate that no single control strategy is the most effective at all hazard levels. For example, at low return periods the viscous system has the lowest drift demands. However, at higher return periods, the isolation system becomes the most effective strategy. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
Semi‐active variable stiffness resettable devices can reduce seismic demands and damages in structures. Despite their advantages, variable stiffness resettable devices are under‐utilized mainly because of the shortage of fundamental research in quantifying the sensitivity of key seismic response parameters, and losses, in structures that use such systems for seismic hazard mitigation. Within this setting, the research summarized herein measures the effectiveness of semi‐active resettable energy dissipating devices in the Single‐Degree‐of‐Freedom domain aiming at quantifying the sensitivity of their seismic response to variation in control parameters and generating the required knowledge to utilize such semi‐active devices in the Multi‐Degree‐of‐Freedom domain. The performance (i.e. maximum relative displacement and peak absolute acceleration demands) of Single‐Degree‐of‐Freedom systems with an array of semi‐active control logics under various dynamic excitation regimes is studied. Two sets of 40 ground motions representing various seismic loading conditions (i.e. pulse‐like and rock‐site ground motions) are used, and an efficient control logic for mitigating these seismic demands is proposed. Numerical results show that proposed control logic enables a decrease of 40–60% for both maximum relative displacement and seismic base shear and 15–25% decrease for peak absolute acceleration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Semi‐active control of buildings and structures for earthquake hazard mitigation represents a relatively new research area. Two optimal displacement control strategies for semi‐active control of seismic response of frame structures using magnetorheological (MR) dampers or electrorheological (ER) dampers are proposed in this study. The efficacy of these displacement control strategies is compared with the optimal force control strategy. The stiffness of brace system supporting the smart damper is also taken into consideration. An extensive parameter study is carried out to find the optimal parameters of MR or ER fluids, by which the maximum reduction of seismic response may be achieved, and to assess the effects of earthquake intensity and brace stiffness on damper performance. The work on example buildings showed that the installation of the smart dampers with proper parameters and proper control strategy could significantly reduce seismic responses of structures, and the performance of the smart damper is better than that of the common brace or the passive devices. The optimal parameters of the damper and the proper control strategy could be identified through a parameter study. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
Considerable effort has been devoted to develop passive and active methods for reducing structural response under seismic excitations. Passive control approaches have already found application in practice. Active control methods, on the other hand, are being vigorously examined for application to civil structures. This paper investigates the application of active and semi-active control schemes to structures subjected to seismic excitations, and it focuses on the use of the sliding-mode control approach for the development of the control algorithms. The possibility of control redundancy with respect to the number of sliding constraints is taken into account in the controller design. Several sets of numerical results are obtained for a realistic 10-storey shear building, subjected to earthquake-induced ground motions and controlled by active or semi-active control schemes. It is observed that both active and semi-active control schemes can be used to reduce the dynamic response. Active control performs very effectively in reducing the structural response, but the required control force values can be quite large to limit its practical application in the case of large and massive buildings. Active regulation of linear viscous dampers was found unnecessary for this type of structural system, as it did not induce any significantly more reduction in the response than the dampers acting passively. On the other hand, it is shown that active regulation of stiffness can be used with advantage to reduce the response. © 1997 by John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents a statistical performance analysis of a semi‐active structural control system for suppressing the vibration response of building structures during strong seismic events. The proposed semi‐active mass damper device consists of a high‐frequency mass damper with large stiffness, and an actively controlled interaction element that connects the mass damper to the structure. Through actively modulating the operating states of the interaction elements according to pre‐specified control logic, vibrational energy in the structure is dissipated in the mass damper device and the vibration of the structure is thus suppressed. The control logic, categorized under active interaction control, is defined directly in physical space by minimizing the inter‐storey drift of the structure to the maximum extent. This semi‐active structural control approach has been shown to be effective in reducing the vibration response of building structures due to specific earthquake ground motions. To further evaluate the control performance, a Monte Carlo simulation of the seismic response of a three‐storey steel‐framed building model equipped with the proposed semi‐active mass damper device is performed based on a large ensemble of artificially generated earthquake ground motions. A procedure for generating code‐compatible artificial earthquake accelerograms is also briefly described. The results obtained clearly demonstrate the effectiveness of the proposed semi‐active mass damper device in controlling vibrations of building structures during large earthquakes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
Although the design and applications of linear tuned mass damper (TMD) systems are well developed, nonlinear TMD systems are still in the developing stage. Energy dissipation via friction mechanisms is an effective means for mitigating the vibration of seismic structures. A friction‐type TMD, i.e. a nonlinear TMD, has the advantages of energy dissipation via a friction mechanism without requiring additional damping devices. However, a passive‐friction TMD (PF‐TMD) has such disadvantages as a fixed and pre‐determined slip load and may lose its tuning and energy dissipation abilities when it is in the stick state. A novel semi‐active‐friction TMD (SAF‐TMD) is used to overcome these disadvantages. The proposed SAF‐TMD has the following features. (1) The frictional force of the SAF‐TMD can be regulated in accordance with system responses. (2) The frictional force can be amplified via a braking mechanism. (3) A large TMD stroke can be utilized to enhance control performance. A non‐sticking friction control law, which can keep the SAF‐TMD activated throughout an earthquake with an arbitrary intensity, was applied. The performance of the PF‐TMD and SAF‐TMD systems in protecting seismic structures was investigated numerically. The results demonstrate that the SAF‐TMD performs better than the PF‐TMD and can prevent a residual stroke that may occur in a PF‐TMD system. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Vibration mitigation using smart, reliable and cost‐effective mechanisms that requires small activation power is the primary objective of this paper. A semi‐active controller‐based neural network for base‐isolation structure equipped with a magnetorheological (MR) damper is presented and evaluated. An inverse neural network model (INV‐MR) is constructed to replicate the inverse dynamics of the MR damper. Next, linear quadratic Gaussian (LQG) controller is designed to produce the optimal control force. Thereafter, the LQG controller and the INV‐MR models are linked to control the structure. The coupled LQG and INV‐MR system was used to train a semi‐active neuro‐controller, designated as SA‐NC, which produces the necessary control voltage that actuates the MR damper. To evaluate the proposed method, the SA‐NC is compared to passive lead–rubber bearing isolation systems (LRBs). Results revealed that the SA‐NC was quite effective in seismic response reduction for wide range of motions from moderate to severe seismic events compared to the passive systems. In addition, the semi‐active MR damper enjoys many desirable features, such as its inherent stability, practicality and small power requirements. The effectiveness of the SA‐NC is illustrated and verified using simulated response of a six‐degree‐of‐freedom model of a base‐isolated building excited by several historical earthquake records. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Because of many advantages over other control systems, semi‐active control devices have received considerable attention for applications to civil infrastructures. A variety of different semi‐active control devices have been studied for applications to buildings and bridges subject to strong winds and earthquakes. Recently, a new semi‐active control device, referred to as the resetable semi‐active stiffness damper (RSASD), has been proposed and studied at the University of California, Irvine (UCI). It has been demonstrated by simulation results that such a RSASD is quite effective in protecting civil engineering structures against earthquakes, including detrimental near‐field earthquakes. In this paper, full‐scale hardware for RSASD is designed and manufactured using pressurized gas. Experimental tests on full‐scale RSASDs have been conducted to verify the hysteretic behaviours (energy dissipation characteristics) and the relation between the damper stiffness and the gas pressure. The correlation between the experimental results of the hysteresis loops of RASADs and that of the theoretical ones has been assessed qualitatively. Experimental results further show the linear relation between the gas pressure and the stiffness of the RSASD as theoretically predicted. Finally, shake table tests have also been conducted using an almost full‐scale 3‐storey steel frame model equipped with full‐scale RSASDs at the National Center for Research on Earthquake Engineering (NCREE), Taipei, Taiwan, and the results are presented. Experimental results demonstrate the performance of RSASDs in reducing the responses of the large‐scale building model subject to several near‐field earthquakes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
This paper proposes the use of a novel type of passive vibration control system to reduce vibrations in civil engineering structures subject to base excitation. The new system is based on the inerter, a device that was initially developed for high‐performance suspensions in Formula 1 racing cars. The principal advantage of the inerter is that a high level of vibration isolation can be achieved with low amounts of added mass. This feature makes it an attractive potential alternative to traditional tuned mass dampers (TMDs). In this paper, the inerter system is modelled inside a multi‐storey building and is located on braces between adjacent storeys. Numerical results show that an excellent level of vibration reduction is achieved, potentially offering improvement over TMDs. The inerter‐based system is compared to a TMD system by using a range of base excitation inputs, including an earthquake signal, to demonstrate how the performance could potentially be improved by using an inerter instead of a TMD. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Semi‐active stiffness damper (SASD) is one of many semi‐active control systems with the capability to mitigate the dynamic response using only a small amount of external power. The system consists of a hydraulic damper connected to the bracing frame in a selected story unit. In this paper, study of a SASD in two building models of five‐stories under four benchmark earthquake records is reported. The purpose of this study is to evaluate the effectiveness of the control system against structure type and varying earthquake inputs. Various control laws are chosen to work with SASD, such as: resetting control, switching control, linear quadratic regulator (LQR) and modified LQR, and the results are compared with no control and passive control cases. Numerical results show that the use of a SASD is effective in reducing seismic responses. Control effectiveness is dependent on the type of structure and earthquake excitation. Passive control is less effective than other control cases as expected. Resetting control, switching control and LQR generally perform similarly in response reduction. While modified LQR is more efficient and robust compared with other control algorithms. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
Inter‐story isolation, an effective strategy for mitigating the seismic risk of both new and existing buildings, has gained more and more interest in recent years as alternative to base isolation, whenever the latter results to be impractical, technically difficult or uneconomic. As suggested by the name, the technique consists in inserting flexible isolators at floor levels other than the base along the height of a multi‐story building, thus realizing a non‐conventional Tuned Mass Damper (TMD). Consistent with this, an optimal design methodology is developed in the present paper with the objective of achieving the global protection of both the structural portions separated by the inter‐story isolation system, that is, the lower portion (below the isolation system) and the isolated upper portion (above the isolation system). The optimization procedure is formulated on the basis of an energy performance criterion that consists in maximizing the ratio between the energy dissipated in the isolation system and the input energy globally transferred to the entire structure. Numerical simulations, performed under natural accelerograms with different frequency content and considering increasing isolation levels along the height of a reference frame structure, are used to investigate the seismic performance of the optimized inter‐story isolation systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号