首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study consists of two parts. In this two‐part research, four two‐story narrow steel plate shear walls (SPSWs) were cyclically tested at the Taiwan National Center for Research on Earthquake Engineering in 2007. This paper, Part 1, proposes a capacity design method for the first‐story boundary column of the SPSW to ensure that the plastic hinges form at the column bottom ends when the SPSW develops the plastic mechanism. The design method was developed based on the superposition method considering the frame sway action and the panel force effects of the SPSW. Restrained steel plate shear wall (R‐SPSW) studied herein adopts pairs of the horizontal restrainers sandwiching over both sides of the infill panels and connected to the boundary columns. Analytical studies on four SPSW example designs using nonlinear finite element (FE) models and the simplified strip models confirm that the restrainers could also effectively reduce the column force demands and allow the infill panel to stretch more uniformly. In addition, the FE analytical studies verify the effectiveness of the proposed column capacity design method and the seismic design recommendations for the restrainer. This paper introduces the designs of the four narrow SPSW specimens, presenting the selections of the boundary beams and columns, the designs of the beam‐to‐column connections and the construction details of the restrainers. The experimental results, key observations and the design implications are reported in the companion paper. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Coupled steel plate shear wall (C‐SPSW) consists of two or more steel plate shear walls interconnected by coupling beams at the floor levels. In this study, a six‐story C‐SPSW prototype building was designed. A 40% scale C‐SPSW specimen, which is representative of the bottom two‐and‐half‐story substructure of the prototype, was cyclically tested using Multi‐Axial Testing System at the National Center for Research on Earthquake Engineering in 2009. In addition to a constant vertical force representing the gravity load effects, cyclic increasing displacements and the corresponding overturning moments transmitted from the upper stories were computed online and simultaneously applied on the substructural specimen. This paper firstly introduces the designs of the prototype C‐SPSW and the test specimen. Then, the test results and the numerical simulation are discussed in detail. Test results confirm the effectiveness of the proposed column capacity design method, which aims at limiting the plastic hinge formation within the bottom quarter height of the bottom column. Test and analytical results suggest that the coupling beam rotational demands can be estimated as the design story drifts when the formation of desirable plastic mechanism of the C‐SPSW is expected. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
This paper describes an experiment to investigate the seismic design and responses of the bottom column, also called the bottom vertical boundary element (VBE), in steel plate shear walls (SPSWs). The main objectives of this experiment include validating the effectiveness of the design method developed in the companion paper, investigating the experimental performance of VBEs under large interstory drifts, and calibrating analytical models for earthquake engineering of SPSWs. Three full‐scale two‐story SPSWs were cyclically tested at the Taiwan National Center for Research on Earthquake Engineering in 2011. Test results and numerical simulations confirm that the proposed design procedures are effective in predicting the plastic zone forming elevation in the lower half of the bottom VBE and the occurrence of yielding at the VBE's top end. Test results show that the premature yielding occurring at the top end of a bottom VBE would result in a deformation concentration at the bottom of SPSWs. In addition, lateral torsional buckling could take place on the bottom VBE after significant plastic rotations have developed at the top end. Test results suggest that preventing the VBE's top end from yielding is the key issue in the seismic design of SPSWs, and the proposed method can be effectively adopted to achieve this objective. Furthermore, the inelastic responses of the SPSW specimens were satisfactorily simulated by using detailed finite shell elements or simplified frame response analysis models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
The steel plate shear wall (SPSW) system is a robust option for earthquake resistance due to the strength, stiffness, ductility and energy dissipation that it provides. Although thin infill plates are efficient for resisting lateral loads, boundary frames that are proportioned based on capacity design requirements add significant structural weight that appears to be one of the factors limiting the use of the system in practice. An alternate configuration, the SPSW with coupling (SPSW‐WC), was explored recently as an option for increasing architectural flexibility while also improving overall system economy and seismic performance. The SPSW‐WC, which extensively employs flexural boundary frame contribution, has shown promise in analytical, numerical and experimental studies, but recent research on uncoupled SPSWs suggests that boundary frame contribution should not be considered for carrying seismic design shear. As a result, in the present study, boundary frame contribution in SPSWs was explored with detailed three‐dimensional finite element models, which were validated against large‐scale SPSW‐WC tests. Six‐story systems were considered, and the study matrix included single and double uncoupled SPSWs along with coupled SPSWs that had various degrees of coupling. Variations in design methodology were also explored. The modeling framework was employed to conduct static monotonic and cyclic pushover analyses and dynamic response history analysis. These analyses demonstrate the beneficial effect of coupling in SPSWs and illustrate the need to consider boundary frame contribution in design of coupled SPSWs. In addition, sharing design shear between the infill plate and the boundary frame is more generally shown to not be detrimental if this sharing is done in the design stage based on elastic analysis and the resulting boundary frame provides adequate secondary strength and stiffness following infill plate yielding. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
This research investigates the seismic design method and the cyclic inelastic behavior of the bottom column, also called the vertical boundary element (VBE), in steel plate shear walls (SPSWs). This study consists of two parts. This Part 1 paper discusses the anticipated pushover responses for properly designed SPSWs and the possible inelastic responses of the bottom VBE at various levels of inter‐story drift. Considering both the tension field action of the infill panel and the sway action of the boundary frame, this study develops a simplified method to compute the flexural and shear demands in the bottom VBE. Based on the superposition method, this approach considers various plastic hinge forming locations at different levels of inter‐story drift. One of the key performance‐based design objectives is to ensure that the top ends of the bottom VBEs remain elastic when the SPSWs are subjected to the maximum considered earthquake. This paper presents the comprehensive design procedures for the bottom VBE. Furthermore, this study conducted cyclic performance evaluation tests of three full‐scale two‐story SPSWs at the Taiwan National Center for Research on Earthquake Engineering in 2011 to validate the effectiveness of the proposed design methods. The experimental program, cyclic inelastic responses of the SPSWs and bottom VBEs, and numerical simulations are presented in Part 2. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
The steel plate shear wall (SPSW) is an effective lateral force resisting system in which unstiffened steel infill plates are connected to the horizontal and vertical boundary elements (VBEs) on all sides of the plates. The boundary elements must be designed to resist the tension field force of the infill panels. When the VBEs are made from a steel box section, the flange of each box VBE connected with the infill panels can be pulled out‐of‐plane by significant panel forces, called pull‐out action. This study investigates capacity design methods for box VBEs in SPSWs. Simplified fixed beam and portal frame models aim to estimate the pull‐out responses of the flange of the box sections with and without infill concrete, respectively. In this study, cyclic tests of three full‐scale two‐story SPSWs using box VBEs with or without the infill concrete are conducted. Inelastic pushover analyses of the finite element models are conducted. The tests and analytical results confirm that the proposed design methods, which aimed to prevent the full yield of the flange under the pull‐out action, are applicable. Furthermore, the test and analytical results suggest that the initial yielding of the flange of box VBEs under the collective effects of the pull‐out action on the flange, the gravity load, and the sway action on the SPSW represents a local yielding. A strict prohibition of the initial yielding on the flange under the aforementioned collective effects is not recommended for pursuing a cost‐effective design. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
The seismic performance of composite steel plate shear walls (CSPSWs) that consist of a steel plate shear wall (SPSW) with reinforced concrete (RC) panels attached to one or both sides by means of bolts or connectors is experimentally studied. The shear wall is connected to the frame beams but not to the columns. This arrangement restrains the possible out-of-plane buckling of the thin-walled steel plate, thus significantly increasing the bearing capacity and ductility of the overall wall, and prevents the premature overall or local buckling failure of the frame columns. From a practical viewpoint, these solutions can provide open space in a floor as this type of composite shear walls with a relatively small aspect ratio can be placed parallel along a bay. In this study, four CSPSWs and one SPSW were tested and the results showed that both CSPSWs and SPSW possessed good ductility. For SPSW alone, the buckling appeared and resulted in a decrease of bearing capacity and energy dissipation capacity. In addition, welding stiffeners at corners were shown to be an effective way to increase the energy dissipation capacity of CSPSWs.  相似文献   

8.
The collapse of a one‐bay, four‐story steel moment frame is simulated in this study by the proposed peer‐to‐peer (P2P) Internet online hybrid test system. The typical beam hinging mechanism, which is ensured by a strong‐column, weak‐beam design, is reproduced. The plastic hinges at the column bases are taken as the experimental portions, while the superstructure is analyzed numerically by a general‐purpose finite element program. The implicit plastic rotations of the two column bases are treated as boundary displacements. In order to account for the complex behavior of the column bases, the P2P system is modified to use the secant stiffness during iterations, and the physical specimens are designed such that the plastic hinge behavior can be obtained. For this study, the three substructures are distributed to different locations. A large ground motion is repeatedly imposed until the column bases lose their capacity to sustain the gravity load. As a result, significant deterioration is observed at both column bases. The proposed P2P system is thus demonstrated to be able to accommodate multiple‐tested substructures involving unstable behavior. The results suggest that the P2P Internet online hybrid test system provides a reliable means of studying structures up to collapse. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
A new type of steel plate shear wall (SPSW) with oval-curved architectural openings and vertically flexible horizontal connection elements is proposed. The vertical flexibility of the wall accommodates the construction settlement introduced by column contraction under the dead loads of the upper stories and allows sequential installation from the lower stories. A quasi-static cyclic loading test and finite element (FE) analysis verified the stable seismic behaviors of the ovally-perforated vertically-flexible steel plate shear wall (OVSPW). The results of FE parametric analysis showed that an OVSPW with an appropriate thickness of boundary elements effectively accommodated the construction settlement that could lead to large in-plane compression for a conventional SPSW. The horizontal connection elements made of steel tubes realized the vertical stiffness of OVSPW to less than 2% of the original value without changing the lateral stiffness. New design equations of the OVSPW were derived through integral and extreme value solutions to predict the mechanical behavior of OVSPW.  相似文献   

10.
Design recommendations for steel plate shear wall (SPSW) systems have recently been introduced into seismic provisions for steel buildings. Response modification (R), overstrength (Ωo), and displacement amplification (Cd) factors for SPSW systems presented in design codes were based on professional experience and judgment. A numerical study has been undertaken to evaluate these factors for SPSW systems. Forty‐four unstiffened SPSW possessing different geometrical characteristics were designed based on the recommendations given in the AISC Seismic Provisions. Bay width, number of stories, story mass, and steel plate thickness were considered as the prime variables that influence the response. Twenty records were selected to include the variability in ground motion characteristics. In order to provide a detailed analysis of the post‐buckling response, three‐dimensional finite element analyses were conducted for the 44 structures subjected to the selected suite of earthquake records. For each structure and earthquake record, two analyses were conducted in which the first includes geometrical nonlinearities and the other includes both geometrical and material nonlinearities, resulting in a total of 1760 time history analyses. In this paper, the details of the design and analysis methodology are given. Based on the analysis results, response modification (R), overstrength (Ωo), and displacement amplification (Cd) factors for SPSW systems are evaluated. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
A ductile Vierendeel frame can be constructed by incorporating steel panel dampers (SPDs) into a moment‐resisting frame (MRF). Thus, the stiffness, strength, and ductility of the lateral force–resisting system can be enhanced. The proposed 3‐segment SPD possesses a center inelastic core (IC) and top and bottom elastic joints. This paper discusses the mechanical properties, capacity design method, and buckling‐delaying stiffeners for the SPDs through the use of cyclic loading tests on 2 specimens. Tests confirm that SPDs' cyclic force vs deformation relationships can be accurately predicted using either the Abaqus or PISA3D model analyses. The paper also presents the capacity design method for boundary beams connected to the SPDs of a typical SPD‐MRF. The seismic performance of an example 6‐story SPD‐MRF is evaluated using nonlinear response history analysis procedures and 240 ground accelerations at 3 hazard levels. Results indicate that under 80 maximum considered earthquake ground accelerations, the mean‐plus‐one standard deviation of the shear deformation of the ICs in the SPDs is 0.055 rad, substantially less than the 0.11 rad deformational capacity observed from the SPD specimens. The experimental cumulative plastic deformation of the proposed SPD is 242 times the yield deformation and is capable of sustaining a maximum considered earthquake at least 8 times before failure. This paper introduces the method of using one equivalent beam‐column element for effective modeling of the 3‐segment SPD. The effects of the IC's relative height and stiffness on the overall SPD's elastic and postelastic stiffness, elastic deformation limits, and inelastic deformational demands are discussed.  相似文献   

12.
本文针对钢板剪力墙结构自振周期缺乏研究的现状,将钢板剪力墙简化为Timoshenko梁,提出了考虑周边框架影响的钢板剪力墙等效抗剪刚度计算的方法,然后根据Southwell-Dunkerley理论,给出了钢板剪力墙结构基本自振周期的简化计算公式。然后,通过56个算例比较分析了本文公式计算结果与有限元计算结果发现:本文公式计算结果与有限元结果之比的平均值为1.015,标准差为0.049,说明本文公式具有足够的可靠性。接着,又对结构高度、均布质量、等效抗剪、抗弯刚度、钢板的高厚比、高宽比等参数进行了分析,分析结果表明:随着结构高度与均布质量开方的乘积增大,结构的基本自振周期增长;层数相同时,随着等效抗剪刚度、抗弯刚度的增大,周期有减小的趋势;层数相同时,随着钢板高厚比与高宽比乘积的增大,周期增长。  相似文献   

13.
Steel plate shear walls (SPSWs) are used as lateral force‐resisting systems in new and retrofitted structures in high‐seismic regions. Various international codes recommend the design of SPSWs assuming the entire lateral load to be resisted by the infill plates. Such a design procedure results in significant overstrength leading to uneconomical and inefficient use of materials. This study is focused on the estimation of contribution of boundary elements in resisting the lateral force considering their interaction with the web plates of SPSW systems. Initially, the relative contribution of web plates and boundary frames is computed for a single‐bay single‐story frame with varying rigidity and end connections of boundary elements. Nonlinear static analyses are carried out for the analytical models in OpenSees platform to quantify this contribution. Later, this study is extended to the code‐based designed three‐story, six‐story, and nine‐story SPSWs of varying aspect ratios. Based on the results obtained, a new design procedure is proposed taking the lateral strengths of the boundary frames into account. Nonlinear time‐history analyses are conducted for 40 recorded ground motions representing the design basis earthquake and maximum considered earthquake hazard levels to compare the interstory and residual drift response and yield mechanisms of SPSWs designed as per current practice and the proposed methodology. Finally, an expression has been proposed to predict the lateral force contribution of the infill plate and the boundary frame of SPSWs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Moment connections in an existing steel building located in Kaohsiung, Taiwan were rehabilitated to satisfy seismic requirements based on the 2005 AISC seismic provisions. Construction of the building was ceased in 1996 due to financial difficulties and was recommenced in 2007 with enhanced connection performance. Steel moment connections in the existing building were constructed by groove welding the beam flanges and bolting the beam web to the column. Four moment connections, two from the existing steel building, were cyclically tested. A non‐rehabilitated moment connection with bolted web‐welded flanges was tested as a benchmark. Three moment connections rehabilitated by welding full‐depth side plates between the column face and beam flange inner side were tested to validate the rehabilitation performance. Test results revealed that (1) the non‐rehabilitated existing moment connection made by in situ welding process prior to 1996 had similar deformation capacity as contemporary connection specimens made by laboratory welding process, (2) all rehabilitated moment connections exhibited excellent performance, exceeding a 4% drift without fractures of beam flange groove‐welded joints, and (3) presence of the full‐depth side plates effectively reduced beam flange tensile strain near the column face by almost half compared with the non‐rehabilitated moment connection. The connection specimens were also modeled using the non‐linear finite element computer program ABAQUS to further confirm the effectiveness of the side plate in transferring beam moments to the column and to investigate potential sources of connection failure. A design procedure was made based on experimental and analytical studies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The feasibility and efficiency of a seismic retrofit solution for existing reinforced concrete frame systems, designed before the introduction of modern seismic‐oriented design codes in the mid 1970s, is conceptually presented and experimentally investigated. A diagonal metallic haunch system is introduced at the beam–column connections to protect the joint panel zone from extensive damage and brittle shear mechanisms, while inverting the hierarchy of strength within the beam–column subassemblies and forming a plastic hinge in the beam. A complete step‐by‐step design procedure is suggested for the proposed retrofit strategy to achieve the desired reversal of strength hierarchy. Analytical formulations of the internal force flow at the beam–column‐joint level are derived for the retrofitted joints. The study is particularly focused on exterior beam–column joints, since it is recognized that they are the most vulnerable, due to their lack of a reliable joint shear transfer mechanism. Results from an experimental program carried out to validate the concept and the design procedure are also presented. The program consisted of quasi‐static cyclic tests on four exterior, ? scaled, beam–column joint subassemblies, typical of pre‐1970 construction practice using plain round bars with end‐hooks, with limited joint transverse reinforcement and detailed without capacity design considerations. The first (control specimen) emulated the as‐built connection while the three others incorporated the proposed retrofitted configurations. The experimental results demonstrated the effectiveness of the proposed solution for upgrading non‐seismically designed RC frames and also confirmed the applicability of the proposed design procedure and of the analytical derivations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
The inelastic seismic torsional response of simple structures is examined by means of shear‐beam type models as well as with plastic hinge idealization of one‐story buildings. Using mean values of ductility factors, obtained for groups of ten earthquake motions, as the basic index of post‐elastic response, the following topics are examined with the shear‐beam type model: mass eccentric versus stiffness eccentric systems, effects of different types of motions and effects of double eccentricities. Subsequently, comparisons are made with results obtained using a more realistic, plastic hinge type model of single‐story reinforced concrete frame buildings designed according to a modern Code. The consequences of designing for different levels of accidental eccentricity are also examined for the aforementioned frame buildings. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
Despite the inherently advantages of the box column, finding the best option for the I beam to the box column connection is the main challenge in using the box column as a structural member for special moment frames. In this paper, the seismic performance of unreinforced connection, weakened connection and strengthened connection was evaluated through a comprehensive experimental program. The seismic comparisons were fabricated by assessing the strength, ductility and energy dissipation in each configuration. Three full scale tests with several connections were carried out. All the specimens were subjected to cyclic loading and prior to failure by forming a plastic hinge in the beam, all the connections managed to reach an inelastic rotation of more than 6.0% rad. The experimental and analytical results showed that the seismic performance of the strengthened connection with flange and shear plates turned out to be the most effective in the beam to the box column connection. Moreover, the normalized stress distribution of the continuity plates revealed that the possibility of the weld fracture in unreinforced connection is more than other specimens.  相似文献   

18.
This study details a new moment connection that overcomes difficulties in achieving field‐weld quality and eliminates steel beam buckling encountered in steel moment connections. This study presents cyclic test and finite element analysis results of full‐scale subassemblies using steel reduced flange plates (RFPs) to connect steel beam flanges and the column without any other direct connection. Since the RFP connection is designed as strong column‐strong beam‐weak RFPs, the RFP functions as a structural fuse that eliminates weld fractures and beam buckling. Test and analytical results show that (1) the connections transferred the entire beam flexural strength to the column and reached an interstorey drift of 4% with minor strength degradation, (2) failure of the connections was owing to buckling or fracturing of the RFP and not of the beam, and (3) the RFP connection subassembly, modelled using the nonlinear finite element computer program ABAQUS, exhibited hysteretic behaviour similar to that of the flange plate (FP) moment connection subassembly. The inelastic buckling force of the RFP was also evaluated by nonlinear regression analyses performed on a nonlinear model that relates buckling force to RFP geometries. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Earthquake simulation tests were conducted on a 1 : 15‐scale 25‐story building model to verify the seismic performance of high‐rise reinforced‐concrete flat‐plate core‐wall building structures designed per the recent seismic code KBC 2009 or IBC 2006. The following conclusions can be drawn from the test results: (1) The vertical distribution of acceleration during the table excitations revealed the effect of the higher modes, whereas free vibration after the termination of the table excitations was governed by the first mode. The maximum values of base shear and roof drift during the free vibration are either similar to or larger than the values of the maximum responses during the table excitation. (2) With a maximum roof drift ratio of 0.7% under the maximum considered earthquake in Korea, the lateral stiffness degraded to approximately 50% of the initial stiffness. (3) The crack modes appear to be a combination of flexure and shear in the slab around the peripheral columns and in the coupling beam. Energy dissipation via inelastic deformation was predominant during free vibration after the termination of table excitation rather than during table excitation. Finally, (4) the walls with special boundary elements in the first story did not exhibit any significant inelastic behavior, with a maximum curvature of only 21% of the ultimate curvature, corresponding to an ultimate concrete compressive strain of 0.00638 m/m intended in the displacement‐based design approach. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Previous research has shown that self‐centering steel plate shear walls (SC‐SPSWs) are capable of achieving enhanced seismic performance at multiple hazard levels, including recentering following design‐level earthquakes. When modeling SC‐SPSWs numerically, these studies considered an idealized tension‐only steel plate shear wall (SPSW) web plate behavior. Research has shown that web plate behavior is more complex than predicted by the idealized model, and web plates can provide more strength, stiffness, and energy dissipation than predicted by the idealized model. The idealized model of web plate behavior is used widely in SPSW numerical models where the moment‐resisting boundary frame provides supplemental hysteretic damping and stiffness; however, in SC‐SPSWs, where the post‐tensioned boundary frame is designed to remain elastic during an earthquake, accounting for the more complex web plate behavior can have a significant impact on seismic performance estimates from numerical simulation. This paper presents different methods for modeling SC‐SPSWs. Responses from these models are compared with experimental results. A simple modification of the tension‐only model, referred to as the tension‐compression strip model, is shown to provide a reasonable approximation of SC‐SPSW behavior. Results from nonlinear response history analyses of SC‐SPSWs with the tension‐only and tension‐compression web plate models are compared to assess how the approximation of web plate behavior affects SC‐SPSW seismic performance. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号