首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present multi-parameter geophysical measurements of rainfall-induced lahars at Semeru Volcano, East Java, using two observation sites 510 m apart, 11.5 km from the summit. Our study site in the Curah Lengkong channel is composed of a 30-m wide box-valley, with a base of gravel and lava bedrock, representing an ideal geometry for high density measurements of active lahars. Instrumentation included pore-pressure sensors (stage), a broad-band seismograph (arrival times, vibrational energy, and turbulence), video footage, and direct bucket sampling. A total of 8 rainfall-induced lahars were recorded, with durations of 1–3 h, heights 0.5–2 m, and peak velocities 3–6 m/s. Flow types ranged from dilute to dense hyperconcentrated flows. These recorded flows were commonly composed of partly coalesced, discrete and unsteady gravity current packets, represented by multiple peaks within each lahar. These packets most likely originate from multiple lahar sources, and can be traced between instrument sites. Those with the highest concentrations and greatest wetted areas were often located mid-lahar at our measured reach, accelerating towards the flow front. As these lahars travel downstream, the individual packets thus coalesce and the flow develops a more organised structure. Observations of different degrees of coalescence between these discrete flow packets illustrate that a single mature debris flow may have formed from multiple dynamically independent lahars, each with different origins.  相似文献   

2.
A catastrophic lahar began on 30 October 1998, as hurricane precipitation triggered a small ?ank collapse of Casita volcano, a complex and probably dormant stratovolcano. The initial rockslide‐debris avalanche evolved on the ?ank to yield a watery debris ?ood with a sediment concentration less than 60 per cent by volume at the base of the volcano. Within 2·5 km, however, the watery ?ow entrained (bulked) enough sediment to transform entirely to a debris ?ow. The debris ?ow, 6 km downstream and 1·2 km wide and 3 to 6 m deep, killed 2500 people, nearly the entire populations of the communities of El Porvenir and Rolando Rodriguez. These ‘new towns’ were developed in a prehistoric lahar pathway: at least three ?ows of similar size since 8330 14C years bp are documented by stratigraphy in the same 30‐degree sector. Travel time between perception of the ?ow and destruction of the towns was only 2·5–3·0 minutes. The evolution of the ?ow wave occurred with hydraulic continuity and without pause or any extraordinary addition of water. The precipitation trigger of the Casita lahar emphasizes the need, in volcano hazard assessments, for including the potential for non‐eruption‐related collapse lahars with the more predictable potential of their syneruption analogues. The ?ow behaviour emphasizes that volcano collapses can yield not only volcanic debris avalanches with restricted runouts, but also mobile lahars that enlarge by bulking as they ?ow. Volumes and hence inundation areas of collapse‐runout lahars can increase greatly beyond their sources: the volume of the Casita lahar bulked to at least 2·6 times the contributing volume of the ?ank collapse and 4·2 times that of the debris ?ood. At least 78 per cent of the debris ?ow matrix (sediment < ?1·0Φ; 2 mm) was entrained during ?ow. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
Mt. Semeru, the highest mountain in Java (3,676 m), is one of the few persistently active composite volcanoes on Earth, with a plain supporting about 1 million people. We present the geology of the edifice, review its historical eruptive activity, and assess hazards posed by the current activity, highlighting the lahar threat. The composite andesite cone of Semeru results from the growth of two edifices: the Mahameru ‘old’ Semeru and the Seloko ‘young’ Semeru. On the SE flank of the summit cone, a N130-trending scar, branched on the active Jonggring-Seloko vent, is the current pathway for rockslides and pyroclastic flows produced by dome growth. The eruptive activity, recorded since 1818, shows three styles: (1) The persistent vulcanian and phreatomagmatic regime consists of short-lived eruption columns several times a day; (2) increase in activity every 5 to 7 years produces several kilometer-high eruption columns, ballistic bombs and thick tephra fall around the vent, and ash fall 40 km downwind. Dome extrusion in the vent and subsequent collapses produce block-and-ash flows that travel toward the SE as far as 11 km from the summit; and (3) flank lava flows erupted on the lower SE and E flanks in 1895 and in 1941–1942. Pyroclastic flows recur every 5 years on average while large-scale lahars exceeding 5 million m3 each have occurred at least five times since 1884. Lumajang, a city home to 85,000 people located 35 km E of the summit, was devastated by lahars in 1909. In 2000, the catchment of the Curah Lengkong River on the ESE flank shows an annual sediment yield of 2.7 × 105 m3 km−2 and a denudation rate of 4 105 t km−2 yr−1, comparable with values reported at other active composite cones in wet environment. Unlike catchments affected by high magnitude eruptions, sediment yield at Mt. Semeru, however, does not decline drastically within the first post-eruption years. This is due to the daily supply of pyroclastic debris shed over the summit cone, which is remobilised by runoff during the rainy season. Three hazard-prone areas are delineated at Mt. Semeru: (1) a triangle-shaped area open toward the SE has been frequently swept by dome-collapse avalanches and pyroclastic flows; (2) the S and SE valleys convey tens of rain-triggered lahars each year within a distance of 20 km toward the ring plain; (3) valleys 25 km S, SE, and the ring plain 35 km E toward Lumajang can be affected by debris avalanches and debris flows if the steep-sided summit cone fails.  相似文献   

4.
The eruption of Mount Pinatubo in June 1991 altered the conditions of the surrounding river catchments. Pyroclastic flows and tephra fall were deposited over extensive areas, stripping off the forest cover and burying drainage divides. These recent deposits are very loosely consolidated and generally consist of sand‐sized particles, which commonly mobilize into lahars in response to rainfall of a certain magnitude. Several devastating lahar occurrences have buried settlements covering tens to several hundred square kilometres in a single event. Correlation of storm rainfall intensities and durations with lahar activity as recorded by acoustic flow monitors is used to investigate trends in the initiation conditions for lahar activity. This research confirms that the relationships of rainfall intensity and duration with lahar initiation threshold values are not linear but rather approximate a power relation. Different relations were found for lahar initiation in different years, from 1991 to 1997, as a result of the dynamic changes in hydrologic and geomorphic conditions of the affected catchments. Data from acoustic flow monitors are used to distinguish debris flow and hyperconcentrated flow activity from that of muddy water. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Volcán de Colima is currently the most active volcano in Mexico. Since 1998 intermittent activity has been observed with vulcanian eruptions, lava flows and growing domes that have collapsed producing several block-and-ash flow deposits. During the period of heightened activity since 1998 at Volcán de Colima, pyroclastic flows from dome or column collapse have not reached long distances, most of the time less than 6 km from the crater. In contrast, rain-induced lahars were more frequent and have reached relatively long distances, up to 15 km, causing damage to infrastructure and affecting small villages. In 2007 two rain gauge stations were installed on the southern flank of the volcano registering events from June through to October, the period when rains are intense and lahars frequent. By comparing lahar frequency with rainfall intensity and the rainfall accumulated during the previous 3 days, lahars more frequently occur at the beginning of the rainfall season, with low rain accumulation (< 10 mm) and triggered by low rain intensities (< 20 mm/h). During the months with more rainfall (July and August) lahars are less frequent and higher peak intensities (up to 70 mm/h) are needed to trigger an event. In both cases, lahars were initiated as dilute, sediment-laden streamflows, which transformed with entrainment of additional sediment into hyperconcentrated and debris flows, with alternations between these two flow types. A hydro-repellency mechanism in highly vegetated areas (i.e. evergreen tree types with considerable amount of resins and waxes such as pines) with sandy soils can probably explain the high frequency of lahars at the beginning of the rain season during low rainfall events. Under hydrophobic conditions, infiltration is inhibited and runoff is facilitated at more highly peaked discharges that are more likely to initiate lahars.  相似文献   

6.
The Whangaehu fan is the youngest sedimentary component on the eastern ring plain surrounding Ruapehu volcano. Fan history comprises constructional (830–200 years bp) and dissectional (<200 years bp) phases. The constructional phase includes four aggradational periods associated with both syneruptive and inter-eruptive behavior. All four aggradational periods began when deposition by large lahars changed flow conditions on the fan from channelized to unchannelized. Subsequent behavior was a function of the rate of sediment influx to the fan. The rate of sediment influx, in turn, was controlled by frequency and magnitude of volcanic eruptions, short-term climate change, and the amount of sediment stored on the volcano flanks. Fanwide aggradation occurred when rates of sediment influx and deposition on the fan were high enough to maintaìn unchannelized flow conditions on the fan surface. Maintenance of an undissected surface required sedimentation from frequent and large lahars that prevented major dissection between events. These conditions were best met during major eruptive episodes when high frequency and magnitude eruptions blanketed the volcano flanks with tephra and rates of lahar initiation were high. During major eruptive episodes, volcanism is the primary control on sedimentation. Climatic variations do not influence sediment accumulation. Local aggradation occurred when lahars were too small to maintain unchannelized flow across the entire fan. In this case, only the major channel system received much sediment following the deposition from the initial lahar. This localized aggradation occurred if (1) the sediment reservoir on the flank was large enough for floods to bulk into debris flows and (2) sedimentation events were frequent enough to maintain sediment supply to only some parts of the fan. These conditions were met during both minor eruptive and inter-eruptive episodes. In both cases, a large sediment reservoir remained on the volcano flanks from previous major eruptive intervals. Periods of increased storm activity produced floods that bulked to relatively small debris flows. When the sediment reservoir was depleted, the fan entered the present dissectional phase. Syneruptive and noneruptive lahars are mostly channelized and sediment bypasses the fan. Fan deposits are rapidly reworked. This is the present case at Ruapehu, even though the volcano is in a minor eruptive episode and the climate favors generation of intense storm floods.  相似文献   

7.
Merapi volcano, in Central Java, is one of the most active volcanoes in the world. At least 23 of the 61 reported eruptions since the mid-1500s have produced source deposits for lahars. The combined lahar deposits cover about 286 km2 on the flanks and the surrounding piedmonts of the volcano. At Merapi, lahars are commonly rain-triggered by rainfalls having an average intensity of about 40 mm in 2 h. Most occur during the rainy season from November to April, and have average velocities of 5–7 m/s at 1000 m in elevation. A wide range of facies may be generated from a single flow, which may transform downvalley from debris flow to hyperconcentrated streamflow.Because of the high frequency and magnitude of the lahar events, lahar-related hazards are high below about 450–600 m elevation in each of the 13 rivers which drain the volcano. Hazard-zone maps for lahar were produced by Pardyanto et al. (Volcanic hazard map, Merapi volcano, Central Java (1/100,000). Geol. Surv. of Indonesia, Bandung, II, 4, 1978) and the Japanese–Indonesian Cooperation Agency (Master plan for land conservation and volcanic debris control in the area of Mt Merapi, Jakarta, 1980), but these maps are of a very small scale to meet modern zoning requirements. More recently, a few large-scale maps (1/10,000- and 1/2000-scale) and risk assessments have been completed for a few critical river systems.  相似文献   

8.
Many research tools for lahar hazard assessment have proved wholly unsuitable for practical application to an active volcanic system where field measurements are challenging to obtain. Two simple routing models, with minimal data demands and implemented in a geographical information system (GIS), were applied to dilute lahars originating from Soufrière Hills Volcano, Montserrat. Single-direction flow routing by path of steepest descent, commonly used for simulating normal stream-flow, was tested against LAHARZ, an established lahar model calibrated for debris flows, for ability to replicate the main flow routes. Comparing the ways in which these models capture observed changes, and how the different modelled paths deviate can also provide an indication of where dilute lahars, do not follow behaviour expected from single-phase flow models. Data were collected over two field seasons and provide (1) an overview of gross morphological change after one rainy season, (2) details of dominant channels at the time of measurement, and (3) order of magnitude estimates of individual flow volumes. Modelling results suggested both GIS-based predictive tools had associated benefits. Dominant flow routes observed in the field were generally well-predicted using the hydrological approach with a consideration of elevation error, while LAHARZ was comparatively more successful at mapping lahar dispersion and was better suited to long-term hazard assessment. This research suggests that end-member models can have utility for first-order dilute lahar hazard mapping.  相似文献   

9.
Sediment yields were calculated on the ?anks of Merapi and Semeru volcanoes in Java, Indonesia, using two different methods. During the ?rst year following the 22 November 1994 eruption of Merapi, a sediment yield in excess of 1·5 × 105 m3 km?2 yr?1 was calculated in the Boyong River drainage basin, based on the volumes of sediment that were trapped by ?ve check dams. At Semeru, sediment discharges were assessed in the Curah Lengkong River from direct measurements on the lahars in motion and on the most signi?cant stream?ows. The calculated rate of sediment yield during one year of data in 2000 was 2·7 × 105 m3 km?2 yr?1. Sediment yields are dominated by rain‐triggered lahars, which occur every rainy season in several drainage basins of Merapi and Semeru volcanoes, mostly during the rainy season extending from October to April. The return period of lahars carrying sediment in excess of 5 × 105 m3 is about one year in the Curah Lengkong River at Semeru. At Merapi, the volume of sediments transported by a lahar did not exceed 2·8 × 105 m3 in the Boyong River during the rainy season 1994–95. On both volcanoes, the sediments are derived from similar sources: pyroclastic‐?ow/surges deposits, rockfalls from the lava domes, and old material from the riverbed and banks. However, daily explosions of vulcanian type at Semeru provide a more continuous sediment supply than at Merapi. Therefore, sediment yields are larger at Semeru. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
We present direct observations and monitoring data of a hyperconcentrated flow that occurred along La Lumbre ravine, one of the most active channels of Volcán de Colima in Mexico. Flow properties were inferred from video images and seismic data recorded by a geophone installed outside the channel. We collected flow samples 400 m upstream from the monitoring station and analyzed the variation of sediment concentration and grain‐size distribution over time. A joint analysis of hydrological (i.e. flow velocity, wetted perimeter) and rheological (i.e. yield stress τy and dynamic viscosity μm ) parameters was performed to characterize the flow. Different flow regimes and sediment transport processes were identified and analyzed in comparison with both the amplitude and spectral features of the seismic signal. We observed differing sediment concentrations at the same discharge, suggesting a decoupling between sediment transport processes and discharge for low‐magnitude flows. A straightforward correlation was found between the amplitude of the seismic signal and the sediment concentration, and a value of 1.8 × 10?3 mm/s was identified that can be used as a threshold to recognize the hyperconcentrated phase of the flow. This information was tested on the complete seismic dataset gathered at La Lumbre ravine during the 2015 rainy season. We identified the transition from streamflow to hyperconcentrated flow (and/or vice versa) in 16 low‐magnitude events and we validated this result using the video recordings. The correlation between seismic amplitude and sediment concentration is valid at La Lumbre ravine but would need to be tested in other locations for the development of automatic flow classification methods. This work contributes to standardized seismic methods for characterizing flow processes in volcanic environments, also for the development of lahar early warning systems. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

11.
 Akutan Volcano is one of the most active volcanoes in the Aleutian arc, but until recently little was known about its history and eruptive character. Following a brief but sustained period of intense seismic activity in March 1996, the Alaska Volcano Observatory began investigating the geology of the volcano and evaluating potential volcanic hazards that could affect residents of Akutan Island. During these studies new information was obtained about the Holocene eruptive history of the volcano on the basis of stratigraphic studies of volcaniclastic deposits and radiocarbon dating of associated buried soils and peat. A black, scoria-bearing, lapilli tephra, informally named the "Akutan tephra," is up to 2 m thick and is found over most of the island, primarily east of the volcano summit. Six radiocarbon ages on the humic fraction of soil A-horizons beneath the tephra indicate that the Akutan tephra was erupted approximately 1611 years B.P. At several locations the Akutan tephra is within a conformable stratigraphic sequence of pyroclastic-flow and lahar deposits that are all part of the same eruptive sequence. The thickness, widespread distribution, and conformable stratigraphic association with overlying pyroclastic-flow and lahar deposits indicate that the Akutan tephra likely records a major eruption of Akutan Volcano that may have formed the present summit caldera. Noncohesive lahar and pyroclastic-flow deposits that predate the Akutan tephra occur in the major valleys that head on the volcano and are evidence for six to eight earlier Holocene eruptions. These eruptions were strombolian to subplinian events that generated limited amounts of tephra and small pyroclastic flows that extended only a few kilometers from the vent. The pyroclastic flows melted snow and ice on the volcano flanks and formed lahars that traveled several kilometers down broad, formerly glaciated valleys, reaching the coast as thin, watery, hyperconcentrated flows or water floods. Slightly cohesive lahars in Hot Springs valley and Long valley could have formed from minor flank collapses of hydrothermally altered volcanic bedrock. These lahars may be unrelated to eruptive activity. Received: 31 August 1998 / Accepted: 30 January 1999  相似文献   

12.
On 29–30 November 2006, heavy rains from Supertyphoon Durian remobilized volcanic debris on the southern and eastern slopes of Mount Mayon, generating major lahars that caused severe loss of life and property in downstream communities. The nearby Legaspi City weather station recorded 495.8 mm of rainfall over 1.5 days at rates as high as 47.5 mm/h, far exceeding the initiation threshold for Mayon lahars. For about 18 h, floods and lahars from the intense and prolonged rainfall overtopped river bends, breaching six dikes through which they created new paths, buried downstream communities in thick, widespread deposits, and caused most of the 1,266 fatalities. In order to mitigate damage from future lahars, the deposits were described and analyzed for clues to their generation and impact on structures and people. Post-disaster maps were generated from raw ASTER and SPOT images, using automated density slicing to characterize lahar deposits, flooded areas, croplands, and urbanized areas. Fieldwork was undertaken to check the accuracy of the maps, especially at the edges of the lahar deposits, and to measure the deposit thicknesses. The Durian event was exceptional in terms of rainfall intensity, but the dikes eventually failed because they were designed and built according to flood specifications, not to withstand major lahars.  相似文献   

13.
Lahars are among the most hazardous mass flow processes on earth and have caused up to 23 000 casualties in single events in the recent past. The Cotopaxi volcano, 60 km southeast of Quito, has a well-documented history of massively destructive lahars and is a hotspot for future lahars due to (i) its ~10 km2 glacier cap, (ii) its 117–147-year return period of (Sub)-Plinian eruptions, and (iii) the densely populated potential inundation zones (300 000 inhabitants). Previous mechanical lahar models often do not (i) capture the steep initial lahar trajectory, (ii) reproduce multiple flow paths including bifurcation and confluence, and (iii) generate appropriate key parameters like flow speed and pressure at the base as a measure of erosion capacity. Here, we back-calculate the well-documented 1877 lahar using the RAMMS debris flow model with an implemented entrainment algorithm, covering the entire lahar path from the volcano edifice to an extent of ~70 km from the source. To evaluate the sensitivity and to constrain the model input range, we systematically explore input parameter values, especially the Voellmy–Salm friction coefficients μ and ξ. Objective selection of the most likely parameter combinations enables a realistic and robust lahar hazard representation. Detailed historic records for flow height, flow velocity, peak discharge, travel time and inundation limits match best with a very low Coulomb-type friction μ (0.0025–0.005) and a high turbulent friction ξ (1000–1400 m/s2). Finally, we apply the calibrated model to future eruption scenarios (Volcanic Explosivity Index = 2–3, 3–4, >4) at Cotopaxi and accordingly scaled lahars. For the first time, we anticipate a potential volume growth of 50–400% due to lahar erosivity on steep volcano flanks. Here we develop a generic Voellmy–Salm approach across different scales of high-magnitude lahars and show how it can be used to anticipate future syneruptive lahars.  相似文献   

14.
Much research has been done on water‐rich mass flows, but the distinction between hyperconcentrated flows and debris flows, and whether the two are indeed different processes, continue to be debated. Here, we contribute to the ongoing discussion of these phenomena by describing and interpreting the deposit of a large landslide‐induced mass flow in the eastern Swiss Alps. About 9400 years ago, 10‐12 km3 of limestone detached from the wall of the Vorderrhein River valley and rapidly fragmented while sliding towards the valley bottom. The rock mass struck the valley floor with enormous force and liquefied at least 1 km3 of valley‐fill sediments. A slurry of liquefied sediment – the ‘Bonaduz gravel’ – traveled tens of kilometres down the Vorderrhein valley from the impact site, carrying huge fragments of rockslide debris that became stranded on the valley floor, forming hills termed ‘tomas’. Part of the flow was deflected by a cross‐valley barrier and traveled 14 km up a tributary of the Vorderrhein valley. The Bonaduz gravel is >65 m thick and fines upward from massive sandy cobble gravel at its base to silty sand at its top. Sedimentologic and geomorphic evidence indicates that Bonaduz gravel was transported as a hyperconcentated flow, likely above a basal carpet of coarse diamictic sediment that behaved as a debris flow. The large amount of water involved in the flow indicates that at least part of the Flims rockslide entered a lake. The Bonaduz deposit shares many properties with sediments left by hyperconcentrated flows generated in flumes, including normal grading and elutriation pipes produced by the rapid escape of fluids when the flow comes to rest. These properties are characteristic of non‐Newtonian laminar flows with high sediment concentrations. Our study reinforces laboratory and theoretical studies showing that debris flows and hyperconcentrated flows are different processes. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

15.
The Llangorse volcanic field is located in northwest British Columbia, Canada, and comprises erosional remnants of Miocene to Holocene volcanic edifices, lava flows or dykes. The focus of this study is a single overthickened, 100-m-thick-valley-filling lava flow that is Middle-Pleistocene in age and located immediately south of Llangorse Mountain. The lava flow is basanitic in composition and contains mantle-derived peridotite xenoliths. The lava directly overlies a sequence of poorly sorted, crudely bedded volcaniclastic debris-flow sediments. The debris flow deposits contain a diverse suite of clast types, including angular clasts of basanite lava, blocks of peridotite coated by basanite, and rounded boulders of granodiorite. Many of the basanite clasts have been palagonitized. The presence and abundance of clasts of vesicular to scoriaceous, palagonitized basanite and peridotite suggest that the debris flows are syngenetic to the overlying lava flow and sampled the same volcanic vent during the early stages of eruption. They may represent lahars or outburst floods related to melting of a snow pack or ice cap during the eruption. The debris flows were water-saturated when deposited. The rapid subsequent emplacement of a thick basanite flow over the sediments heated pore fluids to at least 80–100°C causing in-situ palagonitization of glassy basanite clasts within the sediments. The over-thickened nature of the Llangorse Mountain lavas suggests ponding of the lava against a down-stream barrier. The distribution of similar-aged glaciovolcanic features in the cordillera suggests the possibility that the barrier was a lower-elevation, valley-wide ice-sheet.  相似文献   

16.
The assessment of the dominant flow type on alluvial fans usually refers to two categories: debris‐flow fans (i.e. sediment gravity flows) and fluvial fans (i.e. fluid gravity flows). Here we report the results of combined morphometric, stratigraphic and sedimentological approaches which suggest that hyperconcentrated flows, a transitional process rheologically distinct from debris flows and floods and sometimes referred to as debris floods, mud floods, or transitional debris flows, are the dominant fan building process in eastern Canada. These flows produce transitional facies between those of debris flows which consist of a cohesive matrix‐supported diamicton, and those of river flows which display more distinct stratification. The size of the blocks in the channels and the abrasion scars at the base of several trees attest to the high transport capacity of these flows. The fan channels are routed according to various obstacles comprised primarily of woody debris that impede sediment transit. However, these conditions of sediment storage are combined with readily available sediment due to the friable nature of the local lithology. Tree‐ring analysis allowed the reconstruction of eight hydrogeomorphic events which are characterized by a return period of 9.25 years for the period 1934–2008, although most of the analyzed events occurred after 1970. Historical weather data analysis indicates that they were related to rare hydrometeorological events at regional and local scales. This evidence led to the elaboration of weather scenarios likely responsible for triggering flows on the fan. According to these scenarios, two distinct hydrologic regimes emerge: the torrential rainfall regime and the nival regime related to snowmelt processes. Hydrogeomorphic processes occurring in a cold‐temperate climate, and particularly on small forested alluvial fans of north‐eastern North America, should receive more attention from land managers given the hazard they represent, as well as because of their sensitivity to various meteorological parameters. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
A general model for Mt. Ruapehu lahars   总被引:1,自引:1,他引:1  
A mathematical model of the motion of lahars is presented. Lahar flows and travel speeds are calculated using a kinematic wave model which equates gravitational accelerations to frictional losses. A chezyor Manning-type law of friction is assumed, in which lahar flow rate is a simple power function of lahar depth, multiplied by another simple power of the chanel slope. Use of the model requires knowledge of essentially only one parameter which appears to be relatively insensitive for flows down a given channel. Variable channel slope effects are removed by a longitudinal scaling which applies to all flows down a given channel. For lahars generated by a single explosive event it is unnecessary to perform numerical calculations to predict lahar flow and travel time, but for lahnars produced by multiple sources in which different lahar flows are interacting, numerical calculations appear necessary. The model is applied to all recorded lahar flows from Mt. Ruapehu, and satisfactorily described all lahar flows generated by a single explosive mechanism. Such flows depend essentially only on total lahar volume. The 1968 Mt. Ruapehu lahar, generated by a series of smaller eruptive mechanisms, was modelled as the interaction of seven point sources of fluid originating from positions mathematically extrapolated up the mountain. Good agreement was obtained between the predicted times of formation of these 1968 lahars, and the times of greatest seismic amplitude.  相似文献   

18.
Lahars are water-sediment mass flows from a volcanic source. They can be triggered by a variety of mechanisms and span a continuum of flow rheology and hydraulic properties, even within the same event. Lahars are extremely powerful landscaping agents and represent a considerable hazard potential. However, this highly dynamic character and a lack of direct measurements has made modelling lahars difficult. This study therefore applies a fluid dynamics model; Delft3D, to analyse the 18th March 2007 dam break lahar at Mount Ruapehu, New Zealand. The modelled lahar routed through the Whangaehu gorge in ~30 min, crossed the Whangaehu fan in ~60 min, and then over a further 3 h travelled an additional ~22 km distance along the Whangaehu River to the Tangiwai bridge. The modelled mean frontal velocity was 6.5 m s−1 along the gorge although peak velocity reached up to 19.6 m s−1. The modelled lahar flow front progressively slowed across the fan but along the River it accelerated from 2.1–3.3 m s−1. Calculated peak velocity along the River was <4.5 m s−1. These results generally compare well with gauged records, with historical records, and with other modelling approaches. However, discrepancies in frontal velocity and time to peak stage arise due to (1) specifying roughness, which arises from slope variations between adjacent computational nodes, and which is stage-dependant, and (2) due to rapid topographic changes that produce frequent hydraulic jumps, which are inadequately accommodated in the numerical scheme. The overall pattern of discharge attenuation, and of relationships between topographic and hydraulic variables, is similar to that calculated for lahars on other volcanoes. This modelling method could be applied at other similar sites where a likely source hydrograph and high-resolution topographic data are available. These results have important implications for hazard management at Ruapehu and for examining geomorphic and sedimentary impacts of this lahar.  相似文献   

19.
A devastating pyroclastic surge and resultant lahars at Mount St. Helens on 18 May 1980 produced several catastrophic flowages into tributaries on the northeast volcano flank. The tributaries channeled the flows to Smith Creek valley, which lies within the area devastated by the surge but was unaffected by the great debris avalanche on the north flank. Stratigraphy shows that the pyroclastic surge preceded the lahars; there is no notable “wet” character to the surge deposits. Therefore the lahars must have originated as snowmelt, not as ejected water-saturated debris that segregated from the pyroclastic surge as has been inferred for other flanks of the volcano. In stratigraphic order the Smith Creek valley-floor materials comprise (1) a complex valley-bottom facies of the pyroclastic surge and a related pyroclastic flow, (2) an unusual hummocky diamict caused by complex mixing of lahars with the dry pyroclastic debris, and (3) deposits of secondary pyroclastic flows. These units are capped by silt containing accretionary lapilli, which began falling from a rapidly expanding mushroom-shaped cloud 20 minutes after the eruption's onset. The Smith Creek valley-bottom pyroclastic facies consists of (a) a weakly graded basal bed of fines-poor granular sand, the deposit of a low-concentration lithic pyroclastic surge, and (b) a bed of very poorly sorted pebble to cobble gravel inversely graded near its base, the deposit of a high-concentration lithic pyroclastic flow. The surge apparently segregated while crossing the steep headwater tributaries of Smith Creek; large fragments that settled from the turbulent surge formed a dense pyroclastic flow along the valley floor that lagged behind the front of the overland surge. The unusual hummocky diamict as thick as 15 m contains large lithic clasts supported by a tough, brown muddy sand matrix like that of lahar deposits upvalley. This unit contains irregular friable lenses and pods meters in diameter, blocks incorporated from the underlying dry and hot pyroclastic material that had been deposited only moments earlier. The hummocky unit is the deposit of a high-viscosity debris flow which formed when lahars mingled with the pyroclastic materials on Smith Creek valley floor. Overlying the debris flow are voluminous pyroclastic deposits of pebbly sand cut by fines-poor gas-escape pipes and containing charred wood. The deposits are thickest in topographic lows along margins of the hummocky diamict. Emplaced several minutes after the hot surge had passed, this is the deposit of numerous secondary pyroclastic flows derived from surge material deposited unstably on steep valley sides.  相似文献   

20.
Historical eruptions have produced lahars and floods by perturbing snow and ice at more than 40 volcanoes worldwide. Most of these volcanoes are located at latitudes higher than 35°; those at lower latitudes reach altitudes generally above 4000 m. Volcanic events can perturb mantles of snow and ice in at least five ways: (1) scouring and melting by flowing pyroclastic debris or blasts of hot gases and pyroclastic debris, (2) surficial melting by lava flows, (3) basal melting of glacial ice or snow by subglacial eruptions or geothermal activity, (4) ejection of water by eruptions through a crater lake, and (5) deposition of tephra fall. Historical records of volcanic eruptions at snow-clad volcanoes show the following: (1) Flowing pyroclastic debris (pyroclastic flows and surges) and blasts of hot gases and pyroclastic debris are the most common volcanic events that generate lahars and floods; (2) Surficial lava flows generally cannot melt snow and ice rapidly enough to form large lahars or floods; (3) Heating the base of a glacier or snowpack by subglacial eruptions or by geothermal activity can induce basal melting that may result in ponding of water and lead to sudden outpourings of water or sediment-rich debris flows; (4) Tephra falls usually alter ablation rates of snow and ice but generally produce little meltwater that results in the formation of lahars and floods; (5) Lahars and floods generated by flowing pyroclastic debris, blasts of hot gases and pyroclastic debris, or basal melting of snow and ice commonly have volumes that exceed 105 m3.The glowing lava (pyroclastic flow) which flowed with force over ravines and ridges...gathered in the basin quickly and then forced downwards. As a result, tremendously wide and deep pathways in the ice and snow were made and produced great streams of water (Wolf 1878).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号