首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A February 2012 survey of almost 5,000 farmers across a region of the U.S. that produces more than half of the nation’s corn and soybean revealed that 66 % of farmers believed climate change is occurring (8 % mostly anthropogenic, 33 % equally human and natural, 25 % mostly natural), while 31 % were uncertain and 3.5 % did not believe that climate change is occurring. Results of initial analyses indicate that farmers’ beliefs about climate change and its causes vary considerably, and the relationships between those beliefs, concern about the potential impacts of climate change, and attitudes toward adaptive and mitigative action differ in systematic ways. Farmers who believed that climate change is occurring and attributable to human activity were significantly more likely to express concern about impacts and support adaptive and mitigative action. On the other hand, farmers who attributed climate change to natural causes, were uncertain about whether it is occurring, or did not believe that it is occurring were less concerned, less supportive of adaptation, and much less likely to support government and individual mitigative action. Results suggest that outreach with farmers should account for these covariances in belief, concerns, and attitudes toward adaptation and mitigation.  相似文献   

2.
This study identifies the major methods used by farmers to adapt to climate change in the Nile Basin of Ethiopia, the factors that affect their choice of method, and the barriers to adaptation. The methods identified include use of different crop varieties, tree planting, soil conservation, early and late planting, and irrigation. Results from the discrete choice model employed indicate that the level of education, gender, age, and wealth of the head of household; access to extension and credit; information on climate, social capital, agroecological settings, and temperature all influence farmers’ choices. The main barriers include lack of information on adaptation methods and financial constraints.  相似文献   

3.
Long-term field monitoring data and historical crop data are useful to assess the impacts of climate change and to manage cropping systems.The objectives of this study are to understand the cropping system response to a warming-drying trend in the northern agro-pastural ecotone(NAE)of China and to document how farmers can adapt to the warming-drying trend by changing cropping system structure and adjusting planting date.The results indicate that a significant warming-drying trend existed in the NAE from 1980 to 2009,and this trend significantly decreased crop(spring wheat,naked oat,and potato)yields.Furthermore,the yield decreased by 16.2%-28.4%with a 1℃increase in maximum temperature and decreased by 6.6%-11.8%with a 10%decrease in precipitation.Considering food security,water use efficiency,and water ecological adaptability in the semi-arid NAE,cropping system structure adjustment(e.g.,a shift from wheat to potato as the predominant crop)and planting date adaptation(e.g.,a delay in crop planting date)can offset the impact of the warming-drying trend in the NAE.Based on the successful offsetting of the impact of the warming-drying trend in the NAE,we conclude that farmers can reduce the negative effects of climate change and minimize the risk of crop failure by adapting their cropping system structure at the farming level.  相似文献   

4.
了解农户气候变化与气象灾害适应行为影响机制对未来制定有效气候变化政策至关重要。基于计划行为理论,利用西安市白鹿原樱桃种植区农户的调查数据,结合结构方程模型分析樱桃种植户气候变化与气象灾害适应行为机制。研究表明,种植户关于气候变化与气象灾害的行为态度、主观规范和知觉行为控制三者之间相互影响,且三者均可直接影响种植户适应气候变化与气象灾害的行为意向,其中行为态度对行为意向的影响最为显著;种植户的知觉行为控制对于气候变化及气象灾害的适应行为影响不显著;种植户对气候变化与气象灾害的行为意向是影响其适应行为最直接的因素。  相似文献   

5.
The impact of climate change on US agriculture has been debated for more than two decades, but the estimates ranged from no damage at the lower end to 80 % losses of grain yields at the higher end. This essay aims to help understand such divergent predictions by clarifying the concepts of weather and climate. First, the widely-read panel fixed effects models capture only the impacts of weather fluctuations but not of climate normals. Random weather fluctuations and climatic shifts are two different meteorological events and they have distinct implications on farming decisions. The former is perceived as random while the latter is perceived as non-random by the farmers. Using the historical corn yield data in the US, I explain the differences between the impact of random weather and that of climate change. Second, adaptation strategies to climatic changes and increased climate risks cannot be accounted for by the panel fixed effects models. Using the farm household data collected in sub-Saharan Africa and Latin America, I discuss quantitative significance of modeling adaptation strategies in the estimates of climate damage. Distinction between random weather fluctuations and climatic shifts is critical in modeling farming decisions, as they are fundamental to climate science, but is poorly understood by the impact researchers.  相似文献   

6.
Dynamic adaptation of maize and wheat production to climate change   总被引:2,自引:0,他引:2  
  相似文献   

7.
An assessment of regional vulnerability of rice to climate change in India   总被引:1,自引:0,他引:1  
A simulation analysis was carried out using the InfoCrop-rice model to quantify impacts and adaptation gains, as well as to identify vulnerable regions for irrigated and rain fed rice cultivation in future climates in India. Climates in A1b, A2, B1 and B2 emission scenarios as per a global climate model (MIROC3.2.HI) and a regional climate model (PRECIS) were considered for the study. On an aggregated scale, the mean of all emission scenarios indicate that climate change is likely to reduce irrigated rice yields by ~4 % in 2020 (2010–2039), ~7 % in 2050 (2040–2069), and by ~10 % in 2080 (2070–2099) climate scenarios. On the other hand, rainfed rice yields in India are likely to be reduced by ~6 % in the 2020 scenario, but in the 2050 and 2080 scenarios they are projected to decrease only marginally (<2.5 %). However, spatial variations exist for the magnitude of the impact, with some regions likely to be affected more than others. Adaptation strategies comprising agronomical management can offset negative impacts in the near future—particularly in rainfed conditions—but in the longer run, developing suitable varieties coupled with improved and efficient crop husbandry will become essential. For irrigated rice crop, genotypic and agronomic improvements will become crucial; while for rainfed conditions, improved management and additional fertilizers will be needed. Basically climate change is likely to exhibit three types of impacts on rice crop: i) regions that are adversely affected by climate change can gain in net productivity with adaptation; ii) regions that are adversely affected will still remain vulnerable despite adaptation gains; and iii) rainfed regions (with currently low rainfall) that are likely to gain due to increase in rainfall can further benefit by adaptation. Regions falling in the vulnerable category even after suggested adaptation to climate change will require more intensive, specific and innovative adaptation options. The present analysis indicates the possibility of substantial improvement in yields with efficient utilization of inputs and adoption of improved varieties.  相似文献   

8.
Maize is grown by millions of smallholder farmers in South Asia (SA) under diverse environments. The crop is grown in different seasons in a year with varying exposure to weather extremes, including high temperatures at critical growth stages which are expected to increase with climate change. This study assesses the impact of current and future heat stress on maize and the benefit of heat-tolerant varieties in SA. Annual mean maximum temperatures may increase by 1.4–1.8 °C in 2030 and 2.1–2.6 °C in 2050, with large monthly, seasonal, and spatial variations across SA. The extent of heat stressed areas in SA could increase by up to 12 % in 2030 and 21 % in 2050 relative to the baseline. The impact of heat stress and the benefit from heat-tolerant varieties vary with the level of temperature increase and planting season. At a regional scale, climate change would reduce rainfed maize yield by an average of 3.3–6.4 % in 2030 and 5.2–12.2 % in 2050 and irrigated yield by 3–8 % in 2030 and 5–14 % in 2050 if current varieties were grown under the future climate. Under projected climate, heat-tolerant varieties could minimize yield loss (relative to current maize varieties) by up to 36 and 93 % in 2030 and 33 and 86 % in 2050 under rainfed and irrigated conditions, respectively. Heat-tolerant maize varieties, therefore, have the potential to shield maize farmers from severe yield loss due to heat stress and help them adapt to climate change impacts.  相似文献   

9.
Weather variability poses numerous risks to agricultural communities, yet farmers may be able to reduce some of these risks by adapting their cropping practices to better suit changes in weather. However, not all farmers respond to weather variability in the same way. To better identify the causes and consequences of this heterogeneous decision-making, we develop a framework that identifies (1) which socio-economic and biophysical factors are associated with heterogeneous cropping decisions in response to weather variability and (2) which cropping strategies are the most adaptive, considering economic outcomes (e.g., yields and profits). This framework aims to understand how, why, and how effectively farmers adapt to current weather variability; these findings, in turn, may contribute to a more mechanistic and predictive understanding of individual-level adaptation to future climate variability and change. To illustrate this framework, we assessed how 779 farmers responded to delayed monsoon onset in fifteen villages in Gujarat, India during the 2011 growing season, when the monsoon onset was delayed by three weeks. We found that farmers adopted a variety of strategies to cope with delayed monsoon onset, including increasing irrigation use, switching to more drought-tolerant crops, and/or delaying sowing. We found that farmers’ access to and choice of strategies varied with their assets, irrigation access, perceptions of weather, and risk aversion. Richer farmers with more irrigation access used high levels of irrigation, and this strategy was associated with the highest yields in our survey sample. Poorer farmers with less secure access to irrigation were more likely to push back planting dates or switch crop type, and economic data suggest that these strategies were beneficial for those who did not have secure access to irrigation. Interestingly, after controlling for assets and irrigation access, we found that cognitive factors, such as beliefs that the monsoon onset date had changed over the last 20 years or risk aversion, were associated with increased adaptation. Our framework illustrates the importance of considering the complexity and heterogeneity of individual decision-making when conducting climate impact assessments or when developing policies to enhance the adaptive capacity of local communities to future climate variability and change.  相似文献   

10.
This study was undertaken to assess the potential impacts of climate change on agriculture in the Sikasso region of southern Mali, as part of an effort by the U.S. Agency for International Development (USAID) to integrate climate change adaptation considerations into their development projects. The region is considered to be the breadbasket of Mali, providing a substantial amount of the country’s food supplies as well as cotton for exchange earnings. The project had two components: modeling how climate change could affect production of cereal and cash crops in southern Mali; and conducting a stakeholder-driven vulnerability and adaptation assessment to identify potential options for addressing current and projected risks to agriculture from climate change. Projected changes in crop yields were based on a previous analysis that was extended for the purposes of this study. The projections suggested that the sensitivity of maize to changing weather conditions is relatively small (generally less than 10% change) under both dry and wet scenarios in 2030 and 2060. White (Irish) potatoes, the primary cash crop, are the most sensitive to changing weather conditions, with yields decreasing under both dry and wet conditions; yields could decrease by about 25% by 2060. Stakeholder workshops, field interviews, and an expert analysis were used to assess current and future climate-related vulnerability and to identify potential adaptation options. The main focus of the assessment was farmers in a village of about 3,000 people in the Sikasso region that practiced a rice-potato rotation system typical to the region. The farmers emphasized adaptation measures that require outside financial and technical assistance, for example installation of a water gate that would retain more water in the inland valley and increase the water table to flood rice fields during the rainy season and for furrow irrigation of potatoes during the dry season. Adaptations emphasized by both the farmers and representatives of regional technical services were crop diversification and germplasm improvement; soil and water management; access to equipment (plows, carts, oxen, and improved stoves); credit stockage villageois (CSV); and fertilizer.  相似文献   

11.
This paper provides one of the first empirical studies that examine the impact of climate change adaptation practices on technical efficiency (TE) among smallholder farmers in Nepal. An adaptation index is used to explore the impact of farmers’ adaptation on TE using the stochastic frontier analysis framework. Data for six districts of Nepal representing all three agro-ecological regions (terai, hill, and mountain) were collected from a focus group discussion, a stakeholder workshop and a household survey. The survey shows that about 91% of the farming households have adopted at least one practice to minimize the adverse impacts of climate change. Empirical results reveal that adaptation is an important factor explaining efficiency differentials among farming households. Those adopting a greater number of adaptation practices on a larger scale are, on average, found to be 13% more technically efficient than those adopting fewer practices on smaller scale. The empirical results also show that average TE is only 0.72, indicating that there are opportunities for farming households in Nepal to further improve productive efficiency, on average by 28%. Other important factors that explain variations in the productive efficiency across farming households include farmer’s education level, irrigation facilities, market access, and social capital such as farmer’s participations in relevant agricultural organizations and clubs. This study provides empirical evidence to policy makers that small scale adjustments made by farmers in response to climate change impacts are effective in improving farmers’ efficiency in agriculture production. This indicates a need for farmers’ involvement in climate change adaptation planning.  相似文献   

12.
Increasing frequency, intensity and duration of severe weather events are posing major challenges to global food security and livelihoods of rural people. Agriculture has evolved through adaptation to local circumstances for thousands of years. Local experience in responding to severe weather conditions, accumulated over generations and centuries, is valuable for developing adaptation options to current climate change. This study aimed to: (i) identify tree species that reduce vulnerability of cropping systems under climate variability; and (ii) develop a method for rapidly assessing vulnerability and exploring strategies of smallholder farmers in rural areas exposed to climate variability. Participatory Rural Appraisal methods in combination with Geographical Information Systems tools and statistical analysis of meteorological data were used to evaluate local vulnerability to climate change and to investigate local adaptation measures in two selected villages in Vietnam, one of the countries most vulnerable to climate change. The low predictability of severe weather events makes food crops, especially grain production, insecure. This study shows that while rice and rain-fed crops suffered over 40 % yield losses in years of extreme drought or flood, tree-based systems and cattle were less affected. 13 tree species performed well under the harsh local climate conditions in home and forest gardens to provide income, food, feed and other environmental benefits. Thus, this research suggests that maintenance and enhancement of locally evolved agroforestry systems, with high resilience and multiple benefits, can contribute to climate change adaptation.  相似文献   

13.
Scientific and technical information can increase the ability of policy makers to make strategic decisions. However, climate change policy is often formulated without significant input from science. We examine whether the availability and accessibility of information related to climate change is a major barrier for policy action on climate change adaptation for smallholder farmers. We also investigate whether scientific information related to climate change is available and used in policy making in Central America and Mexico. Our online survey of 105 decision makers indicated that a lack of scientific and technical information hinders policy makers from developing policies to help smallholder farmers adapt to climate change. Specific needs include information on the impacts of climate change on water availability for agriculture and the areas that are or will be prone to flooding, droughts or landslides. Information about the location of the farmers who are most vulnerable to climate change, the projected temperature and precipitation in agricultural areas and the expected impacts of climate change on crop yields or animal productivity, is also needed. Despite high interest in having scientific information guide policy making, many respondents indicated that policy makers rarely use this information in adaptation planning. In addition to ensuring that relevant information is available to inform policy making, technical and scientific information must be published in venues that are readily accessible for policy makers, easy to understand, and written in a format that is policy-relevant. It is also critical that scientific articles provide specific recommendations for achieving desired policy outcomes.  相似文献   

14.
Climate change will affect agricultural production by subsistence farms in crop centers of origin, where landraces are conserved in situ. Various strategies for adaptation to climate change have been proposed. In this paper we examine the prospects of what we call the ‘transgenic adaptation strategy’, i.e. the appeal to use transgenic seeds to adapt to climate change, through the lens of smallholder maize farming in Mexico. Landraces are the bedrock of maize production in Mexico. We consider how maize farmers may respond to climate change and the effects of those responses on crop diversity. In this paper, we argue that the promotion of the transgenic adaptation strategy is problematic for biological and social reasons. Smallholder livelihoods in southern Mexico could suffer a disproportionate negative impact if transgenic technology is privileged as a response to climate change. Agroecological and evolutionary approaches to addressing the effects of climate change on smallholder agriculture provides an alternative adaptive strategy.  相似文献   

15.
We assert that the simulation of fine-scale crop growth processes and agronomic adaptive management using coarse-scale climate change scenarios lower confidence in regional estimates of agronomic adaptive potential. Specifically, we ask: 1) are simulated yield responses tolow-resolution climate change, after adaptation (without and with increased atmospheric CO2), significantly different from simulated yield responses tohigh-resolution climate change, after adaptation (without and with increased atmospheric CO2)? and 2) does the scale of the soils information, in addition to the scale of the climate change information, affect yields after adaptation? Equilibrium (1 × CO2 versus 2 × CO2)climate changes are simulated at two different spatial resolutions in the Great Plains using the CSIRO general circulation model (low resolution) and the National Center for Atmospheric Research (NCAR) RegCM2 regional climate model (high resolution). The EPIC crop model is used to simulate the effects of these climate changes; adaptations in EPIC include earlier planting and switch to longer-season cultivars. Adapted yields (without and with additional carbon dioxide) are compared at the different spatial resolutions. Our findings with respect to question 1 suggest adaptation is more effective in most cases when simulated with a higher resolution climate change than its more generalized low resolution equivalent. We are not persuaded that the use of high resolution climate change information provides insights into the direct effects of higher atmospheric CO2 levels on crops beyond what can be obtained with low resolution information. However, this last finding may be partly an artifact of the agriculturally benign CSIRO and RegCM2 climate changes. With respect to question 2, we found that high resolution details of soil characteristics are particularly important to include in adaptation simulations in regions typified by soils with poor water holding capacity.  相似文献   

16.
Rancher and farmer perceptions of climate change in Nevada, USA   总被引:1,自引:1,他引:0  
Farming and ranching communities in arid lands are vulnerable to the adverse impacts of climate change. We surveyed Nevada ranchers and farmers (n?=?481) during 2009–2010 to assess climate change related knowledge, assumptions, and perceptions. The large majority of this group agreed that we are in a period of climate change; however, only 29 % of them believed that human activity is playing a significant role. Female ranchers and farmers hold more scientifically accurate knowledge about climate change than do their male counterparts, regardless of Democratic or Republican affiliation. Partisan affiliation, political ideology, and gender have strong impacts on climate change knowledge and perceptions. Republican, conservative and male rural residents view climate change as a low national priority, less important to themselves, and less harmful to their communities. Female ranchers and farmers are more concerned about the negative impacts of climate change. We found that only 4 % of our subjects (n?=?299) attribute local environment changes to climate change or global warming. The knowledge gained from this study will help researchers and natural resource managers understand how to best communicate about climate change with rural communities, and support policy makers in identifying potentially effective adaptation and mitigation policies and outreach programs.  相似文献   

17.
When is it time to adopt different technologies, management strategies, and resource use practices as underlying climate change occurs? We apply risk and decision analysis to test hypotheses about the timing and pace of adaption in response to different profiles of climate change and extremes expressed as yield and income variation for a simulated dryland wheat farm in the United States Great Plains. Climate scenarios include gradual change with typical or increased noise (standard deviation), rapid and large change, and gradual change with extreme events stepped through the simulation. We test decision strategies that might logically be utilized by farmers facing a climate trend that worsens crop enterprise outcomes. Adaptation quickens with the rate of change, especially for decision strategies based on performance thresholds, but is delayed by larger climate variability, especially for decision strategies based on recognizing growing differential between adaptive and non-adaptive performance. Extreme events evoke adaptation sooner than gradual change alone, and in some scenarios extremes evoke premature, inefficient, adaptation.  相似文献   

18.
Ghana and Côte d’Ivoire are the world’s leading cocoa (Thebroma cacao) producing countries; together they produce 53 % of the world’s cocoa. Cocoa contributes 7.5 % of the Gross Domestic Product (GDP) of Côte d’Ivoire and 3.4 % of that of Ghana and is an important cash crop for the rural population in the forest zones of these countries. If progressive climate change affected the climatic suitability for cocoa in West Africa, this would have implications for global cocoa output as well as the national economies and farmer livelihoods, with potential repercussions for forests and natural habitat as cocoa growing regions expand, shrink or shift. The objective of this paper is to present future climate scenarios for the main cocoa growing regions of Ghana and Côte d’Ivoire and to predict their impact on the relative suitability of these regions for growing cocoa. These analyses are intended to support the respective countries and supply chain actors in developing strategies for reducing the vulnerability of the cocoa sector to climate change. Based on the current distribution of cocoa growing areas and climate change predictions from 19 Global Circulation Models, we predict changes in relative climatic suitability for cocoa for 2050 using an adapted MAXENT model. According to the model, some current cocoa producing areas will become unsuitable (Lagunes and Sud-Comoe in Côte d’Ivoire) requiring crop change, while other areas will require adaptations in agronomic management, and in yet others the climatic suitability for growing cocoa will increase (Kwahu Plateu in Ghana and southwestern Côte d’Ivoire). We recommend the development of site-specific strategies to reduce the vulnerability of cocoa farmers and the sector to future climate change.  相似文献   

19.
Multiple cropping systems provide more harvest security for farmers, allow for crop intensification and furthermore influence ground cover, soil erosion, albedo, soil chemical properties, pest infestation and the carbon sequestration potential. We identify the traditional sequential cropping systems in ten sub-Saharan African countries from a survey dataset of more than 8600 households. We find that at least one sequential cropping system is traditionally used in 35% of all administrative units in the dataset, mainly including maize or groundnuts. We compare six different management scenarios and test their susceptibility as adaptation measure to climate change using the dynamic global vegetation model for managed land LPJmL. Aggregated mean crop yields in sub-Saharan Africa decrease by 6–24% due to climate change depending on the climate scenario and the management strategy. As an exception, some traditional sequential cropping systems in Kenya and South Africa gain by at least 25%. The crop yield decrease is typically weakest in sequential cropping systems and if farmers adapt the sowing date to changing climatic conditions. Crop calorific yields in single cropping systems only reach 40–55% of crop calorific yields obtained in sequential cropping systems at the end of the 21st century. The farmers’ choice of adequate crops, cropping systems and sowing dates can be an important adaptation strategy to climate change and these management options should be considered in climate change impact studies on agriculture.  相似文献   

20.
Assessment of the climate preparedness of 30 urban areas in the UK   总被引:1,自引:1,他引:0  
Cities are increasingly aware of the need to mitigate greenhouse gas emissions and adapt to changes in weather patterns leading to the production of urban climate change plans. The few existing systematic studies of these plans have focused on either adaptation or mitigation issues, and are typically based on surveys completed by city officials rather than analysis of documented evidence. To gain insight into the status of adaptation and mitigation action across the UK, climate change documents from 30 urban areas (representing ~28 % of the UK’s population) were analysed. An Urban Climate Change Preparedness Score, which could be applied to other urban areas outside the UK, has been devised for comparative analysis. This analysis characterizes progress against (i) Assessment, (ii) Planning, (iii) Action, and (iv) Monitoring, for both adaptation and mitigation. The Preparedness Score allows a quantitative comparison of climate change strategies across the urban areas analysed. This methodology can be transferred to other countries and makes an international comparison of urban areas and their climate change adaptation and mitigation plans possible. We found that all areas acknowledge climate change being a threat and that adaptation and mitigation planning and action is required. However, two urban areas did not have official adaptation or mitigation plans. Typically, mitigation activities across all cities were more advanced than adaptation plans. Emissions reduction targets ranged from 10 %–80 % with differing baselines, timeframes and scopes, for defining and meeting these targets. Similar variability was observed across adaptation plans. Several reasons for these differences are considered, but particularly notable is that a combination of incentives and regulation seem to stimulate more comprehensive strategies and action in many urban areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号