首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Accurate estimation of reference evapotranspiration (ET 0 ) is essential for the computation of crop water requirements, irrigation scheduling, and water resources management. In this context, having a battery of alternative local calibrated ET 0 estimation methods is of great interest for any irrigation advisory service. The development of irrigation advisory services will be a major breakthrough for West African agriculture. In the case of many West African countries, the high number of meteorological inputs required by the Penman-Monteith equation has been indicated as constraining. The present paper investigates for the first time in Ghana, the estimation ability of artificial intelligence-based models (Artificial Neural Networks (ANNs) and Gene Expression Programing (GEPs)), and ancillary/external approaches for modeling reference evapotranspiration (ET 0 ) using limited weather data. According to the results of this study, GEPs have emerged as a very interesting alternative for ET 0 estimation at all the locations of Ghana which have been evaluated in this study under different scenarios of meteorological data availability. The adoption of ancillary/external approaches has been also successful, moreover in the southern locations. The interesting results obtained in this study using GEPs and some ancillary approaches could be a reference for future studies about ET 0 estimation in West Africa.  相似文献   

2.
Atmospheric circulation epochs and climate changes   总被引:5,自引:0,他引:5  
The atmospheric circulation studies allow climate changes to be diagnosed and forecasted. Variations in occurrence frequencies of the atmospheric circulation forms W, E, and C (by the Vangengeim classification) and Z, M 1, and M 2 (by the Girs classification), which characterize climatic conditions in most of the Northern Hemisphere, are analyzed over a period of more than 100 years. It is shown that the occurrence frequency of the forms W, C, and M 1 continually decreased, while that of the forms E and Z increased, which indicates a significant change in atmospheric circulation in the Northern Hemisphere during the last century. The occurrence frequency of the forms C and Z demonstrates specific features at inter-decade time scales. Correlations are found between accumulated sums of anomalies of occurrence frequencies of the atmospheric circulation forms C, (W + E), Z, and (M 1 + M 2) and inter-decade variations of the Earth’s rotation. The causes of these relationships are discussed along with possibilities of their use for diagnosis of climatic variations in the Northern Hemisphere.  相似文献   

3.
This study reveals the impacts of climatic variable trends on drought severity in Xinjiang, China. Four drought indices, including the self-calibrating Palmer drought severity index (sc-PDSI), Erinç’s index (I m), Sahin’s index (I sh), and UNEP aridity index (AI), were used to compare drought severity. The ensemble empirical mode decomposition and the modified Mann-Kendall trend test were applied to analyze the nonlinear components and trends of the climatic variable and drought indices. Four and six climatic scenarios were generated in sc-PDSI, I m, I sh, and AI with different combinations of the observed and detrended climatic variables, respectively. In Xinjiang, generally increasing trends in minimal, average, and maximal air temperature (T min, T ave, T max) and precipitation (P) were found, whereas a decreasing trend in wind speed at 2 m height (U 2) was observed. There were significantly increasing trends in all of the four studied drought indices. Drought relief was more obvious in northern Xinjiang than in southern Xinjiang. The strong influences of increased P on drought relief and the weak influences of increased T min, T ave, and T max on drought aggravation were shown by comparing four drought indices under different climate scenarios. Decreased U 2 had a weak influence on drought, as shown by the AI in different climate scenarios. The weak influences of T and U 2 were considered to be masked by the strong influences of P on droughts. Droughts were expected to be more severe if P did not increase, but were likely milder without an increase in air temperature and with a decrease in U 2.  相似文献   

4.
Worldwide, the majority of rapidly growing neighborhoods are found in the Global South. They often exhibit different building construction and development patterns than the Global North, and urban climate research in many such neighborhoods has to date been sparse. This study presents local-scale observations of net radiation (Q * ) and sensible heat flux (Q H ) from a lightweight low-rise neighborhood in the desert climate of Andacollo, Chile, and compares observations with results from a process-based urban energy-balance model (TUF3D) and a local-scale empirical model (LUMPS) for a 14-day period in autumn 2009. This is a unique neighborhood-climate combination in the urban energy-balance literature, and results show good agreement between observations and models for Q * and Q H . The unmeasured latent heat flux (Q E ) is modeled with an updated version of TUF3D and two versions of LUMPS (a forward and inverse application). Both LUMPS implementations predict slightly higher Q E than TUF3D, which may indicate a bias in LUMPS parameters towards mid-latitude, non-desert climates. Overall, the energy balance is dominated by sensible and storage heat fluxes with mean daytime Bowen ratios of 2.57 (observed Q H /LUMPS Q E )–3.46 (TUF3D). Storage heat flux (ΔQ S ) is modeled with TUF3D, the empirical objective hysteresis model (OHM), and the inverse LUMPS implementation. Agreement between models is generally good; the OHM-predicted diurnal cycle deviates somewhat relative to the other two models, likely because OHM coefficients are not specified for the roof and wall construction materials found in this neighborhood. New facet-scale and local-scale OHM coefficients are developed based on modeled ΔQ S and observed Q * . Coefficients in the empirical models OHM and LUMPS are derived from observations in primarily non-desert climates in European/North American neighborhoods and must be updated as measurements in lightweight low-rise (and other) neighborhoods in various climates become available.  相似文献   

5.
A dynamic recycling model (DRM) with an analytical moisture trajectory tracking method, together with Japan Meteorological Agency 25-year reanalysis data, is used to study the regional precipitation recycling process across China, by calculating the regional recycling ratio (ρ r ) at the daily time scale during 1979–2010. The distribution of ρ r shows that, in western China, especially the Tibetan Plateau and its surrounding areas, precipitation is strongly dependent on the recycling process associated with regional evaporation. In Southeast China, however, the contribution from the recycling processes is much smaller due to the influence of the summer monsoon. A precipitation threshold value of about 4 mm/day is obtained from detailed analysis of both extreme and all-range ρ r years. According to this threshold, China is classified into three types of sub-regions: low-precipitation sub-regions (mainly in the northwest), high-precipitation sub-regions (mainly in the south), and medium-precipitation sub-regions (mainly in the northeast). It is found that ρ r correlates positively with precipitation, as well as convective precipitation (P CP) and large-scale precipitation (P LP) in the low-precipitation sub-regions. However, negative ρ r ?~?P LP correlations are found in the high-precipitation sub-regions and nonsignificant correlations exist in the medium-precipitation sub-regions. As P CP is mainly locally generated due to mid-latitude mesoscale systems and the cumulus parameterization used in producing the reanalysis, the recycling ratio positively correlates to the ratio P CP/P LP in almost all sub-regions, particularly in the Tibetan Plateau and its surrounding areas. The correlation between radiation flux and ρ r suggests more net radiation supports more evaporation and higher ρ r , especially in the high-precipitation sub-regions. The influence of clouds on shortwave radiation is crucial, since evaporation is suppressed when the amount of cloudiness increases, especially in the high-precipitation sub-regions. Together with the consideration of soil moisture, it can be inferred that limited soil moisture inhibits evaporation in the low-precipitation sub-regions, while the energy or radiation is the dominant factor controlling evaporation in the high-precipitation sub-regions.  相似文献   

6.
Long-term variation of rainfall erosivity in Calabria (Southern Italy)   总被引:1,自引:0,他引:1  
The changes in rainfall erosivity have been investigated using the rainfall erosivity factor (R) proposed for USLE by Wischmeier and Smith (R W-S ) and some simplified indexes (the Fournier index modified by Arnoldus, F, a regional index spatial independent, R Fr , and a regional index spatial dependent, R Fs ) estimated by indirect approaches. The analysis has been carried out over 48 rainfall stations located in Calabria (Southern Italy) using data collected in the period 1936–2012 and divided in three sub-periods. The series of the erosivity indexes and of some precipitation variables have been analyzed for evidence of trends using standard methods. The simplified indexes suggested a general underestimation of the rainfall erosivity with respect to R W-S . The mean underestimation ranged between 23 and 54 % for R Fr and from 10 to 15 % for R Fs . Both the sign and the magnitude of the trends were different for the different stations depending on the variable and sub-period considered. In general, the erosivity increased during the period 1936–1955 (1st sub-period) and during the more recent sub-period (1992–2012, 3rd sub-period), whereas it decreased during 1958–1977 (2nd sub-period). The evidence of trends was generally higher for R W-S than for R Fr and R Fs . Focusing on the most recent sub-period (3rd sub-period), all the variables analyzed showed mainly increasing trends but with different magnitude. More particularly, R W-S showed a mean increment of 29 %; F, R Fr and R Fs increased by 11, 15 and 18 %, respectively; the maximum intensity of 0.5-h precipitation increased by 5 %; and the annual precipitation increased by 22 %. Consequently, it remains difficult to define which precipitation variable plays the dominant role in the temporal variation of rainfall erosivity in the region. However, the overall results suggest that the indexes estimated by indirect procedures (F, R Fr , and R Fs ) should be used with caution for climate change analysis, despite they are used for practical purposes considering they are based on easily available information.  相似文献   

7.
The phenology of many ecological processes including pollination service is modulated by surface air temperature, making them potentially sensitive to climatic change. The Japanese hornfaced bee, Osmia cornifrons (Hymenoptera: Megachilidae), was introduced into the USA in the 1970s and has been used as a key pollinator of spring blooming fruit crops such as apple and blueberry. This study examined the effects of future climate change on three key phenological events of O. cornifrons: date for adult emergence (female and male) in spring, date for completion of egg and larval development, and duration for the development in the Eastern USA. We used daily temperature data obtained from 21 models in Coupled Model Intercomparison Project Phase 5 for 2006–2100 under the two future climate scenarios of Representative Concentration Pathways (RCPs 4.5 and 8.5). We estimated the Julian dates (JDs) of spring emergence and development of O. cornifrons using the phenological parameters derived from temperature-dependent biophysical models. The JDs for the bee emergence and development are projected to be significantly advanced in the Eastern USA under the RCP 4.5 and 8.5 scenarios. The number of days for bee development is projected to be longer in the southern region (+?0.57 days/decade) and shorter in the central (??0.27 days/decade) and northern (??0.65 days/decade) regions of the Eastern USA (all the p values <?0.01). The significantly longer duration of bee development under future climate change could pose a risk to the bee due to the longer period of being exposed to its pests. Implications for management of O. cornifrons population were discussed in this article.  相似文献   

8.
A possibility is studied of extending the range of action of the simple three-parameter formula (ITS-90 scale) proposed in the previous work of the author [2] for the dependence of saturation vapor pressure E on temperature T within the range of 250 to 490 K. The results demonstrated that the dependence ln[E(T)/E(T bas)] = (T - T bas)[A - B(T - T bas) + C(T - T bas)2]/T with four sets of coefficients A, B, and C obtained using one base temperature Tbas equal to the temperature of triple point of water T t = 273.16 K and two additional base values T bas2 = 473.16 K and T bas3 = 623.16 K makes it possible to approximate rather accurately the initial experimental and computed data in the temperature range from the point of homogeneous freezing of 235 K to the critical temperature of 647 K for liquid water and from 193 K to T t for ice. A procedure used for obtaining the inverse function T(E) by solving the third-degree algebraic equation is validated. A hypothesis is proposed for the physical substantiation of additional base points in the form of “a noticeable appearance of dimers at the point T bas2 and their 100% concentration at the temperature T bas3.”  相似文献   

9.
As photosynthetically active radiation (PAR) variability and PAR estimating methods play an important role in climate change and ecological process research, PAR variation trends and broadband global solar radiation (R s ) ratios (PAR/R s ) in the North China Plain (NCP) are examined using in situ PAR and R s observed data for 2005 to 2011. The annual average PAR value found in the NCP is 22.9 mol m?2 d?1. The highest and lowest values were recorded at Changwu and Luancheng sites, respectively. The highest PAR/R s value was found in Jiaozhouwan due to large water vapor volumes present in this area. PAR/R s levels have increased in the NCP due to a decrease in fine aerosols and increase in water vapor concentration. From these analysis results, a parameterization model that can be applied to all sky conditions was checked. Empirical estimation model comparisons for obtaining PAR values indicate that model was least accurate when R s was used independently. When the model included R s, the clearness index (K s) and the solar zenith angle, the model estimated PAR values with acceptable accuracy. A parameterization model was constructed by considering K s and attenuation factors of PAR under clear weather conditions (ρ clear). The improved parameterization model more accurately predicts values for local sites and for various observation sites.  相似文献   

10.
High temperature accompanied with high humidity may result in unbearable and oppressive weather. In this study, future changes of extreme high temperature and heat stress in mainland China are examined based on daily maximum temperature (Tx) and daily maximum wet-bulb globe temperature (Tw). Tw has integrated the effects of both temperature and humidity. Future climate projections are derived from the bias-corrected climate data of five general circulation models under the Representative Concentration Pathways (RCPs) 2.6 and 8.5 scenarios. Changes of hot days and heat waves in July and August in the future (particularly for 2020–50 and 2070–99), relative to the baseline period (1981–2010), are estimated and analyzed. The results show that the future Tx and Tw of entire China will increase by 1.5–5°C on average around 2085 under different RCPs. Future increases in Tx and Tw exhibit high spatial heterogeneity, ranging from 1.2 to 6°C across different regions and RCPs. By around 2085, the mean duration of heat waves will increase by 5 days per annum under RCP8.5. According to Tx, heat waves will mostly occur in Northwest and Southeast China, whereas based on Tw estimates, heat waves will mostly occur over Southeast China and the mean heat wave duration will be much longer than those from Tx. The total extreme hot days (Tx or Tw > 35°C) will increase by 10–30 days. Southeast China will experience the severest heat stress in the near future as extreme high temperature and heat waves will occur more often in this region, which is particularly true when heat waves are assessed based on Tw. In comparison to those purely temperature-based indices, the index Tw provides a new perspective for heat stress assessment in China.  相似文献   

11.
This study investigated the spatial–temporal patterns and trends of potential evapotranspiration (ET0) and aridity index (AI) over Southwest China during 1960–2013 based on daily temperature, precipitation, wind speed, sunshine duration, total solar radiation, and relative humidity data from 108 meteorological stations. The Penman–Monteith model, Mann–Kendall (M–K) test, moving t test, and Morlet wavelet method were used. The results indicated that ET0 and AI across the region displayed decreasing trends, but the former was significant. After 2000, regionally average trends in ET0 and AI increased rapidly, indicating that droughts increased over Southwest China in recent years. Spatially, the changes of ET0 and AI were dissimilar and not clustered, either. Temporally, both ET0 and AI displayed obvious abrupt change points over different timescales and that of AI was during the winter monsoon period. Significant periodic variations with periods of 27, 13, and 5 years were found in ET0, but only of 13 and 5 years existed in AI. Correlation analysis revealed that the sunshine duration and wind speed were the dominant factors affecting ET0 and that AI showed strong negative correlation with precipitation. The findings of this study enhance the understanding of the relationship between climate change and drought in Southwest China, while the mechanism controlling the variation in drought requires further study.  相似文献   

12.
Urbanization has led to a significant urban heat island (UHI) effect in Beijing in recent years. At the same time, air pollution caused by a large number of fine particles significantly influences the atmospheric environment, urban climate, and human health. The distribution of fine particulate matter (PM2.5) concentration and its relationship with the UHI effect in the Beijing area are analyzed based on station-observed hourly data from 2012 to 2016. We conclude that, (1) in the last five years, the surface concentrations of PM2.5 averaged for urban and rural sites in and around Beijing are 63.2 and 40.7 µg m?3, respectively, with significant differences between urban and rural sites (ΔPM2.5) at the seasonal, monthly and daily scales observed; (2) there is a large correlation between ΔPM2.5 and the UHI intensity defined as the differences in the mean (ΔTave), minimum (ΔTmin), and maximum (ΔTmax) temperatures between urban and rural sites. The correlation between ΔPM2.5 and ΔTminTmax) is the highest (lowest); (3) a Granger causality analysis further shows that ΔPM2.5 and ΔTmin are most correlated for a lag of 1–2 days, while the correlation between ΔPM2.5 and ΔTave is lower; there is no causal relationship between ΔPM2.5 and ΔTmax; (4) a case analysis shows that downwards shortwave radiation at the surface decreases with an increase in PM2.5 concentration, leading to a weaker UHI intensity during the daytime. During the night, the outgoing longwave radiation from the surface decreases due to the presence of daytime pollutants, the net effect of which is a slower cooling rate during the night in cities than in the suburbs, leading to a larger ΔTmin.  相似文献   

13.
The temporal variability of the total atmospheric water content W and the connection of the coefficient of integral transparency P 2, reduced to the air mass m = 2, with W and aerosol optical depth τ a 0 at a wavelength of 550 nm were analyzed and studied from the observational data of the Meteorological Observatory of Moscow State University for 50 years (1955–2004). The regression equations between mean daily and monthly τ a 0 and τ2 = ?ln P 2 were derived in different months and seasons and can be used for retrieving τ a 0 from the coefficient of the integral transparency for the temperate latitudes. The P 2 intervals are given for which these equations can be used.  相似文献   

14.
Assessing disease risk has become an important component in the development of climate change adaptation strategies. Here, the infection ability of leaf blast (Magnaporthe oryzae) was modeled based on the epidemiological parameters of minimum (T min), optimum (T opt), and maximum (T max) temperatures for sporulation and lesion development. An infection ability response curve was used to assess the impact of rising temperature on the disease. The simulated spatial pattern of the infection ability index (IAI) corresponded with observed leaf blast occurrence in Indo-Gangetic plains (IGP). The IAI for leaf blast is projected to increase during the winter season (December–March) in 2020 (2010–2039) and 2050 (2040–2069) climate scenarios due to temperature rise, particularly in lower latitudes. However, during monsoon season (July–October), the IAI is projected to remain unchanged or even reduce across the IGP. The results show that the response curve may be successfully used to assess the impact of climate change on leaf blast in rice. The model could be further extended with a crop model to assess yield loss.  相似文献   

15.
The relationship between the radar reflectivity factor (Z) and the rainfall rate (R) is recalculated based on radar observations from 10 Doppler radars and hourly rainfall measurements at 6529 automatic weather stations over the Yangtze–Huaihe River basin. The data were collected by the National 973 Project from June to July 2013 for severe convective weather events. The ZR relationship is combined with an empirical qrR relationship to obtain a new Zqr relationship, which is then used to correct the observational operator for radar reflectivity in the three-dimensional variational (3DVar) data assimilation system of the Weather Research and Forecasting (WRF) model to improve the analysis and prediction of severe convective weather over the Yangtze–Huaihe River basin. The performance of the corrected reflectivity operator used in the WRF 3DVar data assimilation system is tested with a heavy rain event that occurred over Jiangsu and Anhui provinces and the surrounding regions on 23 June 2013. It is noted that the observations for this event are not included in the calculation of the Z–R relationship. Three experiments are conducted with the WRF model and its 3DVar system, including a control run without the assimilation of reflectivity data and two assimilation experiments with the original and corrected reflectivity operators. The experimental results show that the assimilation of radar reflectivity data has a positive impact on the rainfall forecast within a few hours with either the original or corrected reflectivity operators, but the corrected reflectivity operator achieves a better performance on the rainfall forecast than the original operator. The corrected reflectivity operator extends the effective time of radar data assimilation for the prediction of strong reflectivity. The physical variables analyzed with the corrected reflectivity operator present more reasonable mesoscale structures than those obtained with the original reflectivity operator. This suggests that the new statistical ZR relationship is more suitable for predicting severe convective weather over the Yangtze–Huaihe River basin than the ZR relationships currently in use.  相似文献   

16.
Hygroscopicity measurements of secondary organic aerosol (SOA) particles often show inconsistent results between the supersaturated and subsaturated regimes, with higher activity as cloud condensation nucleus (CCN) than indicated by hygroscopic growth. In this study, we have investigated the discrepancy between the two regimes in the Lund University (LU) smog chamber. Various anthropogenic SOA were produced from mixtures of different precursors: anthropogenic light aromatic precursors (toluene and m-xylene), exhaust from a diesel passenger vehicle spiked with the light aromatic precursors, and exhaust from two different gasoline-powered passenger vehicles. Three types of seed particles were used: soot aggregates from a diesel vehicle, soot aggregates from a flame soot generator and ammonium sulphate (AS) particles. The hygroscopicity of seed particles with condensed, photochemically produced, anthropogenic SOA was investigated with respect to critical supersaturation (sc) and hygroscopic growth factor (gf) at 90% relative humidity. The hygroscopicity parameter κ was calculated for the two regimes: κsc and κgf, from measurements of sc and gf, respectively. The two κ showed significant discrepancies, with a κgf /κsc ratio closest to one for the gasoline experiments with ammonium sulphate seed and lower for the soot seed experiments. Empirical observations of sc and gf were compared to theoretical predictions, using modified Köhler theory where water solubility limitations were taken into account. The results indicate that the inconsistency between measurements in the subsaturated and supersaturated regimes may be explained by part of the organic material in the particles produced from anthropogenic precursors having a limited solubility in water.  相似文献   

17.
We identify and remove the main natural perturbations (e.g. volcanic activity, ENSOs) from the global mean lower tropospheric temperatures (T LT ) over January 1979 - June 2017 to estimate the underlying, potentially human-forced trend. The unaltered value is +0.155 K dec?1 while the adjusted trend is +0.096 K dec?1, related primarily to the removal of volcanic cooling in the early part of the record. This is essentially the same value we determined in 1994 (+0.09 K dec?1, Christy and McNider, 1994) using only 15 years of data. If the warming rate of +0.096 K dec?1 represents the net T LT response to increasing greenhouse radiative forcings, this implies that the T LT tropospheric transient climate response (ΔT LT at the time CO2 doubles) is +1.10 ± 0.26 K which is about half of the average of the IPCC AR5 climate models of 2.31 ± 0.20 K. Assuming that the net remaining unknown internal and external natural forcing over this period is near zero, the mismatch since 1979 between observations and CMIP-5 model values suggests that excessive sensitivity to enhanced radiative forcing in the models can be appreciable. The tropical region is mainly responsible for this discrepancy suggesting processes that are the likely sources of the extra sensitivity are (a) the parameterized hydrology of the deep atmosphere, (b) the parameterized heat-partitioning at the oceanatmosphere interface and/or (c) unknown natural variations.  相似文献   

18.
Although Brazil is predominantly a tropical country, frosts are observed with relative high frequency in the Center-Southern states of the country, affecting mainly agriculture, forestry, and human activities. Therefore, information about the frost climatology is of high importance for planning of these activities. Based on that, the aims of the present study were to develop monthly meteorological (F MET) and agronomic (F AGR) frost day models, based on minimum shelter air temperature (T MN), in order to characterize the temporal and spatial frost days variability in Center-Southern Brazil. Daily minimum air temperature data from 244 weather stations distributed across the study area were used, being 195 for developing the models and 49 for validating them. Multivariate regression models were obtained to estimate the monthly T MN, once the frost day models were based on this variable. All T MN regression models were statistically significant (p < 0.001), presenting adjusted R 2 between 0.69 and 0.90. Center-Southern Brazil is mainly hit by frosts from mid-fall (April) to mid-spring (October). The period from November to March is considered as frost-free, being very rare a frost day within that period. Monthly F MET and F AGR presented significant sigmoidal relationships with T MN (p < 0.0001), with adjusted R 2 above of 0.82. The residuals of the frost day models were random, which means that the sigmoidal models performed quite well for interpreting the frost day variability throughout the study area. The highlands of Santa Catarina, Rio Grande do Sul, São Paulo, and Minas Gerais had in average more than 25 and 13 frosts per year, respectively, for F MET and F AGR. The F MET and F AGR maps developed in this study for Center-Southern Brazil is a useful tool for farmers, foresters, and researchers, since they contribute to reduce frost spatial and temporal uncertainty, helping in planning project for strategic purposes. Furthermore, the monthly F MET and F AGR maps for this Brazilian region are the first zoning of these variables for the country.  相似文献   

19.
In this paper, diurnal variations of the vertical gradient of the atmosphere refraction index in the lower 300-m layer are computed and analysed in detail for a vast territory of Eastern Siberia and Far East of Russia by using 10-year observation data obtained at 32 aerological stations. In particular, it was found out that diurnal variation of the gradient is more diverse in summer and less diverse in fall. In the most north-easterly regions, unlike other climate zones where maximum gradient changes occur in summer and in winter, the greatest diurnal fluctuations of g n are observed in spring. In the studied region, amplitudes of diurnal variations of g n are significant and quite comparable with those of inter-seasonal oscillations of g n .  相似文献   

20.
Season- and stability-dependent turbulence intensity (σ u /u *, σ v /u *, σ w /u *) relationships are derived from experimental turbulence measurements following surface layer scaling and local stability at the tropical coastal site Kalpakkam, India for atmospheric dispersion parameterization. Turbulence wind components (u′, v′, w′) measured with fast response UltraSonic Anemometers during an intense observation campaign for wind field modeling called Round Robin Exercise are used to formulate the flux–profile relationships using surface layer similarity theory and Fast Fourier Transform technique. The new relationships (modified Hanna scheme) are incorporated in a Lagrangian Particle Dispersion model FLEXPART-WRF and tested by conducting simulations for a field tracer dispersion experiment at Kalpakkam. Plume dispersion analysis of a ground level hypothetical release indicated that the new turbulent intensity formulations provide slightly higher diffusivity across the plume relative to the original Hanna scheme. The new formulations for σ u , σ v , σ w are found to give better agreement with observed turbulent intensities during both stable and unstable conditions under various seasonal meteorological conditions. The simulated concentrations using the two methods are compared with those obtained from a classical Gaussian model and the observed SF6 concentration. It has been found that the new relationships provide comparatively higher diffusion across the plume relative to the model default Hanna scheme and provide downwind concentration results in better agreement with observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号