共查询到10条相似文献,搜索用时 15 毫秒
1.
The introduction of vegetation to bare barchan dunes can result in a morphological transformation to vegetated parabolic dunes. Models can mimic this planform inversion, but little is known about the specific processes and mechanisms responsible. Here we outline a minimalist, quantitative, and process‐based hypothesis to explain the barchan–parabolic transformation. The process is described in terms of variations in the stabilization of wind‐parallel cross‐sectional dune slices. We hypothesize that stabilization of individual ‘dune slices’ is the predictable result of feedbacks initiated from colonization of vegetation on the slipface, which can only occur when slipface deposition rates are less than the deposition tolerance of vegetation. Under a constant vegetation growth regime the transformation of a barchan dune into a parabolic dune is a geometric response to spanwise gradients in deposition rates. Initial vegetation colonization of barchan horns causes shear between the anchored sides and the advancing centre of the dune, which rotates the planform brinkline angle from concave‐ to convex‐downwind. This reduces slipface deposition rate and allows vegetation to expand inward from the arms to the dune centre. The planform inversion of bare barchans dunes into vegetated parabolic dunes ultimately leads to complete stabilization. Our hypothesis raises several important questions for future study: (i) are parabolic dunes transitional landforms between active and vegetation‐stabilized dune states? (ii) should stabilization modelling of parabolic dune fields be treated differently than linear dunes? and (iii) are stabilized parabolic dune fields ‘armoured’ against re‐activation? Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
2.
The spatial–temporal variations of a dune system can be determined by using diverse ‘geomatic’ methodologies: geodesy, global positioning system (GPS) and photogrammetry. In the case of the Liencres dune system, a study will be carried out using the ‘close‐range’ photogrammetry technique and the topography technique (total station and GPS). In order to determine the dynamic of the dune system it is necessary to repeat the process of study after a specific interval of time. For this reason, three dimensional data should be available in two different time periods, between which the displacement of the object of analysis (the front portion of the dune) will be significant enough to evaluate its magnitude. This work analyses the viability of photogrammetry for the determination of the spatial–temporal changes of a coastal parabolic dune. Two factors have been analysed: first, the comparison of the photogrammetric results with the results obtained from topographic methods (total station and GPS), and second, the quantification of the displacement of the dune system. The analysis of the correspondence between the movement of different parts of the dune and the influence of the intensity and direction of the prevailing wind in the area is also desired. The dune advanced 12·15 ± 0·06 m (an average of 8·5 m/yr), and the partial implications for the dynamic of human modified processes on the natural park have been established. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
3.
The evolution of barchan-to-parabolic dunes can be driven by vegetation establishment, which may be linked to climate change and/or human activity. However, little is known of the impact of changes in wind strength on vegetation development and the resulting impacts on the evolution of dune morphology and sedimentological characteristics. To address this issue, we studied the morphology and grain-size characteristics of barchan, barchan-to-parabolic and parabolic dunes in the Mu Us Desert in north China, which was combined with an analysis of changes in normalized difference vegetation index (NDVI) and climatic variables during 1982–2018. The results reveal a trend of increasing growing-season NDVI which was related to a significant decrease in drift potential (DP). Therefore, we suggest that the initiation of dune transformation was caused by the reduced wind strength which favored the establishment and development of vegetation. To reveal the response of sedimentological reorganization during the processes of dune transformation, grain-size characteristics along the longitudinal profile of the three different types of dunes were examined. The decreasing wind strength led to the transport of fine sands on the upper part of the windward face of the dunes, resulting in a progressive coarsening of the grain-size distribution (GSD) and a reduction in dune height at the crest area. No distinct trend in sorting and mean grain-size was observed on the windward slope of the barchan-to-parabolic dune, indicating that the sand in transit had little influence on the GSD. Conversely, progressive sorting and coarsening of the sand occurred towards the crest of the parabolic dune. This indicates that vegetation development limited the transport of sand from upwind of the dune, and affected a shift in the dune source material to the underlying source deposits, or to reworked pre-existing aeolian deposits, and resulted in the trapping of sand in the crest area. © 2020 John Wiley & Sons, Ltd. 相似文献
4.
The shape and migration speed of a proto‐dune are mathematically discussed. The migration speed of a low dune is shown to be inversely proportional to its wind‐directional length. Proto‐dunes, whose wind‐directional lengths are about 10 m, are expected to migrate at finite speeds. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
5.
Cross‐sectional profiles of sand ripples, megaripples, and sand dunes provide a useful tool for discriminating between formation by ripple and dune processes. Feature width, defined as the basal break in slope along the profile to either side of the crest, represents a good standard for comparison of profile attributes across more than three orders of magnitude. Aspect ratio (height/width) as a function of log width separates measurements into clusters representing differing mechanisms of formation. Scaling both height and distance for individual profiles by feature width facilitates comparison of profile shapes across three orders of magnitude in width. The data presented here should prove useful for evaluating possible mechanisms of origin for aeolian features observed remotely, including on planetary bodies. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
6.
J. Rutin 《地球表面变化过程与地形》1992,17(1):85-94
A study of the erosion rate and the stability of sandy slopes was conducted on an eastern arm of a parabolic coastal sand dune, De Blink, central Netherlands. The contribution of rabbits to these processes was found to depend on two types of activity; the building of caves and sand mounds of up to 1·5 m2 in area; and the digging of shallow burrows, whereby amounts of sand up to 1 kg per burrow were excavated. The burrowing activity was found over the whole dune, while cave holes were dug mainly on the northern slope. The total amount of sand actually transported on the dune due to this activity is not clear yet, but their influence on the development of stepped slopes is well established. 相似文献
7.
We herein report the results of a ?eld study that was designed to test the feasibility of using ground‐based LIDAR to map the topography of a sand dune in high spatial resolution. A portable Cyrax 2500 three‐dimensional (3D) laser scanner was used to digitally capture the topography of a barchan, roughly 4 m tall and 50 m long, located in the White Sands National Monument, New Mexico. We performed eleven scans around the barchan and obtained the elevation relative to the inter‐dune ?at at roughly 1/4 million points on the dune surface. The elevation point data were then interpolated to yield a continuous surface model of the dune topography with c. 10 cm spatial resolution and c. 6 mm position accuracy. The results from this ?eld study clearly demonstrate the potential of ground‐based LIDAR as a mapping tool for use in aeolian research and other earth science applications. The 3D surface model of the dune can describe the morphology with hitherto unprecedented detail. Moreover, the surface of the dune is mapped with a minimum of foot traf?c on the dune itself. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
8.
9.
Modeling the effects of pulsed versus chronic sand inputs on salmonid spawning habitat in a low‐gradient gravel‐bed river 下载免费PDF全文
Oscar Maturana Daniele Tonina James A. McKean John M. Buffington Charles H. Luce Diego Caamaño 《地球表面变化过程与地形》2014,39(7):877-889
It is widely recognized that high supplies of fine sediment, largely sand, can negatively impact the aquatic habitat quality of gravel‐bed rivers, but effects of the style of input (chronic vs. pulsed) have not been examined quantitatively. We hypothesize that a continuous (i.e. chronic) supply of sand will be more detrimental to the quality of aquatic habitat than an instantaneous sand pulse equal to the integrated volume of the chronic supply. We investigate this issue by applying a two‐dimensional numerical model to a 1 km long reach of prime salmonid spawning habitat in central Idaho. Results show that in both supply scenarios, sand moves through the study reach as bed load, and that both the movement and depth of sand on the streambed mirrors the hydrograph of this snowmelt‐dominated river. Predictions indicate greater and more persistent mortality of salmonid embryos under chronic supplies than pulse inputs, supporting our hypothesis. However, predicted mortality varies both with salmonid species and location of spawning. We found that the greatest impacts occur closer to the location of the sand input under both supply scenarios. Results also suggest that reach‐scale morphology may modulate the impact of sand loads, and that under conditions of high sand loading climate‐related increases in flow magnitude could increase embryo mortality through sand deposition, rather than streambed scour. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
10.
Hitoshi Hasegawa Suvapak Imsamut Punya Charusiri Ryuji Tada Yu Horiuchi Ken‐Ichiro Hisada 《Island Arc》2010,19(4):605-621
The Tibetan Plateau is a key factor in controlling the present‐day climate and atmospheric circulation pattern in Asia. The pattern of atmospheric circulation after the uplift of the plateau is well known, whereas direct evidence is lacking regarding the nature of the circulation pattern prior to the uplift. The distribution of desert directly reflects the position of the subtropical high‐pressure belt, and the prevailing surface‐wind pattern recorded in desert deposits reveals the position of its divergence axis. Cretaceous eolian sandstone of the Phu Thok Formation is extensively exposed in the northern Khorat Basin, northeastern Thailand. We conducted a sedimentological study on this formation to reconstruct temporal changes in the latitude of the subtropical high‐pressure belt in low‐latitude Asia during the Cretaceous. Spatio‐temporal changes in the paleo‐wind directions recorded in the Phu Thok Formation reveal that the Khorat Basin mainly belonged to the northeast trade wind belt and subtropical high‐pressure belt was situated to the north of the Khorat Basin during the initial stages of deposition, shifted southward to immediately above the basin during the main phase of deposition, and then shifted northward again to the north of the basin during the final stages of deposition. The paleomagnetic polarity sequence obtained for the Phu Thok Formation comprises three zones of normal polarity and two of reversed polarity, correlating to chrons M1n to C34n of the geomagnetic polarity time scale. This result suggests that the Phu Thok Formation is mid‐Cretaceous in age (from c. 126 Ma to c. 99–93 Ma), similar to the age of eolian sandstone in the Sichuan Basin, southern China (the Jiaguan Formation). These results, in combination with paleo‐wind direction data, suggest the development of low‐latitude desert and an equatorward shift of the subtropical high‐pressure belt (relative to the present‐day) in Asia during the mid‐Cretaceous. 相似文献