首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Storage tanks are vulnerable to earthquakes, as numerous major earthquakes have demonstrated. The trend of recent revisions to make seismic design criteria for large‐scale industrial storage tanks increasingly stringent has made development of cost‐effective earthquake‐resistant design and retrofit techniques for industrial tanks imperative. This study assesses the feasibility of seismic base isolation for making liquid‐filled storage tanks earthquake resistant. The sliding‐type friction pendulum seismic (FPS) bearings are considered rather than the elastomeric bearings because the dynamic characteristics of an FPS‐isolated tank remain unchanged regardless of the storage level. This work has devised a hybrid structural‐hydrodynamic model and solution algorithm, which would permit simple, accurate and efficient assessment of the seismic response of rigid cylindrical storage tanks in the context of seismic isolation. Extensive numerical simulations confirm the effectiveness of seismic base isolation of rigid cylindrical tanks using FPS bearings. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
An advanced analytical model for high damping rubber bearings   总被引:1,自引:0,他引:1  
Base‐isolation technologies have been developed over the years in attempts to mitigate the effects of earthquakes on structures and potentially vulnerable contents in earthquake prone areas of the world. The high damping rubber bearing (HDRB) is a relatively recent and evolving technology of this kind. The isolator shifts the fundamental period of the base‐isolated structure to a value beyond the range of the plentiful energy‐containing periods of earthquake motions and supplies significant damping to dissipate energy caused by motions. Nevertheless, the highly non‐linear mechanical behaviour of the HDRB is so complex, especially at large strains, that it is difficult to model it analytically. In this paper, an extensive study of experimental tests for identifying the mechanical characteristics of the HDRB is presented. By modifying the Wen's model to include the rate‐dependent effects, an advanced analytical model in an incremental form for the HDRB is also proposed. A very good agreement between the analytical and experimental results has been obtained. It is illustrated that the proposed mathematical model can predict well the mechanical behaviour of HDRB bearings, even at large shear strain. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
The isolation systems are usually made of rubber bearings that are sometimes coupled in hybrid combination with frictional devices; this is the case of an in-site experimental campaign, performed on a base isolated apartment building in Rapolla (south of Italy). Several dropout tests at initial displacements up to 17cm allowed to obtain in-site information on the true dynamic response of the isolation system (building and isolators). The tests carried out allow a comparison between the free vibration responses of a building, isolated by using a 28 HDRB isolation system only, or an HDRB-Friction Sliders Hybrid one. The paper highlights the main differences of the response in the superstructure (the structure over the isolation system) obtained by using only HDRB isolation system, or the Hybrid one (HDRB and Friction Sliders in parallel system). Analysis and comparisons of experimental data, show the influence of nonlinearities on structural higher modes amplification, especially observed by using the higher nonlinear Hybrid isolation system. Tests results confirm that, in the case of a regular superstructure, like the Rapolla building, the isolation system nonlinearities influence the structural response.  相似文献   

4.
A full‐scale 5‐story steel moment frame building was subjected to a series of earthquake excitations using the E‐Defense shake table in August, 2011. For one of the test configurations, the building was seismically isolated by a hybrid system of lead‐rubber bearings and low friction roller bearings known as cross‐linear bearings, and was designed for a very rare 100 000‐year return period earthquake at a Central and Eastern US soil site. The building was subject to 15 trials including sinusoidal input, recorded motions and simulated earthquakes, 2D and 3D input, and a range of intensities including some beyond the design basis level. The experimental program was one of the first system‐level full‐scale validations of seismic isolation and the first known full‐scale experiment of a hybrid isolation system incorporating lead‐rubber and low friction bearings. Stable response of the hybrid isolation system was demonstrated at displacement demands up to 550 mm and shear strain in excess of 200%. Torsional amplifications were within the new factor stipulated by the code provisions. Axial force was observed to transfer from the lead‐rubber bearings to the cross‐linear bearings at large displacements, and the force transfer at large displacements exceeded that predicted by basic calculations. The force transfer occurred primarily because of the flexural rigidity of the base diaphragm and the larger vertical stiffness of the cross‐linear bearings relative to the lead‐rubber bearings.  相似文献   

5.
In many applications of seismic isolation, such as in high‐rise construction, lightweight construction, and structures with large height‐to‐width aspect ratios, significant tension forces can develop in bearings, raising concerns about the possible rupture of elastomeric bearings and the uplift of sliding bearings. In this paper, a novel tension‐resistant lead plug rubber bearing (TLRB) with improved tension‐resisting capabilities is developed and experimentally and numerically assessed. This TLRB consists of a common lead plug rubber bearing (LRB) and several helical springs. After describing the theory underlying the behavior of the TLRB, the mechanical properties of reduced‐scale prototype bearings are investigated through extensive horizontal and vertical loading tests. The test results indicate that TLRBs can improve the shear stiffness and tension resistance capacity even under significant tensile loads. A series of shaking table tests on scaled models of high‐rise buildings with different aspect ratios were conducted to investigate the dynamic performance of the TLRB and the seismic responses of base‐isolated high‐rise buildings. Three different cases were considered in the shaking table tests: a fixed base condition and the use of TLRB and LRB isolation systems. The results of the shaking table test show that (a) base‐isolated systems are effective in reducing the structural responses of high‐rise buildings; (b) an isolated structure's aspect ratio is an important factor influencing its dynamic response; (c) TLRBs can endure large tensile stresses and avoid rupture on rubber bearings under strong earthquakes; and (d) the experimental and numerical results of the responses of the models show good agreement. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
The dynamic analysis of sliding structures is complicated due to the presence of friction. Synchronization of the kinematics of all the isolation bearings is often granted to simplify the task. This, however, may lead to inaccurate prediction of the structural responses under certain circumstances. Stepped structures or continuous bridges with seismic isolation are notable examples where unsynchronized bearing motions are expected. In this paper, a logically simple and numerically efficient procedure is proposed to solve the dynamic problem of sliding systems with unsynchronized support motions. The motion equations for the sliding and non‐sliding modes of the isolated structure are unified into a single equation that is represented as a difference equation in a discrete‐time state‐space form and the base shear forces between the sliding interfaces can be determined through simple matrix algebraic analysis. The responses of the sliding structure can be obtained recursively from the discrete‐time version of the motion equation with constant integration time step even during the transitions between the non‐sliding and sliding phases. Therefore, both accuracy and efficiency in the dynamic analysis of the highly non‐linear system can be enhanced to a large extent. Rigorous assessment of seismic structures with unsynchronized support motions has been carried out for both a stepped structure and a continuous bridge. Effectiveness of friction pendulum bearings for earthquake protection of such structures has been verified. Moreover, evident unsynchronized sliding motions of the friction bearings have been observed, confirming the necessity to deal with each of the bearings independently in the analytical model. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
While isolation can provide significantly enhanced performance compared to fixed‐base counter parts in design level or even maximum considered level earthquakes, there is still uncertainty over the performance of isolation systems in extreme events. Researchers have looked at component level stability of rubber bearings and on the effect of moat impact on behavior of structures isolated on general bilinear isolators. However, testing of triple friction pendulum (TFP) sliding bearings has not been done dynamically or incorporated into a building system. Here, one‐third scale laboratory tests were conducted to on a 2‐story 2‐bay TFP‐isolated structure. Input motions were increasingly scaled until failure occurred at the isolation level. As the superstructure was designed with a yield force equivalent to the force of the bearing just at their ultimate displacement capacity, there was minimal yielding. A numerical model is presented to simulate the isolated building up to and including bearing failure. Forces transferred to the superstructure in extreme motions are examined using both experimental and numerical data. Additionally, the effect of the hardening stage of the TFP bearing is evaluated using the numerical model, finding slight benefits.  相似文献   

8.
An experimental investigation on a base isolation system incorporating stainless steel–Teflon bearings as sliders, and pressurized fluid viscous spring dampers, is presented in this paper. In the system examined, dampers are connected to the base floor of an isolated building to provide the desired passive control of response in the superstructure, as well as to guarantee that it re‐centres completely after the termination of a seismic action. Two types of experiments were conducted: sinusoidal and random cyclic tests, and a pseudodynamic test in ‘substructured’ configuration. The cyclic tests were aimed at characterizing what follows: the hysteretic and strain‐rate‐dependent response of the considered highly non‐linear spring dampers; the normal pressure‐ and strain‐rate‐dependent frictional behaviour of steel–Teflon bearings, manufactured in compliance with the latest standards for this class of sliders; and the combined response of their assembly. The pseudodynamic test simulated the installation of the protection system at the base of a 2:3‐scale three‐storey steel frame structure, already tested in unprotected conditions by an earlier experimental campaign. Among other findings, the results of the performed tests, as well as of relevant mechanical interpretation and numerical simulation analyses, confirmed the linear additive combination of the dissipative actions of spring dampers and sliders in this mixed installation, and the high protective performance of the considered base isolation/supplemental damping system in a realistic earthquake simulation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, the effectiveness of the base isolation on steel storage tanks has been investigated through numerical models and then checked by shaking table tests on a reduced scale (1:14) model of a real steel tank, typically used in petrochemical plants. In the experimental campaign the floating roof has also been taken into account. The tests have been performed on the physical model both in fixed and isolated base configurations; in particular two alternative base isolation systems have been used: high‐damping rubber bearings devices and sliding isolators with elasto‐plastic dampers. Finally, a comparison between experimental and numerical results has also been performed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
摩擦摆基础隔震结构双向地震反应分析   总被引:6,自引:0,他引:6  
采用双向耦合力学模型模拟摩擦摆支座的双向耦合效应,对摩擦摆基础隔震结构进行了单向和双向地震反应对比分忻,分析表明在双向地震作用下结构各层的加速度反应较小,隔震层的层间位移较大,而上部结构的层间位移较小,并且在双向地震作用下,支座的最大位移明显大于单向地震作用时的支座最大位移,因而应考虑双向地震作用对摩擦摆基础隔震结构地震反应和隔震支座性能的影响。  相似文献   

11.
A modal procedure for non-linear analysis of multistorey structures with high-damping base-isolation systems was proposed. Two different isolation devices were considered in the analysis: an high-damping laminated rubber bearing and a lead-rubber bearing. Starting from deformational properties verified by tests, the isolation systems were characterized using three different analytical models (an Elastic Viscous, a Bilinear Hysteretic and a Wen's Model) with parameters depending from maximum lateral strain. After non-linear modelling of isolation and lateral-force-resisting systems, the effects of material non-linearities were considered as pseudo-forces applied to the equivalent linear system (Pseudo-Force Method) and the formally linearized equations of motion were uncoupled by the transformation defined by the complex mode shapes. The modal responses were finally obtained with an extension of Nigam–Jennings technique to non-linear and non-classically damped systems, in conjunction with an iterative technique searching for non-linear contributions satisfying equations of motion and constitutive laws. Since the properties of the isolated structure usually change with maximun lateral strain of isolation bearings, the integration of a new set of governing equations was required for each design-displacement value. The procedure proposed was described in detail and then applied for the determination of modal and total seismic responses in some real cases. At first, a very good agreement between non-linear responses obtained with the proposed mode superposition and with a direct integration method was observed. Then a comparison of results obtained with the three different analytical models of the isolation bearings was carried out. At last, the exact modal response obtained with analytical models depending from the design displacement of the isolation bearings was compared with two different approximated solutions, evaluated using mode shapes and isolation properties, respectively, calculated under simplified hypothesis.© 1998 John Wiley & Sons, Ltd.  相似文献   

12.
This paper investigates numerically the seismic response of six seismically base‐isolated (BI) 20‐story reinforced concrete buildings and compares their response to that of a fixed‐base (FB) building with a similar structural system above ground. Located in Berkeley, California, 2 km from the Hayward fault, the buildings are designed with a core wall that provides most of the lateral force resistance above ground. For the BI buildings, the following are investigated: two isolation systems (both implemented below a three‐story basement), isolation periods equal to 4, 5, and 6 s, and two levels of flexural strength of the wall. The first isolation system combines tension‐resistant friction pendulum bearings and nonlinear fluid viscous dampers (NFVDs); the second combines low‐friction tension‐resistant crosslinear bearings, lead‐rubber bearings, and NFVDs. The designs of all buildings satisfy ASCE 7‐10 requirements, except that one component of horizontal excitation, is used in the 2D nonlinear response history analysis. Analysis is performed for a set of ground motions scaled to the design earthquake and to the maximum considered earthquake (MCE). At both the design earthquake and the MCE, the FB building develops large inelastic deformations and shear forces in the wall and large floor accelerations. At the MCE, four of the BI buildings experience nominally elastic response of the wall, with floor accelerations and shear forces being 0.25 to 0.55 times those experienced by the FB building. The response of the FB and four of the BI buildings to four unscaled historical pulse‐like near‐fault ground motions is also studied. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents a mechanical model for predicting the behavior of elastomeric seismic isolation bearings subject to combined end rotations and shear deformation. The mechanical model consists of a series of axial springs at the top, mid‐height and bottom of the bearing to vertically reproduce asymmetric bending moment distribution in the bearings. The model can take into account end rotations of the bearing, and the overall rotational stiffness includes the effect of the variation of vertical load on the bearing and the imposed shear deformation. Static bending tests under various combinations of vertical load and shear deformation were performed to identify the mechanical characteristics of bearings. The test results indicate that bearing rotational stiffness increases with increasing vertical load but decreases with increasing shear deformation. Simulation analyses were conducted to validate the new mechanical model. The results of analyses using the new model show very good agreement with experimental observations. A series of seismic response analyses were performed to demonstrate the dynamic behavior of top‐of‐column isolated structures, a configuration where the end rotations of isolation bearings are typically expected to be larger. The results suggest that the end rotations of elastomeric bearings used in practical top‐of‐column isolated structures do not reduce the stability limit of isolation system. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Curved surface sliding bearings, which are usually called as friction pendulum system (FPS) are commonly used for base isolation of liquid storage tanks since the period of the isolation system is independent of the storage level. However the restoring force and the damping at the isolation system are functions of axial load which changes during an earthquake excitation. This change might be in appreciable amounts especially for the tanks with high aspect ratios. The present paper focuses on earthquake performances of both broad and slender tanks base isolated by FPS bearings. The effects of overturning moment and vertical acceleration on axial load variation at the bearings are considered. The efficiency of the isolation system is investigated by analyzing the effects of various parameters such as; (i) isolation period, (ii) tank aspect ratio and (iii) coefficient of friction. The Haroun and Housner's three-degrees-of-freedom lumped mass model was used to solve the governing equations of motion in which convective, impulsive and rigid masses were included. A number of selected ground motions were considered and the results were compared to those of non-isolated cases.As a result, base isolation was found to be effective in reducing the base shear values for both broad and slender tanks without significantly affecting the sloshing displacements of the broad ones. The efficiency was even more pronounced for slender tanks subjected to near fault ground motions for isolation periods above 3 s. This specific value of isolation period also eliminated possible design problems arising from under-estimation of base shear values (up to 40%) due to ignoring the effects of axial load variation in lower isolation periods. Overturning effects should not be ignored especially for tanks with high aspect ratios (S) and being subjected to near fault ground motion.  相似文献   

15.
为评估隔震和非隔震支座对桥梁地震易损性的影响,以一座3跨连续混凝土箱梁桥为分析对象,首先建立采用铅芯橡胶隔震支座与非隔震型盆式橡胶支座下桥梁的数值模型,求得不同程度地震作用下墩顶与支座的最大位移响应;再定义转角延性比损伤指标,结合支座剪应变,分析桥墩和支座的地震易损性情况;最后通过宽界限法建立全桥地震易损性曲线。研究结果表明,支座是较容易发生损坏的构件,而桥梁系统比桥墩或支座更易发生破坏,同时铅芯橡胶支座的破坏概率明显低于非隔震型盆式支座,可见采用隔震支座能有效减小桥墩墩顶在地震作用下的最大位移,此时桥墩地震易损性优于采用非隔震支座的情况。  相似文献   

16.
Three different isolation systems (IS’s) for bridges and viaducts are considered in the present study. All of them are made of steel-PTFE sliding bearings (SB) to support the weight of the deck and auxiliary devices, based on different technologies and materials (i.e. rubber, steel and shape memory alloys), to provide re-centring and/or additional energy dissipating capability. An extensive numerical investigation has been carried out in order to (i) assess the reliability of different design approaches, (ii) compare the response of different types of IS’s, (iii) evaluate the sensitivity of the structural response to friction variability due to bearing pressure, air temperature and state of lubrication and (iv) identify the response variations caused by changes in the ground motion, bridge and isolation characteristics. The nonlinear time-history analyses have been carried out using a simplified pier-deck model, where the pier is modelled as an elastic cantilever beam and the mass of the deck is connected to the pier through suitable nonlinear elements, simulating the behaviour of the IS. Both artificial and natural seismic excitations have been used in the nonlinear dynamic analyses.  相似文献   

17.
The accurate analysis of the seismic response of isolated structures requires incorporation of the flexibility of supporting soil.However,it is often customary to idealize the soil as rigid during the analysis of such structures.In this paper,seismic response time history analyses of base-isolated buildings modelled as linear single degree-of-freedom(SDOF) and multi degree-of-freedom(MDOF) systems with linear and nonlinear base models considering and ignoring the flexibility of supporting soil are conducted.The flexibility of supporting soil is modelled through a lumped parameter model consisting of swaying and rocking spring-dashpots.In the analysis,a large number of parametric studies for different earthquake excitations with three different peak ground acceleration(PGA) levels,different natural periods of the building models,and different shear wave velocities in the soil are considered.For the isolation system,laminated rubber bearings(LRBs) as well as high damping rubber bearings(HDRBs) are used.Responses of the isolated buildings with and without SSI are compared under different ground motions leading to the following conclusions:(1) soil flexibility may considerably influence the stiff superstructure response and may only slightly influence the response of the flexible structures;(2) the use of HDRBs for the isolation system induces higher structural peak responses with SSI compared to the system with LRBs;(3) although the peak response is affected by the incorporation of soil flexibility,it appears insensitive to the variation of shear wave velocity in the soil;(4) the response amplifications of the SDOF system become closer to unit with the increase in the natural period of the building,indicating an inverse relationship between SSI effects and natural periods for all the considered ground motions,base isolations and shear wave velocities;(5) the incorporation of SSI increases the number of significant cycles of large amplitude accelerations for all the stories,especially for earthquakes with low and moderate PGA levels;and(6) buildings with a linear LRB base-isolation system exhibit larger differences in displacement and acceleration amplifications,especially at the level of the lower stories.  相似文献   

18.
The accuracy of a series spring model to predict the peak displacement and displacement history of Triple Pendulum? (TP) bearings in a strongly shaken, full‐scale building is evaluated in this paper. The series spring model was implemented as a self‐contained three‐dimensional TP bearing element in OpenSees and is now available for general use. The TP bearing element contains the option for constant friction or a generalized friction model that accounts for the effect of instantaneous velocity and compression load on the friction coefficient. Comparison between numerical simulation and experimental data of a five‐story steel moment frame building shows that the peak displacement of isolation system can generally be predicted with confidence using a constant friction coefficient model. The friction coefficient model accounting for the effect of axial load and velocity leads to minor improvement over the constant friction coefficient models in some cases. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
A new isolation interface is proposed in this study to retrofit existing buildings with inadequate soft stories as well as new structures to be constructed with soft first story intended for architectural or functional purposes. The seismic interface is an assembly of bearings set in parallel on the top of the first story columns: the multiple‐slider bearings and rubber bearings. The multiple‐slider bearing is a simple sliding device consisting of one horizontal and two inclined plane sliding surfaces based on polytetrafluoroethylene and highly polished stainless steel interface at both ends set in series. A numerical example of a five‐story reinforced concrete shear frame with soft first story is considered and analyzed to demonstrate the efficiency of the proposed isolation system in reducing the ductility demand and damage in the structure while maintaining the superstructure above the bearings to behave nearly in the elastic range with controlled bearing displacement. Comparative study with the conventional system as well as various isolation systems such as rubber bearing interface and resilient sliding isolation is carried out. Moreover, an optimum design procedure for the multiple‐slider bearing is proposed through the trade‐off between the maximum bearing displacement and the first story ductility demand ratio. The results of extensive numerical analysis verify the effectiveness of the multiple‐slider bearing in minimizing the damage from earthquake and protecting the soft first story from excessively large ductility demand. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The Friction Pendulum System (FPS) isolator is commonly used as a base isolation system in buildings. In this paper, a new tunable FPS (TFPS) isolator is proposed and developed to act as a semi‐active control system by combining the traditional FPS and semi‐active control concept. Theoretical analysis and physical tests were carried out to investigate the behavior of the proposed TFPS isolator. The experimental and theoretical results were in good agreement, both suggesting that the friction force of the TFPS isolator can be tuned to achieve seismic isolation of the structure. A series of numerical simulations of a base‐isolated structure equipped with the proposed TFPS isolator and subjected to earthquake ground motions were also conducted. In the analyses, the linear quadratic regulator (LQR) method was adopted to control the friction force of the proposed TFPS, and the applicability and effectiveness of the TFPS in controlling the structure's seismic responses were investigated. The simulation results showed that the TFPS can reduce the displacement of the isolation layer without significantly increasing the floor acceleration and inter‐story displacement of the superstructure, confirming that the TFPS can effectively control a base‐isolated structure under earthquake ground motions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号