首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The critical parameters that influence the nonlinear seismic response of asymmetric‐plan buildings are identified by evaluating the effects of different asymmetries that may characterize the structure of a building as well as exploring the influence of the ground motion features. First, the main findings reported in the literature on both the linear and nonlinear dynamic response of asymmetric‐plan buildings are presented. The common findings and the conflicting conclusions reached in different investigations are pointed out. Then, the results of comprehensive nonlinear dynamic analyses performed for evaluating the seismic response of systems characterized by different strength and stiffness configurations, representative of a large class of asymmetric‐plan buildings, are reported. Findings from the study indicate that the building response changes when moving from the linear to the nonlinear range, so that the seismic behavior of asymmetric‐plan buildings, apart from the source of asymmetry, can be always classified as irregular. Additionally, it was observed that as the seismic demands cause amplification of system nonlinearity with increasing earthquake intensity, the maximum displacement demand in the different resisting elements tends to be reached with the same deformed configuration of the system. The resultant of the seismic forces producing such a maximum demand is located at the center of resistance and corresponds to the collapse mechanism of the system that provides the maximum lateral strength in the exciting direction of the seismic action. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
An indigenous bacterial strain of Delftia sp. capable of degrading 2,4‐dicholorophenol and an indigenous bacterial community that degrades 2,4,6‐trichlorophenol (TCP) were employed to inoculate continuous down‐flow fixed‐bed reactors. Continuous‐reactors were constructed from PVC employing hollow PVC cylinders as support material. Synthetic wastewater was prepared by dissolving the corresponding chlorophenol in non‐sterile groundwater. Biodegradation was evaluated by spectrophotometry, chloride release, GC, and microbial growth. Detoxification was evaluated by using Daphnia magna as test organism. Delftia sp. was able to remove an average of 95.6% of DCP. Efficiency in terms of chemical oxygen demand (COD) was of 88.9%. The indigenous bacterial community that degrades TCP reached an average efficiency of 96.5 and 91.6% in terms of compound and COD removal, respectively. In both cases stoichiometric removal of chloride and detoxification was achieved. When synthetic wastewater feed was cut off for 7 days, both reactors showed a fast recovery after inflow restarting, reaching average outlet concentration values within 36 h. The promising behavior of the microorganisms and the low cost of the reactors tested allow us to suggest their possible application to remediation processes.  相似文献   

3.
The role of masonry infills in the seismic behavior of reinforced concrete buildings has been widely studied in terms of their strength and stiffness contribution in the in‐plane (IP) direction, while fewer studies have been carried out on their response and modeling in the out‐of‐plane (OOP) direction. In this paper, the state of the art in code and literature provisions regarding infills' OOP capacity and seismic demand is presented, together with a review of the experimental tests that have been carried out to investigate infills' OOP behavior and the effects of IP‐OOP interaction. This review aims to collect an experimental database that is used to evaluate the effectiveness of literature and code provisions and to propose a semiempirical approach both for predicting infills' OOP strength, stiffness, and displacement capacity and for modeling the effects of IP displacement demand on OOP behavior and vice versa. Then, the state of the art on modeling of infills' OOP behavior and IP‐OOP interaction is presented together with a new macro model based on the proposed formulations and conceived to represent the IP and OOP behavior by taking into account the mutual interaction effects. Finally, the proposed model is used for an example application on two case‐study buildings, showing the effects of taking into account or neglecting the IP‐OOP interaction phenomena.  相似文献   

4.
Recent earthquakes in Italy (L'Aquila 2009 and Emilia 2012) highlighted the vulnerability of precast cladding panels, typically associated with a connection system not designed to account for displacement and rotation compatibility between the panels and the supporting structure. Experimental investigations were performed in the past to investigate the in‐plane performance of cladding panels and design recommendations have been made accordingly; however, in the case of out‐of‐plane seismic loads, the load demand is commonly evaluated in the design practice by means of formulations for nonstructural components. This paper summarizes the results obtained from parametric analyses conducted to estimate the out‐of‐plane load demand in column‐to‐column cladding panels typical of one‐storey commercial and industrial buildings. Empirical equations suitable for both new and existing panels are proposed and compared with the design equations given in Eurocode 8 and ASCE 7. The paper also considers the effects of the development of plastic hinges at the column base and of the roof flexibility on the load demand in panel‐to‐column connections. The roof flexibility may generate the torsion of the panels; consequently, an analytical procedure to account for such effects is proposed. Finally, general design recommendations are made.  相似文献   

5.
Nonlinear static procedures, which relate the seismic demand of a structure to that of an equivalent single‐degree‐of‐freedom oscillator, are well‐established tools in the performance‐based earthquake engineering paradigm. Initially, such procedures made recourse to inelastic spectra derived for simple elastic–plastic bilinear oscillators, but the request for demand estimates that delve deeper into the inelastic range, motivated investigating the seismic demand of oscillators with more complex backbone curves. Meanwhile, near‐source (NS) pulse‐like ground motions have been receiving increased attention, because they can induce a distinctive type of inelastic demand. Pulse‐like NS ground motions are usually the result of rupture directivity, where seismic waves generated at different points along the rupture front arrive at a site at the same time, leading to a double‐sided velocity pulse, which delivers most of the seismic energy. Recent research has led to a methodology for incorporating this NS effect in the implementation of nonlinear static procedures. Both of the previously mentioned lines of research motivate the present study on the ductility demands imposed by pulse‐like NS ground motions on oscillators that feature pinching hysteretic behaviour with trilinear backbone curves. Incremental dynamic analysis is used considering 130 pulse‐like‐identified ground motions. Median, 16% and 84% fractile incremental dynamic analysis curves are calculated and fitted by an analytical model. Least‐squares estimates are obtained for the model parameters, which importantly include pulse period Tp. The resulting equations effectively constitute an R ? μ ? T ? Tp relation for pulse‐like NS motions. Potential applications of this result towards estimation of NS seismic demand are also briefly discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
The modal pushover‐based scaling (MPS) procedure, currently restricted to symmetric‐plan buildings, is extended herein to unsymmetric‐plan buildings. The accuracy of the extended MPS procedure was evaluated for a large set of three‐degree‐of‐freedom unsymmetric‐plan structures with variable stiffness and strength. The structures were subjected to nonlinear response history analysis considering sets of seven records scaled according to the MPS procedure. Structural responses were compared against the benchmark values, defined as the median values of the engineering demand parameters due to 30 unscaled records. This evaluation of the MPS procedure has led to the following conclusions: (i) the MPS procedure provided accurate estimates of median engineering demand parameter values and reduced record‐to‐record variability of the responses; and (2) the MPS procedure is found to be much superior compared to the ASCE/SEI 7‐10 scaling procedure for three‐dimensional analysis of unsymmetric‐plan buildings. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
A procedure for incorporating record‐to‐record variability into the simplified seismic assessment of RC wall buildings is presented. The procedure relies on the use of the conditional spectrum to randomly sample spectral ordinates at relevant periods of vibration. For inelastic response, displacement reduction factors are then used to relate inelastic displacement demand to the spectral displacement at the effective period for single‐degree‐of‐freedom systems. Simple equations are used to convert back and forth between multi‐degree‐of‐freedom RC wall buildings and equivalent single‐degree‐of‐systems so that relevant engineering demand parameters can be obtained. Consideration is also given to higher‐mode effects by adapting existing modal combination rules. The proposed method is applied to several case study buildings, showing promising results in the examination of inter‐storey drift ratio and shear forces. The proposed method captures the variation in the distribution of structural response parameters that occurs with variations in structural configuration, intensity, engineering demand parameter of interest and site characteristics. Discussion is provided on possible ways to improve the accuracy of the procedure and suggestions for additional future work. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Near‐fault ground motions with forward directivity are characterized by a large pulse. This pulse‐like motion may cause a highly non‐uniform distribution of story ductility demands for code‐compliant frame structures, with maximum demands that may considerably exceed the level of code expectations. Strengthening techniques for multi‐story frame structures are explored with the objective of reducing maximum drift demands. One option is to modify the code‐based SRSS distribution of story shear strength over the height by strengthening of the lower stories of the frame. The modified distribution reduces the maximum story ductility demand, particularly for weak and flexible structures. However, this strengthening technique is less effective for stiff structures, and is almost ineffective in cases in which the maximum demand occurs in the upper stories, i.e. strong and flexible structures. As an alternative, the benefits of strengthening frames with elastic and inelastic walls are evaluated. The effects of adding walls that are either fixed or hinged at the base are investigated. It is demonstrated that strengthening with hinged walls is very effective in reducing drift demands for structures with a wide range of periods and at various performance levels. Wall inelastic behavior only slightly reduces the benefits of strengthening with hinged walls.Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents the results of a probabilistic evaluation of the seismic performance of 3D steel moment‐frame structures. Two types of framing system are considered: one‐way frames typical of construction in the United States and two‐way frames typical of construction in Japan. For each framing system, four types of beam–column connections are considered: pre‐Northridge welded‐flange bolted‐web, post‐Northridge welded‐flange welded‐web, reduced‐beam‐section, and bolted‐flange‐plate connections. A suite of earthquake ground motions is used to compute the annual probability of exceedence (APE) for a series of drift demand levels and for member plastic‐rotation capacity. Results are compared for the different framing systems and connection details. It is found that the two‐way frames, which have a larger initial stiffness and strength than the one‐way frames for the same beam and column volumes, have a smaller APE for small drift demands for which members exhibit no or minimal yielding, but have a larger APE for large drift demands for which members exhibit large plastic rotations. However, the one‐way frames, which typically comprise a few seismic frames with large‐sized members that have relatively small rotation capacities, may have a larger APE for member failure. The probabilistic approach presented in this study may be used to determine the most appropriate frame configuration to meet an owner's performance objectives. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
This study proposes an improved energy‐based approach for quantitative classification of velocity‐pulse‐like ground motions. The pulse amplitude is determined, in its value and in time location, by the amplitude of the half‐cycle pulse having the largest seismic energy. After conducting statistical analyses, a newly‐determined threshold level for selecting pulse‐like ground motions is derived; and then what followed is a comparison analysis of three pulse‐detecting schemes, one using the wavelet analysis, the other two using the energy concept. It is believed that other than providing a useful way of classifying pulse‐like ground motions for structural demand analysis, knowledge of this work could also benefit the development of the ground motion prediction equations accounting for pulse effects, and further to aid the probabilistic seismic hazard analysis in a near‐fault environment. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Centralized semi‐active control is a technique for controlling the whole structure using one main computer. Centralized control systems introduce better control for relatively short to medium high structures where the response of any story cannot be separated from the adjacent ones. In this paper, two centralized control approaches are proposed for controlling the seismic response of post‐tensioned (PT) steel frames. The first approach, the stiffness control approach, aims to alter the stiffness of the PT frame so that it avoids large dynamic amplifications due to earthquake excitations. The second approach, deformation regulation control approach, aims at redistributing the demand/strength ratio in order to provide a more uniform distribution of deformations over the height of the structure. The two control approaches were assessed through simulations of the earthquake response of semi‐actively and passively controlled six‐story post‐tensioned steel frames. The results showed that the stiffness control approach is efficient in reducing the frame deformations and internal forces. The deformation regulation control approach was found to be efficient in reducing the frame displacements and generating a more uniform distribution of the inter‐story drifts. These results indicate that centralized semi‐active control can be used to improve the seismic performance of post‐tensioned steel frames. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
This paper examines the calculation of the seismic demand hazard in a practice‐oriented manner via the use of seismic response analyses at few intensity levels. The seismic demand hazard is a more robust measure for quantifying seismic performance, when seismic hazard is represented in a probabilistic format, than intensity‐based assessments, which remain prevalent in seismic design codes. It is illustrated that, for a relatively complex bridge–foundation–soil system case study, the seismic demand hazard can be estimated with sufficient accuracy using as little as three intensity measure levels that have exceedance probabilities of 50%, 10% and 2% in 50 years which are already of interest in multi‐objective performance‐based design. Compared with the conventional use of the mean demand from an intensity‐based assessment(s), it is illustrated that, for the same number of seismic response analyses, a practice‐oriented ‘approximate’ seismic demand hazard is a more accurate and precise estimate of the ‘exact’ seismic demand hazard. Direct estimation of the seismic demand hazard also provides information of seismic performance at multiple exceedance rates. Thus, it is advocated that if seismic hazard is considered in a probabilistic format, then seismic performance assessment, and acceptance criteria, should be in terms of the seismic demand hazard and not intensity‐based assessments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Alternative non‐linear dynamic analysis procedures, using real ground motion records, can be used to make probability‐based seismic assessments. These procedures can be used both to obtain parameter estimates for specific probabilistic assessment criteria such as demand and capacity factored design and also to make direct probabilistic performance assessments using numerical methods. Multiple‐stripe analysis is a non‐linear dynamic analysis method that can be used for performance‐based assessments for a wide range of ground motion intensities and multiple performance objectives from onset of damage through global collapse. Alternatively, the amount of analysis effort needed in the performance assessments can be reduced by performing the structural analyses and estimating the main parameters in the region of ground motion intensity levels of interest. In particular, single‐stripe and double‐stripe analysis can provide local probabilistic demand assessments using minimal number of structural analyses (around 20 to 40). As a case study, the displacement‐based seismic performance of an older reinforced concrete frame structure, which is known to have suffered shear failure in its columns during the 1994 Northridge Earthquake, is evaluated. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents, within the performance‐based earthquake engineering framework, a comprehensive probabilistic seismic loss estimation method that accounts for main sources of uncertainty related to hazard, vulnerability, and loss. The loss assessment rigorously integrates multiple engineering demand parameters (maximum and residual inter‐story drift ratio and peak floor acceleration) with consideration of mainshock–aftershock sequences. A 4‐story non‐ductile reinforced concrete building located in Victoria, British Colombia, Canada, is considered as a case study. For 100 mainshock and mainshock–aftershock earthquake records, incremental dynamic analysis is performed, and the three engineering demand parameters are fitted with a probability distribution and corresponding dependence computed. Finally, with consideration of different demolition limit states, loss assessment is performed. From the results, it can be shown that when seismic vulnerability models are integrated with seismic hazard, the aftershock effects are relatively minor in terms of overall seismic loss (1–4% increase). Moreover, demolition limit state parameters, uncertainties of collapse fragility, and non‐collapse seismic demand prediction models have showed significant contribution to the loss assessment. The seismic loss curves for the reference case and for cases with the varied parameters can differ by as large as about 150%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
The seismic damage of internal partitions may cause significant earthquake loss; this phenomenon is caused by (a) their tendency to exhibit damage for low demand levels and (b) the consequent loss of inventory and breakdown that their collapse can cause. Quasi‐static tests are performed on six 5‐m‐high plasterboard internal partitions, which represent typical partitions in industrial and commercial buildings in the European area. A steel test setup is designed to transfer the load, which is provided by the actuator, to the partition. The testing protocol provided by Federal Emergency Management Agency (FEMA) 461 is adopted for the quasi‐static tests. The typical failure mode of the specimens is the buckling of a steel stud, which involves the boards that are attached to the buckled stud. The buckling failure usually concentrates across the plasterboard horizontal joints. A frictional behavior is exhibited for low demand levels, whereas a pinched behavior is shown for moderate‐to‐high demand levels. The interstory drift ratios required to reach a given damage limit state are evaluated using a predefined damage scheme. Based on the experimental data, the fragility curves for three different damage states (DS1, DS2, and DS3) are estimated. The fragility curve yields median interstory drift ratio values of 0.28%, 0.81%, and 2.05% and logarithmic standard deviations of 0.39, 0.42, and 0.46 for DS1, DS2, and DS3, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The seismic response spectrum defines the amplitude of the load, but it does not specify the number of cycles for which the load must be resisted by the structure. The amplitude by itself is not sufficient to evaluate the seismic resistance of a structure, because the structure's strength, stiffness and energy‐dissipation capacity reduce with an increase in the number of load cycles. This paper presents a cyclic‐demand spectrum, which, in conjunction with the amplitude spectrum, provides a more complete definition of the seismic load, hence a way to consider the degradation in strength, stiffness and energy‐dissipation capacity in a rational manner. Similarly to three amplitude parameters (peak ground acceleration, peak ground velocity, and peak ground displacement), three cyclic‐demand parameters are introduced for stiff, moderately stiff, and flexible systems. A design example is presented to illustrate the use of the cyclic‐demand spectrum. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
The level of complexity, and the number of parameters, to include in a hydrological model is a relatively contentious issue in hydrological modelling. However, it can be argued that explicitly representing important run‐off generation processes can improve the practical value of a model's outputs. This paper explores the benefits of including a new function into an existing semi‐distributed hydrological model (the Pitman model) that is widely used in the sub‐Saharan Africa region. The new function was designed to represent saturation‐excess surface run‐off processes at subcatchment scales and was motivated by the evidence of dambo (low topography riparian areas) type features in many sub‐Saharan river basins. The results for uncertainty versions of the model, with and without the new function, were compared for 25 catchments, which were divided up into those where evidence of dambos exists and those where there is no such evidence. The results suggest that the new function certainly improves the model results for the catchments where dambos exist, but not in situations where saturation‐excess surface run‐off is not expected to occur. The overall conclusion is therefore that the addition of the new function is justified.  相似文献   

18.
The present work focuses on the performance of Fenton, sono‐Fenton, and sono‐photo‐Fenton processes for the oxidation of phenol present in aqueous solution. The effects of H2O2 concentration, Fe2+ concentration, pH, and initial phenol concentration on the oxidation of phenol were studied. The optimum Fe2+ and H2O2 concentrations for the Fenton process were 45 and 800 mg/L, respectively. For the sono‐Fenton process, the optimum Fe2+ and H2O2 concentrations were 30 and 800 mg/L, respectively. The optimal conditions for the sono‐photo‐Fenton process were found to be 20 mg/L of Fe2+ and 700 mg/L of H2O2. The optimum pH was found to be 3 for the processes investigated in the present study. The analysis of results showed that the sono‐photo‐Fenton method reduced the Fe2+ concentration by 30–50% and the H2O2 concentration by 12.5%. It was found that the sono‐photo‐Fenton technique showed better performance than the Fenton and sono‐Fenton processes for the oxidation of phenol. A lumped kinetic model was used to predict the chemical oxygen demand reduction and the model was found to fit the data.  相似文献   

19.
This paper examines the potential development of a probabilistic design methodology, considering hysteretic energy demand, within the framework of performance‐based seismic design of buildings. This article does not propose specific energy‐based criteria for design guidelines, but explores how such criteria can be treated from a probabilistic design perspective. Uniform hazard spectra for normalized hysteretic energy are constructed to characterize seismic demand at a specific site. These spectra, in combination with an equivalent systems methodology, are used to estimate hysteretic energy demand on real building structures. A design checking equation for a (hypothetical) probabilistic energy‐based performance criterion is developed by accounting for the randomness of the earthquake phenomenon, the uncertainties associated with the equivalent system analysis technique, and with the site soil factor. The developed design checking equation itself is deterministic, and requires no probabilistic analysis for use. The application of the proposed equation is demonstrated by applying it to a trial design of a three‐storey steel moment frame. The design checking equation represents a first step toward the development of a performance‐based seismic design procedure based on energy criterion, and additional works needed to fully implement this are discussed in brief at the end of the paper. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
The estimation of cyclic deformation demand resulting from earthquake loads is crucial to the core objective of performance‐based design if the damage and residual capacity of the system following a seismic event needs to be evaluated. A simplified procedure to develop the cyclic demand spectrum for use in preliminary seismic evaluation and design is proposed in this paper. The methodology is based on estimating the number of equivalent cycles at a specified ductility. The cyclic demand spectrum is then determined using well‐established relationships between seismic input energy and dissipated hysteretic energy. An interesting feature of the proposed procedure is the incorporation of a design spectrum into the proposed procedure. It is demonstrated that the force–deformation characteristics of the system, the ductility‐based force‐reduction factor Rμ, and the ground motion characteristics play a significant role in the cyclic demand imposed on a structure during severe earthquakes. Current design philosophy which is primarily based on peak response amplitude considers cyclic degradation only in an implicit manner through detailing requirements based on observed experimental testing. Findings from this study indicate that cumulative effects are important for certain structures, classified in this study by the initial fundamental period, and should be incorporated into the design process. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号