首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We made polarimetric observations of comet Hale–Bopp covering awide phase angle range, from 18.8 to 47°. At certain phase angles the heliocentricdistance of the comet was less than 1 AU during its pre and post perihelion passages. Oneof the important findings, based on the data in the visual bands, is the higher polarizationwith stronger wavelength dependence compared to comet Halley, indicating the presenceof much finer grains in comet Hale–Bopp. It may also be noted that comet Hale–Bopphas shown highest degree of polarization known so far for any comet and hence fallsin the class of high polarization comets. Polarimetric observations were made of cometC/2000 WM1 (LINEAR)using narrow band (IHW) filters 4845 Å and 7000 Åand broad bands filters BVR during November 23–26, 2001 when the phase angle rangedfrom 15 to 22°. Some of the results based on these observations are presented anddiscussed.  相似文献   

2.
Spectropolarimetric observations from 5000 to 8000 Å have been obtained for comets P/Austin (1982g) and P/Churyumov-Gerasimenko (1982f). The observations were spaced over phase angles of 50–125° for comet Austin and 10–40° for comet Churyumov-Gerasimenko. The use of spectropolarimetry allowed an evaluation of continuum polarization without molecular line contamination. Especially for comet Churyumov-Gerasimenko, the curve of polarization versus phase angle resembles curves for asteroids, where the polarization is negative (electric vector maximum parallel to the scattering plane) for phase angles less than 20° and the most negative polarization is from ?1 to ?2%. The negative polarization at backscattering angles may be due to multiple scattering in agglomerated grains, as assumed for asteroids, or to Mie scattering by small dielectric particles. If multiple scattering is important in comet dust, polarization measurements may imply a low albedo, less than 0.08. The polarization of comet Austin remained steady during a large change in the dust production rate. Both comets increased continuum flux by a factor of 2 near perihelion. The continuum of comet Churyumov-Gerasimenko had the shape of the solar spectrum with derivations less than 5%. The equivalent width of spectral features of C2, NH2, and O varied as r?2.  相似文献   

3.
We present results of polarimetric and photometric observations of bright comet C/1995 O1 (Hale-Bopp) obtained at the 0.7 m telescope of Kharkov University Observatory from June 18, 1996 to April 24, 1997. The IHW and HB comet filters were used. The C2 and C3 production rates for Hale-Bopp are more than one order of magnitude larger and the dust production rates are more than two orders of magnitude larger than the Halley ones at comparable distances. Hence, Hale-Bopp was one of the most dusty comets. The average UC-BC and BC-RC colours of the dust were −0.02 and 0.13 mag, respectively. The polarization of comet Hale-Bopp at small phase angles of 4.8–13.0° was in good agreement with the date for comet P1/Halley at the same phase angles in spite of the fact that the heliocentric distances of comments differed nearly twice. However, at intermediate phase angles of 34–49° the polarization of comet Hale-Bopp was significantly larger than the polarization of the other dusty comets. It is the first case of such a large difference found in the continuum polarization of comets. The wavelength dependence of polarization for Hale-Bopp was steeper than for other dusty comets. The observed degree of polarization for the anti-sunward side of the coma was permanently higher than that for the sunward shell side. The polarization phase dependence of Hale-Bopp is discussed and compared with the polarization curves for other dusty comets. The peculiar polarimetric properties of comet Hale-Bopp are most likely caused by an over-abundance of small or/and absorbing dust particles in the coma. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.

The results of the first polarimetric measurements of near-Earth asteroid 2014 JO25 and comet 41P/Tuttle-Giacobini-Kresák performed on April 19, 2017, with a CCD sensor at the prime focus (f/3.85) of the 2.6-m Shajn Telescope of the Crimean Astrophysical Observatory in the R filter are reported. The degree of linear polarization of the asteroid is P = 2.69 ± 0.44% at a phase angle of 55.6°, which is typical of an S-type asteroid. Its geometric albedo is ρv ≈ 0.2. A digital filter applied to the direct image of the comet reveals a jet and a tail directed toward the Sun (PA = 45.1°) and away from it (PA = 241.2°), respectively, in the coma. The maximum degree of linear polarization in the near-nucleus region of the comet is 18% at a phase angle of 69.8°. The polarization decreases to 16.2–10.7% in coma regions with a radius of 865–4856 km. Various factors affecting the maximum degree of polarization and the polarization-degree distribution over the coma are discussed.

  相似文献   

5.
Comet C/1999 S4 (LINEAR) was exceptional in many respects. Its nucleus underwent multiple fragmentations culminating in the complete disruption around July 20, 2000. We present circular polarization measurements along the cuts through the coma and nucleus of the comet during three separate observing runs, in June 28-July 2, July 8-9, and July 21-22, 2000. The circular polarization was detected at a rather high level, up to 0.8%. The left-handed as well as right-handed polarization was observed over the coma with the left circularly polarized light systematically observed in the sunward part of the coma. During our observations the phase angle of the comet varied from 61 up to 122°, which allowed us to reveal variations of circular polarization with the phase angle. Correlation between the degree of circular polarization, visual magnitude, water production rate, and linear polarization of Comet C/1999 S4 (LINEAR) during its final fragmentation in July 2000 was found. The mechanisms that may produce circular polarization in comets and specifically in Comet C/1999 S4 (LINEAR) are discussed and some tentative interpretation is presented.  相似文献   

6.
The meteoroid streams associated to short-period comets 9P/Tempel 1 (the target of the Deep Impact mission). and 67P/Churyumov-Gerasimenko (the target of the Rosetta mission) are studied. Their structure is overwhelmingly under the control of Jupiter and repeated relatively close encounters cause a reversal of the direction of the spatial distribution of the stream relative to the comet* an initial stream trailing the comet as usually seen eventually collapses, becomes a new stream leading the comet and even splits into several components. Although these two comets do not produce meteor showers on Earth, this above feature shows that meteor storms can occur several years before the perihelion passage of a parent body.  相似文献   

7.
The polarization distribution of the inner coma of comet Hale-Bopp was measured by CCD imaging around perihelion. The dust shell positions correlate well with relative maxima of polarization. The images taken in the I-band identify different shell systems, each showing individual polarization properties. This could be related to differences in the dust properties of the associated jets. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Photopolarimetric observations of comet Austin with the IAU/IHW filter system were obtained on the 2.34 m Vainu Bappu Telescope (VBT) of the Indian Institute of Astrophysics, at Kavalur, India, during pre-perihelion phase on February 20,1990 and on the 1.2 m telescope of the Physical Research Laboratory at Gurusikhar, Mount Abu during postperihelion phase on May 2 and 4, 1990. The comet appeared bluer than a solar analog during post-perihelion phase on May 2 and 4. The percent polarization shows a sharp increase towards the red on May 2 and 4. The dominant sizes of the dust particles appear to lie in a narrow range of 0.1 to 0.5 Μm. Regarding the molecular band emission, CN and C2 bands are quite strong; C3 emission was also found to be strong though the observations on May 2 and 4 show significant variation as compared to C2 emission. Molecular band polarization for CN, C3, C2 and H2 O+ have been calculated. It has been found that emission polarization in CN, C2 and C3 is between 1–7% (phase angle between 107.4–109 degrees). For CN and C2 the polarization values are close to the theoretically predicted values, but for C3 the polarization value falls much below the theoretically predicted value. A similar result was found for comet Halley.  相似文献   

9.
The orientation of nonspherical cosmic dust grains is found in the anisotropic corpuscular or radiation fluxes and in the presence of the magnetic field; the grains being approximated by the axially-symmetrical ellipsoids. The comparatively small twisting is shown to cause the difference in scattering of the right and left circular-polarized light and the increasing of the angular momentum. If the period of the angular momentum precession caused by the magnetic field is less than the time of the orientation by the corpuscular or radiation fluxes, then the distribution of the grains' axes gets the symmetry relative to the field direction. It is shown that such orientation realized in our Galaxy allows us to explain easily the interstellar linear polarization observed. The mechanisms of the grains' orientation near the infrared source Becklin-Neugebauer, in the B 96 cloud near RY Tau and in the comet Bennett are discussed.  相似文献   

10.
Joseph J. Michalsky 《Icarus》1981,47(3):388-396
The polarization of the continuum of Comet West 1976 VI was measured in four narrowband filters spanning the wavelengths 440–850 nm. The postperihelion observations indicated wavelength independent linear polarization on each of the three occasions on which it was measured. The wavelength independence is in agreement with other polarization measurements of this comet from the visible to the near-infrared, but it counters the general tendency in comets for the polarization to increase with wavelength. The magnitude of the polarization as a function of scattering angle, the wavelength independence, and the infrared and optical photometric properties suggests that dirty silicates (n1≈0.05) with radii smaller than 5 μm but approaching this size may be responsible. No circular polarization was detected.  相似文献   

11.
On March 31 and April 1, 1997, simultaneous photometry and polarimetry of comet Hale-Bopp's dust was conducted with the two-channel focal reducer of the Max-Planck-Institute for Aeronomy attached to the 2 m telescope of Pik Terskol Observatory (Northern Caucasus). Interference filters at642 nm and 443 nm selected red and blue narrow-band continuum windows. The observations have been averaged over the one hour of timethe comet could be observed. The polarization maps cover an area of about1 arcmin2 around the nucleus. The values of polarization degree measured close to the nucleus agree very well with observations obtained with aperture polarimetry. They are lower than in the surrounding coma by about 1%. In our field of view the polarization increases along the sun-comet line from the solar to the antisolar side by about 3%. The dust shells are visible in the polarization images. The polarization in the shells is higher by 1 to 2%and this increase is higher in the red than in the blue range. Therefore the ratio of red to blue polarization (≈ 1.2) increases in the shells by ≈ 0.03. In principle, the polarization excess in the shells, the ratio of red/blue polarization and the higher integrated polarization as compared to other comets can be explained by an excess of particles of radius of about 0.1 μm. Such particles, however, are subject to strong radiation pressure and will be pushed back into the tail before they reach the observed location of the shells. Real Rayleigh particles cannot explain the observed increase in the ratio of red/blue polarization. One therefore cannot exclude the possibility that the excess polarization in the shells is caused by fluffy aggregates via effects which are presently not well understood. The colour map shows features not well related to intensity and polarization, perhaps another dust shell of a different particle size. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Schrijver  Carolus J.  Title  Alan M. 《Solar physics》1999,188(2):331-344
Eleven microwave spike events observed with the 2.6–3.8 GHz spectrometer of Beijing Astronomical Observatory (BAO) are analysed. The polarization degrees of spikes are variable, some spikes have frequency drift with the drift rate of several GHz s–1. In particular, the time delay (8 ms) between the two polarization modes of spike is detected, which is different from previous results. According to the leading spot rule, we conclude that the o-modes arrive first. Moreover, the reversal of polarization sense versus frequency is also found. A change of the emission mode may be the cause of the polarization reversal.  相似文献   

13.
The pick up cometary ion distributions are shown to excite Alfvénic mode instabilities, slow ion-acoustic mode instability and a lower hybrid instability during solar wind-comet interaction. The growth rates of all these instabilities become larger as the comet is approached. The lower hybrid instability is shown to account for the low-frequency 0–300 Hz electrostatic turbulence observed near comet Halley. The Alfvén modes can grow to large amplitudes and become modulationally unstable, in the presence of low-frequency density fluctuations, going over to envelope Alfvén solitons. A model consisting of a gas of Alfvén solitons is suggested to explain the hydromagnetic turbulence observed near comet Halley and comet Giacobini-Zinner.  相似文献   

14.
The solar wind-induced drag on magnetically large comets is estimated as follows. As the comet approaches the sun, solar radiation striking the comet surface generates a surrounding neutral atmosphere which is subsequently ionized. The resulting plasma cloud interacts with the solar wind to produce a comet magnetosphere and associated collision-free shock wave. An approximation to the accompanying drag is obtained using the similarity between the comet magnetosphere and that of the earth, and is shown to be much less than the mechanical mass loss force.  相似文献   

15.
We present results of polarimetry and photometry of comet C/2004 Q2 (Machholz) obtained with the 0.7-m telescope of Institute of Astronomy at the Karazin Kharkiv National University on February 3 and 4, and March 4 and 14, 2005. The observations were carried out with a one-channel photoelectric photometer-polarimeter. The IHW continuum UC (λ3650/80 Å), BC (λ4845/65 Å), RC (λ6840/90 Å) and emission filters CN (λ3871/50 Å), C3 (λ4060/70 Å), and C2 (λ5140/90 Å) were used. Degree of the comet polarization at phase angles ≈ 52° and ≈44° in the red continuum was close to that for so called dusty comets. The comet had a typical spectral gradient of polarization ΔP/Δλ=0.86% per 1000 Å. In the framework of the Haser model we have found the gas production rates Q of the CN, C3 and C2 species and the dust production rates Afρ on February 4 and March 14, 2005. The ratio log[Afρ (BC)/Q(CN)] was compared with data for other comets. The normalized spectral gradient of cometary dust S’(BC,RC) was 8.7%/1000 Å for February 4 and 17.0%/1000 Å for March 14. We conclude that comet C/2004 Q2 (Machholz) in many respects is a typical dusty comet.  相似文献   

16.
Wentzel  Donat G. 《Solar physics》1997,175(1):191-196
Circularly polarized radio radiation maintains its polarization even where the magnetic field reverses its sign relative to the ray (QT region) if the reversal is sufficiently abrupt (strong QT region). Bastian (1995) suggested that coronal turbulence scatters radiation, such as type I bursts, sufficiently to make the reversal abrupt where it would otherwise not be. However, the observed directivity of type I bursts sets an upper limit on the scattering. This limit implies that the turbulent scattering is not sufficient to maintain the circular polarization as in a strong QT region. The conclusion is strengthened by an analytical calculation of the polarization. Apparently, the fully polarized type I bursts, near disk center, encounter no horizontal magnetic fields, at least not until high enough in the corona that the QT region is strong anyway.  相似文献   

17.
Systematic and uniform sets of photometric and polarimetric observations of comet 1P/Halley have been analyzed. The phase dependence of brightness for comet Halley was obtained at phase angles α ranging from 1.4° ≤ α ≤ 65°. The following parameters were determined: the amplitude of the opposition effect Δm = 0.75m ± 0.06m; the half-width at a half-maximum of intensity HWHM = 6.4° ± 1.6°; the linear phase coefficient β = 0.0045 ± 0.0001 mag/deg for α from 30° ≤ α ≤ 65°; and the phase angle at which a nonlinear increase in brightness starts, α opp ≈ 31°. For the first time, the phase-angle dependence was obtained for the color of the dust of comet Halley: the color index BC-RC systematically decreases with increasing phase angle. Such a phase behavior of the dust color can be caused by the decrease in the mean size of dust particles that occurs when the comet approaches the Sun. For comet Halley, the negative polarization branch is almost symmetric; the minimal value of polarization is P min = −1.54% at a phase angle αmin = 10.5°, and the inversion angle is αinv = 21.7°. A comparative analysis of the phase functions of brightness and polarization has been performed for the cometary dust and atmosphereless bodies. Among the latter are low-albedo asteroids of the P and C types (102 Miriam and 47 Aglaja, respectively), as well as Deimos; high-albedo objects, such as the E-type asteroid 64 Angelina and the icy satellite of Jupiter Europa; and the Moon with its intermediate albedo. The possibility of a weak depression in the negative polarization branch of comets Halley and 47P/Ashbrook-Jackson at phase angles smaller than 2° is discussed.__________Translated from Astronomicheskii Vestnik, Vol. 39, No. 4, 2005, pp. 353–363.Original Russian Text Copyright © 2005 by Rosenbush.  相似文献   

18.
《Planetary and Space Science》1999,47(8-9):971-974
Astronomical observations of size and of related outgassing rates seem not to be compatible for the nucleus of comet 46 Pz.urule;Wirtanen, the target comet of the ROSETTA mission. This possible disagreement has caused speculations about peculiar properties of this comet nucleus. It is shown by model calculations which also takes into account vertical heat fluxes into the nucleus that there is a possibility to combine the results of astronomical observations within a model of a freely sublimating ice surface of this comet with an outgassing area of about half the dayside surface. The resulting half-size parameter (i.e. the radius of an equivalent sphere) can be shown to be of about R ≈ (725±230) m, and the nucleus is shown to have an active area of about half of the dayside surface, i.e. of about 25% of the total surface.  相似文献   

19.
Kiselev  N. N.  Jockers  K.  Rosenbush  V. K.  Korsun  P. P. 《Solar System Research》2001,35(6):480-495
We present the imaging polarimetry and photometry of Comet C/1996 Q1 (Tabur) obtained on October 10, 1996, with a two-channel focal reducer attached to the 2-m Pik Terskol Observatory telescope through blue (4430/44 Å) and red (6420/26 Å) continuum filters and through a 6620/59 Å filter that isolated the NH2(0.7.0) band. We analyze the 3600–9300 Å long-slit spectrograms of the comet taken on October 5–6, 1996, with the 2.6-m Crimean Astrophysical Observatory telescope. The NH2(0.8.0) 6408 Å emission and an unidentified 6428 Å emission were found to fall within the pass band of the red filter. The blue filter transmits weak unidentified emissions at 4424–4444 Å and partially C2(4360 Å). Correction for the depolarizing effect of molecular emissions resulted in an increase of the dust polarization by 2–4% in the near-nucleus region and by almost a factor of 2 in the outer coma regions. However, the polarization and color differences between different coma regions remained even after correction for the contribution of emissions. We found no dust polarization difference between the gas comet Tabur and the dust comet C/1988 A1 (Liller), which are believed to be fragments of a common parent comet. The NH2coma was found to be elongated perpendicular to the comet radius vector. The causes of the spatial asymmetry in the NH2molecular distribution are yet to be established. We study the evolution of activity and the spatial distribution of dust brightness, polarization, and color in the comet. We consider a taxonomic classification of gas and dust comets according to dust polarization properties. The polarization differences between dust and gas comets at large phase angles are most likely related both to the actual differences in dust and to the effect of molecular emissions, nuclear gas- and dust-production rates and to the evolution of grain properties with distance from the nucleus.  相似文献   

20.
Near-infrared photometric and polarimetric observations of comet Hale-Bopp (1995 O1) using KONIC (Kiso Observatory Near-Infrared Camera) are reported. Observations were carried out on March 18 UT and April 26 UT 1997, when the heliocentric distances of the comet were 0.94 and 1.02 AU, and the phase angles were 48.5 deg and 32.9 deg, respectively. In the J, H, and K′ bands, we obtained linear polarization of the near-nucleus region of 16.4 ± 1.2, 18.8 ± 1.3, and 15.1 ± 0.9 percent on March 18UT and 7.1 ± 1.1, 8.9 ± 1.0, and 6.9 ± 0.6 percent on April 26, respectively. These values were higher than those observed for 1P/Halley. The maximum polarization was found at H band on both dates. Polarization maps showed higher polarization regions toward the anti-solar direction in the J and H bands. No distinct correlation was found between high polarization regions and bright regions. The projected expansion velocity of the arc structure of the dust jet was 375 ± 35.7 m/s on 17–19 March. The periodicity was found to be 11.1 ± 2.8 hours. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号