首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 484 毫秒
1.
利用于田震中300 km范围内的1个GPS连续站和12个GPS流动站数据,解算得到了2014年新疆于田MS7.3地震地表同震位移,并反演了发震断层滑动分布,探讨此次地震对周边断裂的影响.地表同震位移结果显示,GPS观测到的同震位移范围在平行发震断裂带的北东-南西向约210 km,垂直发震断裂带的北西-南东方向约为120 km,同震位移量大于10 mm的测站位于震中距约120 km以内;同震位移特征整体表现为北东-南西方向的左旋走滑和北西-南东方向的拉张特征,其中在北东-南西方向,I069测站位移最大,约为32.1 mm,在北西-南东方向,XJYT测站位移最大,约为28.1 mm;位错反演结果表明,最大滑动位于北纬36.05°,东经82.60°,位于深部约16.6 km,最大错动量为2.75 m,反演震级为MW7.0,同震错动呈椭圆形分布,以左旋走滑为主并具有正倾滑分量,两者最大比值约为2.5:1,同震错动延伸至地表,并向北东方向延伸,总破裂长度约50 km,地表最大错动约1.0 m;同震水平位移场模拟结果显示贡嘎错断裂、康西瓦断裂和普鲁断裂等不同位置主应变特征具有差异性,这种差异特征是否影响断裂带以及周围区域的应力构造特征,值得关注.  相似文献   

2.
2016年11月13日新西兰南岛北端凯库拉(Kaikoura)发生了MW7.8大地震,造成了强烈的地表变形并引发大面积滑坡和海啸的发生.基于美国地质调查局(USGS)断层滑动模型,建立全球同震横向不均匀并行椭球型地球模型,计算了此次新西兰凯库拉大地震产生的同震形变和应力及库仑应力变化.初步计算结果表明:新西兰凯库拉MW7.8地震造成断层上盘东北向抬升,下盘西南俯冲;引起发震区域同震位移较大,从凯库拉到坎贝拉(Campbell)以及首都惠灵顿(Wellington)整体上东北向抬升,最大同震水平位移1.2 m,垂直位移1.1 m.此次大地震释放了发震断层上积累的压应力,但增加了发震断层两端的挤压力;同时,同震剪应力变化增加了NE-SW向断层发生右旋滑动的危险性;采用此次地震发震断层参数计算得出的最大库仑应力变化增加区域集中在发震断层两端,可达到MPa量级.当分别采用新西兰北岛Awatere断裂系和南岛Wellington断裂系参数计算库仑应力变化时,发现新西兰北岛和南岛震中以南区域的库仑应力均增加,可触发部分余震的发生.  相似文献   

3.
1976年唐山地震震源动力过程的数值模拟   总被引:10,自引:3,他引:7       下载免费PDF全文
蔡永恩  何涛  王仁 《地震学报》1999,21(5):469-477
用新LDDA(Lagrangian DiscontinuousDeformation Analysis)方法模拟了唐山地震断层的破裂、错动和应力释放的整个动力过程.模拟结果表明,唐山地震的震源滑动过程在发震断层上各处不一样.近场位移受断层的曲率影响,断层凹侧的位移大于断层凸侧的位移.滑动过冲现象在震中处最大,并向断层两端衰减.我们发现,唐山地震断层的破裂速度和应力降与断层上的初始剪应力大小有关.唐山发震断层的最大动态、准静态位错量和剪应力降均发生在中间部位,分别是7.1 m、6.2 m和8.1 MPa、5.4 MPa,发震断层的平均准静态位错量和剪应力降分别为4.5 m和3.3 MPa,断层破裂的传播速度从震中向东南和西北方向分别为3.08 km/s和1.18 km/s.   相似文献   

4.
单新建  柳稼航  马超 《地震学报》2004,26(5):474-480
利用差分干涉雷达测量技术获取的宏观震中区的同震形变场,结合对地震活动性、震源机制、野外考察等资料分析,对昆仑山口西8.1级地震同震形变场特征进行了研究. 结果表明:宏观震中位于库赛湖东北侧,宏观震中区发震断层可分为两个形变中心区域,其中西段长约42 km,东段长约48 km,整个发震断层主破裂段长90 km;由干涉形变条纹分布格局可清楚地判断出发震断层的左旋走滑特征;断层两盘变形特征不同,南盘变形程度明显大于北盘;宏观震中附近最大斜距向位移量为288.4 cm,最小斜距向位移量为224.0 cm,宏观震中发震断层最大左旋水平位错为738.1 cm,最小地面左旋水平位错为551.8 cm.   相似文献   

5.
2021年5月22日青海省果洛州玛多县发生MW7.4地震,此次地震产生的地表破裂在空间上表现出明显的分段特征.本文基于不同来源的GNSS连续观测网数据获取了此次地震的精细三维同震形变场,结果显示:观测到的最大水平位移量达到280 mm,最大垂直形变量仅为25 mm,暗示此次地震的逆冲分量较小;此次地震具有较为明显的左旋走滑特征,同震形变基本对称,在NW-SE向的影响范围更广,该方向上水平同震形变大于3 mm的震中距范围超过500 km.进而,本文以余震精定位结果和GNSS观测到的三维同震形变场为约束,构建了地表破裂线为折线、倾角为85°、倾向西南的断层模型,反演了滑动破裂分布.结果显示:滑动破裂分布在震中两侧不均匀,均破裂到地表,破裂深度达到15 km左右,最大滑移量为4.73 m,计算的矩震级为MW7.37.该结果与余震精定位结果具有很好的一致性,破裂的极值区正好位于早期余震空区,推测该余震空区未来的发震风险性较低.最后基于反演结果模拟计算了震中区域形变和应变场,结合应变值在断层地表迹线东南侧呈现挤压特征和已有的研究成果,推测此次地震增强了巴颜喀拉块体在东部地区挤压应力的积累特征,导致东部地区发震危险性增强,值得后续跟踪研究.  相似文献   

6.
2017年8月8日四川省九寨沟县发生M_s7.0地震.本文基于Sentinel-1 SAR影像,利用InSAR技术获取了此次地震的同震形变场,反演获得同震滑动分布,计算了同震位错对余震分布和周边断层的静态库仑应力变化,并对发震构造进行了分析讨论.结果表明:①InSAR同震形变场显示,九寨沟地震造成地表形变最大量级约为20 cm(雷达视线方向),同震形变存在非对称性分布特征.②同震位错以左旋走滑为主,主要发生在4~16 km深度,最大滑动量约为77 cm,位于9 km深处.反演得到的矩震级为Mw6.46.同震错动未破裂到地表.③大部分余震发生在库仑应力增加区.此次地震增加了震中周边地区一些断裂的库仑应力,如东昆仑断裂带东段、龙日坝断裂、虎牙断裂等.④东昆仑断裂东段的未来地震危险性值得关注.⑤九寨沟地震的发震断层为树正断裂,可能是虎牙断裂的北西延伸隐伏部分,此次地震是巴颜喀拉块体南东向运动受到华南块体的强烈阻挡过程中发生的一次典型构造事件.  相似文献   

7.
2022年1月8日,在青海省门源县海原断裂带冷龙岭断裂西段和托莱山断裂东端发生了MW6.6地震,发育了明显地震地表破裂带.本文基于欧空局哨兵1号雷达影像,利用InSAR技术获取了门源地震的同震形变场,升降轨InSAR同震视线向位移表现出相反的形变特征,量级达到~60 cm左右,同震形变存在非对称性分布特征,结合高分7号观测解译了近断层地表形变.利用InSAR观测反演获得了发震断层参数及详细滑动分布,计算了同震库仑应力变化,并对发震构造及震中区域未来地震危险性进行了分析讨论.结果表明:门源地震至少有两条断裂发生了破裂,主断层对应冷龙岭断裂西段,InSAR确定的最优断层模型显示主断层东段存在沿走向变化特征,西段则在地质解译断层基础上向西延伸,次断层对应地质解译的托莱山断裂东端,两个断裂组成一个平躺的Y型分布.断层最大滑动量约为~3.7 m,断层浅部存在滑动,表明该地震破裂到了地表,地表破裂长度约19 km.主断层滑动主要集中在0~9 km深度范围;次断层滑动主要集中在0~4 km深度范围,InSAR确定的矩震级为MW6.6.库仑应力变化结果显示民...  相似文献   

8.
利用差分干涉雷达测量技术(D-InSAR)提取同震形变场h   总被引:28,自引:1,他引:28       下载免费PDF全文
简要介绍了合成孔径雷达干涉测量技术、差分干涉雷达测量技术,并对干涉测量精度进行了简单讨论.以西藏玛尼地区为例,通过三通差分干涉处理,获取了玛尼地震同震形变场.结果表明:形变场长200 km、宽115 km.干涉条纹以北东东向发震断层——玛尔盖茶卡断层为中心分布,且基本与发震断层平行;通过对干涉形变图进行分析,发震断层可分为3段,其中西段长约23 km,中段长约60 km,东段长约26 km,整个发震断层共长110 km;震中附近最大隆起斜距向位移量为162.4 cm,断层西侧最大沉降斜距向位移量为103.6 cm,震中最大地面水平位错为7.96 m.   相似文献   

9.
2022年1月8日,青海海北州门源县发生MW 6.9地震,震中位于青藏高原东北缘祁连地震带上冷龙岭断裂和托莱山断裂的交汇处.门源地震活动强烈,造成地表破裂明显,因此研究门源地震的发震机理,对评估周边区域及主要断裂的地震危险性具有重要意义.本文基于D-InSAR技术,利用升降轨Sentinel-1A SAR数据,获取门源地震的同震形变场.结果显示,同震形变主要集中在冷龙岭断裂和托莱山断裂的交汇处,形变长轴整体呈NWW-SEE,同震引发的升轨隆升形变量0.40 m,沉降量0.65 m,降轨隆升形变量0.80 m,沉降量0.70 m,升降轨视线向(LOS)形变呈现符号相反大小相近的特征,断裂运动以左旋走滑为主.以升降轨同震形变信息为约束条件,基于弹性半空间位错理论,采用两步法进行反演,获取门源地震断层的几何参数.结合该区域的地质构造得到断层面上的精细滑动分布,结果表明,断层破裂延伸至地表,破裂迹线长度达22 km.断层滑动主要集中在地下2~12 km,最大滑动量为4.2 m,位于地下7 km处.断层走向约为109°,倾角约为82°,释放的地震矩为2.67×10...  相似文献   

10.
2017年8月8日的九寨沟MS7.0地震发生在岷江断裂、塔藏断裂及虎牙断裂交汇地区,地处青藏高原东北部的川甘交界地区,位于巴颜喀拉地块的东缘,地质构造复杂,对于九寨沟地震震中位置和发震断层的确定,存在不同意见.本文利用GNSS及升降轨InSAR观测,在获取九寨沟地震同震形变场的基础上,基于均匀弹性半无限位错模型,联合反演了发震断层的滑动分布模型,并计算了同震库仑应力变化.InSAR同震形变场显示,视线向最大沉降量和抬升量分别为0.21 m和0.16 m,形变场长轴为NW向,形变主要集中在断层西侧.距震中40 km和65 km的九寨和松潘两县,水平向的GNSS同震位移分别达14.31 mm和8.22 mm.联合GNSS和InSAR同震形变场反演得到的滑动分布主要集中在沿走向5~33 km,倾向2~20 km的范围内,平均滑动量为0.18 m,最大滑动量为0.91 m.发震断层长40 km,宽30 km,走向155°,倾角81°,滑动角-9.56°.同震位移场及滑移分布模型表明此次地震为一次左旋走滑为主的地震事件,地震破裂并未完全到达地表,与虎牙断裂北段的几何产状和运动学性质更为接近,结合精定位余震的分布,我们确定虎牙断裂北段为此次地震的发震断层,震中位于北纬33.25°,东经103.82°,震源深度10.86 km,矩震量为7.754×1018 Nm,相应的矩震级为MW6.5,与美国地调局和哈佛大学给出的震源机制解基本一致.同震库仑应力导致了虎牙断裂北段延长线的东北和西南两端应力增强,其中塔藏断裂的罗叉段和马磨段未来强震的危险性值得关注.  相似文献   

11.
IntroductionOnNovember14,2001,aMS=8.1earthquakeoccurredonthewestofKunlunshanPassintheborderareaofQinghaiandXinjiang,whichwasthestrongestearthquakeinChinesemainlandsincetheMS=8.0earthquakeoccurredinDangxiongdistrictofXizangAutonomousRegiononNovember18,1951.TheearthquakeoccurredontheEasternKunlunTectonicZone,whichwasapalaeoplatejunctionzoneinsideTibetanPlateau.ItdividedTibetanPlateauintothesouthandnorthparts.ThezoneplayedaveryimportantroleinTibetanPlateausdeformationprocessanddynamicev…  相似文献   

12.
Based on the analysis of coseismic deformation in the macroscopic epicentral region extracted by Differential Interferometric Synthetic Aperture Radar (D-InSAR), and combined with the seismic activity, focal mechanism solutions of the earthquake and field investigation, the characteristic of coseismic deformation of M S=8.1 western Kunlunshan Pass earthquake in 2001 was researched. The study shows that its epicenter lies in the northeast side of Hoh Sai Hu; and the seismogenic fault in the macroscopic epicentral region can be divided into two central deformation fields: the west and east segments with the lengths of 42 km and 48 km, respectively. The whole fault extends about 90 km. From the distribution of interferometry fringes, the characteristic of sinistral strike slip of seismogenic fault can be identified clearly. The deformations on both sides of the fault are different with an obviously higher value on the south side. In the vicinity of macroscopic epicenter, the maximum displacement in look direction is about 288.4 cm and the minimum is 224.0 cm; the maximum sinistral horizontal dislocation of seismogenic fault near the macroscopic epicenter is 738.1 cm and the minimum is 551.8 cm.  相似文献   

13.
利用Sentinel-1A卫星升降轨道数据和D-InSAR技术获得青海门源2022年1月8日MS6.9地震的同震形变场,并基于弹性半空间位错模型反演其震源参数,利用分布滑动模型确定断层面上的滑动分布。结果表明,2022年1月8日青海门源地震的同震形变场沿NWW-SEE方向分布;断裂带南缘升轨影像和降轨影像最大视距分别为61 cm和62 cm,断裂带北缘升轨影像和降轨影像最大视距地表形变量分别为43 cm和56 cm。InSAR同震形变场断裂尺度模型断层长30 km,宽18 km,最大滑移量3.5 m;断层滑动分布模型表明该地震为左旋走滑地震。结合冷龙岭断裂的运动特征和几何特征,初步确定此次MS6.9地震的发震断裂为冷龙岭断裂  相似文献   

14.
Based on the analysis of coseismic deformation in the macroscopic epicentral region extracted by Differential Interferometric Synthetic Aperture Radar (D-InSAR), and combined with the seismic activity, focal mechanism solutions of the earthquake and field investigation, the characteristic of coseismic deformation of M S=8.1 western Kunlunshan Pass earthquake in 2001 was researched. The study shows that its epicenter lies in the northeast side of Hoh Sai Hu; and the seismogenic fault in the macroscopic epicentral region can be divided into two central deformation fields: the west and east segments with the lengths of 42 km and 48 km, respectively. The whole fault extends about 90 km. From the distribution of interferometry fringes, the characteristic of sinistral strike slip of seismogenic fault can be identified clearly. The deformations on both sides of the fault are different with an obviously higher value on the south side. In the vicinity of macroscopic epicenter, the maximum displacement in look direction is about 288.4 cm and the minimum is 224.0 cm; the maximum sinistral horizontal dislocation of seismogenic fault near the macroscopic epicenter is 738.1 cm and the minimum is 551.8 cm. Foundation item: National Natural Science Foundation of China (40374013) and “Researching on the Disaster Earthquake” (2003) of Public Welfare Research Item, Ministry of Science and Technology of China.  相似文献   

15.
Introduction The development and application of Interferometric Synthetic Aperture Radar (InSAR) have a close relationship with the sensors development of Synthetic Aperture Radar (SAR). The conception of SAR is proposed comparatively to the real aperture radar antenna. It is well known that the longer the antenna is, the higher the observation resolution will be. Just limited by the length of the antenna, the resolution of real aperture radar is generally very low and cannot meet the r…  相似文献   

16.
Tsunami induced by earthquake is an interaction problem between liquid and solid.Shallow-water wave equation is often used to modeling the tsunami,and the boundary or initial condition of the problem is determined by the displacement or velocity field from the earthquake under sea floor,usually no interaction between them is consid-ered in pure liquid model.In this study,the potential flow theory and the finite element method with the interaction between liquid and solid are employed to model the dynamic processes of the earthquake and tsunami.For model-ing the earthquake,firstly the initial stress field to generate the earthquake is set up,and then the occurrence of the earthquake is simulated by suddenly reducing the elastic material parameters inside the earthquake fault.It is dif-ferent from seismic dislocation theory in which the relative slip on the fault is specified in advance.The modeling results reveal that P,SP and the surface wave can be found at the sea surface besides the tsunami wave.The surface wave arrives at the distance of 600 km from the epicenter earlier than the tsunami 48 minutes,and its maximum amplitude is 0.55 m,which is 2 times as large as that of the sea floor.Tsunami warning information can be taken from the surface wave on the sea surface,which is much earlier than that obtained from the seismograph stations on land.The tsunami speed on the open sea with 3 km depth is 175.8 m/s,which is a little greater than that pre-dicted by long wave theory,(gh)1/2=171.5 m,and its wavelength and amplitude in average are 32 km and 2 m,respectively.After the tsunami propagates to the continental shelf,its speed and wavelength is reduced,but its amplitude become greater,especially,it can elevate up to 10 m and run 55 m forward in vertical and horizontal directions at sea shore,respectively.The maximum vertical accelerations at the epicenter on the sea surface and on the earthquake fault are 5.9 m/s2 and 16.5 m/s2,respectively,the later is 2.8 times the former,and therefore,sea water is a good shock  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号