共查询到16条相似文献,搜索用时 62 毫秒
1.
2022年1月8日,青海省海北藏族自治州门源县发生M S6.9地震,震中位于青藏高原东北缘地区祁连—海原断裂带的冷龙岭断裂和托勒山断裂构造转换区域(37.77°N,101.26°E)。震后野外现场考察结果表明,此次地震形成的同震地表破裂带总长度约为26 km,整体走向NWW向,破裂性质以左旋走滑局部逆冲为主。断层错动造成的破坏形式以雁列式组合的张裂隙、张剪裂隙、挤压鼓包、断层陡坎等为主。其中,道河至硫磺沟段地表破裂最为强烈,规模大且连续性好,造成的震害最为显著,地表破裂规模向东、西两端逐渐衰减。破裂带穿过区域内多条河流,造成显著的冰面破裂变形,并沿河岸形成一系列的边坡崩塌、滚石等地质灾害。综合破裂带及震害规模分析,宏观震中位于道河至硫磺沟地区。 相似文献
2.
2022年1月8日,青海省门源县发生了M S6.9地震。为及时全面了解地震同震地表破裂带的空间分布并准确判定发震构造,文中通过对震后高分七号遥感影像进行解译判读,综合野外考察核实,获得了门源M S6.9地震同震地表破裂带的展布情况,并识别出多种典型的同震破裂地貌,总结了多种同震地貌的影像特征。结果表明,此次地震产生了2条主要的地表破裂带,呈左阶斜列展布。北支主破裂带分布于冷龙岭断裂西段,长约22km,走向100°N~120°E;南支次级破裂带分布在托莱山断裂东段的局部段上,长约4km,走向为N90°E, 2条破裂带总长约26km;沿破裂带形成了一系列典型左旋走滑同震地貌,如张裂隙、张剪裂隙、挤压脊、挤压鼓包、左旋纹沟、左旋断错路基等;在此基础上,文中还对冷龙岭地区典型左旋地貌的累积位错进行了测量,并与前人的测量结果作对比研究,得到了较为准确的测量结果。文中基于高分影像对断裂沿线典型的断错地貌开展研究,不仅可为高分七号卫星数据的地质应用积累实例,所得结果也可为未来构造地貌研究提供强有力的数据支撑。 相似文献
3.
2022年1月8日01时45分, 在青海省海北州门源县(N37.77°, E101.26°)发生了MS6.9地震, 震源深度约10km.震后现场考察确认, 本次地震震中位于祁连—海原断裂带中段的冷龙岭断裂与托勒山断裂之间的构造转换部位, 上述断裂均为全新世活动的左旋走滑断裂.地震形成了两条地表破裂带, 总长度约31km.其中, 北侧主破裂带主要沿冷龙岭断裂西段分布, 东起硫磺沟脑, 向西穿过道沟, 至下大圈沟止, 长度约22km, 野外测量并经无人机高分辨率影像校核后, 最大水平位错量约2.6±0.3m, 并向两端逐渐衰减, 宏观震中位于硫磺沟大拐弯至道沟以东一带.南西侧的次级破裂带分布在托勒山断裂东段上, 东自大圈窝, 断续向西过羊肠子沟, 至大西沟止, 长度约9km, 最大水平位错量约1.0±0.1m, 二者之间呈左阶斜列, 最小阶距约1.0km.本次地震地表破裂习性以左旋走滑为主略具逆冲分量, 各次级破裂呈左旋左阶拉张或左旋右阶挤压的雁列式组合, 形成了典型的走滑断错地貌, 如左旋断错纹沟、河床、牧区铁丝网围栏、道路路基、车辙、便道和动物脚印等, 同时还形成了典型的挤压脊或鼓包、张性裂隙和断层陡坎等, 其走滑破裂样式典型而丰富.综合本次地震地表破裂展布和余震活动所反映的深部构造特征表明, 其发震构造应以冷龙岭断裂西段为主, 托勒山断裂东段参与, 在其构造转换部位形成不连续的Y字型分叉的地震地表破裂图像.这次地震是继1986年门源MS6.4和2016年门源MS6.4地震沿冷龙岭北侧次级断裂活动之后, 发生在冷龙岭主干活动断裂带上的一次强烈地震, 未来应重点关注祁连—海原断裂带尤其是西段的大震活动. 相似文献
4.
2022年1月8日,青海省门源县发生M S6.9地震。使用青海、甘肃等区域数字台网所观测到的2009年1月1日—2022年2月8日间青海门源及周边地区(36°~39°N,101°~104°E)14 869次地震事件的地震观测资料,基于双差成像(TomoDD)方法进行重定位分析,结果表明:门源及周边地区地震震源深度较浅,主要集中在5~15 km深度范围,其中10 km附近分布最多。推断该深度区域为门源及周边地区的主要孕震区。基于地震重定位结果和主震区三维速度结构分别对2016年门源M S6.4地震和此次地震序列的发震机理进行分析对比,发现两次地震都位于高速异常体边缘,速度结构与断裂、地震序列吻合较好。2022年门源地震位于高速体的西端末梢位置,是该高速体受青藏高原东北缘顺时针应力作用导致的滑动产生的走滑型地震。 相似文献
5.
为了深入分析2022年1月8日青海门源M S6.9地震引发的不同类型地表破裂特征及震害现象,本文依据沿此次地震地表破裂带进行的野外实地考察和无人机航拍解译,将破裂带沿线的典型同震地表破裂特征归纳为:(1)多种典型几何细结构,包括雁列状次级破裂、左旋左阶拉张区、左旋右阶挤压区以及树枝状、网状破裂等;(2)多种地貌标志物水平位错,包括牧区围栏、车辙印、动物脚印和冲沟冰面的左旋断错等;(3)多种类型垂直破裂,如逆冲型地震陡坎和正断型地震陡坎;(4)多种类型挤压破裂,如挤压脊和挤压鼓包;(5)不同类型张性裂缝带,如纯张性裂缝带和张剪性裂缝带.将地震引发的地质及工程震害现象归纳为:(1)跨地震断裂带的边坡垮塌失稳;(2)跨地震断裂带的公路、桥梁和隧道损坏;(3)地震断裂带附近区域的冰面鼓包、公路裂隙等形变现象.此外,对上述现象的展布特征和成因机制进行了分析讨论,并强调了加强跨活动断裂带时工程抗断及近断层强地面运动的抗震设防的重要性. 相似文献
6.
2022年1月8日青海省海北州门源县发生 MS6.9地震,震中距离2016年1月21日门源 MS6.4地震震中约33km,两次门源地震均发生在冷龙岭断裂附近,但在震源机制、主发震断层破裂过程及地震序列余震活动等方面显著不同。针对两次门源地震序列的比较分析,对研究冷龙岭断裂及其附近区域强震序列和余震衰减特征等具有重要研究意义。通过对比分析2022年门源 MS6.9地震和2016年门源 MS6.4地震余震的时空演化特征,发现二者在震源过程和断层破裂尺度上存在明显差异,前者发震断层破裂充分,震后能量释放充分,余震丰富且震级偏高;而后者发震断层未破裂至地表,余震震级水平偏低。综合分析两次门源地震序列表现出来的差异性,认为其可能与地震发震断层的破裂过程密切相关,且同时受到区域构造环境的影响。 相似文献
9.
地震地表破裂带是地震破裂在地表的直接表现,其宽度是活断层“避让带”和工程抗震设防重要的指示参数.无人机等测量手段的发展为获取地表破裂带的高分辨率影像数据、精细测量破裂带宽度、分析破裂带宽度空间分布特征以及限定合理的活断层“避让带”提供了有利条件.2022年门源M S6.9地震在青藏高原东北缘冷龙岭与托莱山断裂阶区部位产生了显著的左旋走滑型地表破裂带.基于震后获取的高精度无人机正射影像和数字高程模型,文中在门源地震地表破裂带全段精细解译的基础上,沿走向间隔100 m测量了251个宽度数据,R1破裂带最大宽度为209.78±14 m,平均宽度为42 m, R2破裂带最大宽度为115.31±15.72 m,平均宽度为26.14 m.宽度沿走向具有差异性,这主要受控于同震变形强度、破裂带几何结构以及地表第四系松散层发育状况;具体表现为同震位移量大、阶区等复杂几何结构以及穿过第四系松散层区段的破裂带比同震位移量小、平直段以及基岩区段的破裂带要宽.通过对去除离散值后的破裂带宽度数据统计分析,计算出95.4%和68.2%置信区间的有效宽度分别是70或50 m.在工程抗震设防中,若... 相似文献
10.
采用CAP(Cut and Paste)方法反演了2016年1月21日青海门源 MS6.4地震的震源机制解,其最佳双力偶解节面I走向339°,倾角49°,滑动角111°:节面Ⅱ走向129°,倾角45°,滑动角68°,矩震级 MW5.92,矩心震源深度约为9 km,地震破裂类型为逆冲型地震。结合余震序列展布及震区的活动构造特征,判定发震断层面为节面I,推测此次地震的发震断裂为冷龙岭断裂。 相似文献
11.
2016年青海门源M_S 6.4地震具有显著特征,如:余震强度低、能量释放水平低、震害较轻等。震区地震构造表现出一定规律性,如:冷龙岭断裂呈周期性破裂,发震断裂含多支相互斜交的分支断裂等。虽然地震前小震活动未能提供有价值的预测信息,但震中落入2015年甘肃省年度危险区。本文对此次地震的震源机制解、地震序列衰减、震害特点及冷龙岭断裂带构造进行分析,给出地震序列属性、发震断层及错动动力源,提出地震并未发生在冷龙岭主断裂的证据,从而为震区及邻区地震活动状态与孕震机制判定提供参考,并为后续震情判定提供震例与数据。 相似文献
12.
整理2016年1月21日1时13分青海门源M_S 6.4地震数字化形变观测资料,分析此次地震同震响应记录,重点研究地倾斜同震响应随空间的变化特征。结果发现:地倾斜同震响应与地震台站位置有关,对于不同台站,同震响应具有不同的变化形态。统计认为,同震响应曲线形态具有的优势指向对发震断层走向具有一定指示意义。 相似文献
13.
2022年1月8日青海门源发生 MS 6.9地震,基于青海地震台网对此次地震序列时空演化特征进行分析。结果表明,门源地震序列的空间展布整体上呈西段NWW、东段SE向的带状分布,且序列衰减较缓慢。另外,基于同一构造历史地震类比、 h值、等待时间法等进行分析,认为门源 MS 6.9地震序列为主—余型;根据祁连地震带中东段5级以上地震最大余震发震时间统计和震级差特征分析认为,门源 MS 6.9地震的最大余震已经发生,即2022年1月12日18时20分的 MS 5.2地震。 相似文献
14.
2022年1月8日青海门源发生M S6.9地震,该地震造成冷龙岭断裂西端错断了兰新铁路大梁隧道,导致铁路长期停运,经济损失巨大。制定隧道修复方案时,需对冷龙岭断裂未来强震的水平位错量进行评估。结合近年来冷龙岭断裂的最新研究进展,同时采用确定性方法和概率断层位错危险性分析方法评估冷龙岭断裂未来强震的水平位错量。考虑不确定因素影响,同时采用3名研究者提供的震级与最大位错量经验关系式进行估算。结果表明,不同经验关系式会对评估结果产生显著影响,其中根据确定性方法得到的冷龙岭断裂未来强震的水平位错量为2.32~4.36 m,均值为3.57 m。概率断层位错危险性分析结果随着超越概率的降低而增大,50年超越概率2%、100年超越概率2%和100年超越概率1%的结果均值分别为1.82 m、3.17 m、4.61 m。相较于确定性方法,概率断层位错危险性分析可提供不同超越概率水平下的位错参数,以供不同抗震设防要求的建筑采用。此外,对于地震活动性强的断裂,可采用低超越概率下的概率断层位错危险性分析结果,该结果可能会大于确定性方法评估结果。 相似文献
15.
2022年1月8日青海省门源县发生MS6.9地震,震中附近遭受了强烈地震破坏.为验证Graves和Pitarka开发的GP断层破裂模型在震前对中国地区地震动场的预测与评估能力,本文基于GP法,考虑不同上升时间系数(rc)的影响,对门源地震进行了确定性地震动模拟.将模拟结果在地震动衰减规律、波形与幅值和烈度分布三个方面分别与青藏地区的地震动峰值预测方程、强震观测记录和根据强震记录自动产出的烈度图进行了对比.结果表明,当rc为9.0时,模拟记录与实测记录和地震动峰值预测方程基本一致.本文较好的重现了门源地震的强震动场,在合理选取rc的情况下,GP法可以应用于中国地区震前强地震动场的预测和估计. 相似文献
16.
2022年1月8日青海门源MS6.9地震前,中国地震局在青藏高原东北缘开展了多期流动重力观测,并观测到震中附近重力场随时间的变化.我们曾利用震中附近重力场变化信息在地震前对发震地点进行了较为准确的预测.本文综合利用地面绝对重力、相对重力资料,对青藏高原东北缘2018—2021年间的重力观测数据进行整体处理,系统分析了区域重力场动态变化及其与门源MS6.9地震发生的关系.结合地震剪切波分裂、地壳裂隙及饱和度研究成果,进一步研究了区域重力场变化的时空分布特征及其机理.结果表明:(1)门源MS6.9地震前2年累积重力变化呈现出明显的四象限分布特征,震中位于重力变化的四象限中心零等值线附近;(2)地震前重力异常持续时间与震级的关系、地震剪切波分裂产生的慢波时间延迟持续时间与震级的关系显现一致性,这种一致性表明地下流体运移可能是地震前观测到的重力变化的主要成因;(3)本次震中东南侧的显著重力变化延伸到了冷龙岭断裂东段至海原断裂一带,后期仍需要关注该地区的地震危险性. 相似文献
|