首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 76 毫秒
1.
采用2014—2016年承德市环境监测站和气象站的数据,对承德市O3、NO2、CO浓度和气温进行了分析,得出以下结论:承德市O3污染天数及所占的比重呈逐年增加趋势;O3-8 h月平均浓度呈现夏季高而冬季低的季节变化特征,月平均气温与其呈现一致的变化趋势,其前体物NO2和CO则呈现相反的变化趋势,表现为冬季高而夏季低的特征;O3浓度的日变化呈单峰型分布,午后浓度升高而夜间浓度下降,与气温的日变化趋势一致,NO2呈现相反的变化趋势,CO呈三峰型分布,总体表现为中午浓度最高;O3-8 h、NO2、CO浓度和气温总体均呈现北低南高的空间分布;O3-8 h浓度与其前体物NO2和CO均呈显著的负相关关系。有利于承德市出现O3污染天气的气象要素为太阳总辐射辐照度900~1000 W/m2,日最高气温大于30℃,无降水产生,日最小相对湿度小于20%和50%~60%,受偏南风或西南风影响。  相似文献   

2.
利用雷电监测定位网2007—2010年4 a时间的雷电资料,对金华地区雷电活动的时空分布特征进行研究分析,结果表明,金华地区雷电活动在时间分布上主要受季节性变化以及昼夜变化影响;在空间分布上主要受到纬度影响,同时也受到地形等因素的影响。  相似文献   

3.
为了了解洛阳市O_3污染特征及其影响因素,利用2017年洛阳市7个国控点监测到的O_3、NO_2浓度及气象要素逐时数据,统计分析了2017年洛阳市O_3及NO_2的时间分布特征及NO_2浓度、气象因子对O_3浓度的影响。结果表明,洛阳市2017年O_3日最大8 h第90百分位数浓度为200μg/m~3,是二级标准的1.25倍。O_3和NO_2浓度存在明显的季节性变化特征,O_3浓度夏季最高,冬季的最低;NO_2浓度冬季最高,夏季的则最低。O_3浓度的日变化呈现为单峰分布,午后浓度较高,峰值出现在15:00左右;NO_2受机动车早晚高峰影响,表现为双峰分布,峰值分别出现在08:00和21:00。O_3与NO_2浓度呈现出良好的负指数函数关系,当洛阳市NO_2浓度低于40μg/m~3时,存在着O_3浓度超标的风险。高温低湿条件下有利于O_3的生成,当温度超过27℃时,洛阳市O_3小时浓度开始出现超标现象,且温度越高,超标风险越大;当相对湿度低于40%时,O_3小时平均浓度超标率最高为63.30%,随着相对湿度的增加,超标率逐渐降低,当相对湿度大于70%时,未出现O_3小时浓度超标现象。  相似文献   

4.
中国地区臭氧前体物对地面臭氧的影响   总被引:4,自引:1,他引:4  
利用GEOS-Chem模式的数值试验结果,研究中国地区NOx和两类VOCs对O3质量浓度分布及其化学机理的影响。研究表明,NOx的减少会使得中国西部O3质量浓度显著降低,但在冬季NOx的减少会使得东北、华北地区O3质量浓度上升。而京津唐地区由于VOCs/NOx比值偏低,不能通过单一减少NOx来控制O3质量浓度。VOCs排放的减少会使得我国东部地区O3质量浓度大幅减少,其中人为VOCs的减少能降低我国东部地面O3质量浓度,而生物VOCs的减少只能在夏秋季有效减少我国东部地区35°N以南区域的地面O3质量浓度。控制地面O3质量浓度时,中国西部主要考虑NOx的减排,东部35°N以北主要考虑AVOCs的减排,而30~35°N应同时考虑AVOCs和BVOCs的减排,在30°N以南的地区,则需要全面考虑NOx和VOCs的减排。  相似文献   

5.
利用臭氧探空资料,分析了西太平洋地区香港(Hong Kong)、那霸(Naha)和札幌(Sapporo)三个站点2000~2010年期间大气边界层内臭氧(O3)的季节分布和年变化趋势。结果表明,三个站点O3的季节分布存在明显的差异。其中,那霸和香港大气边界层内O3季节平均呈双峰值分布,其峰值分别出现在春季和秋季;而札幌站为单峰分布,峰值出现在春季。造成季节分布差异的主要原因包括人为污染源和自然因素如气象条件。另外,三个站点大气边界层内O3均呈上升趋势。其中札幌、那霸上升最快,分别达0.80 ppb a-1和0.77 ppb a-1。(ppb表示10-9,下同)香港的年际增长较不明显,但秋季增长却非常明显,高达1.21 ppb a-1。结合GOME (Global Ozone Monitoring Experiment) 和SCIAMACHY (Scanning Imaging Absorption Spectro Meter for Atmospheric Chartography)卫星反演的NO2数据发现,过去10年中国京津唐和东北地区的对流层内NO2柱总量增加极为迅速。这些O3前体物通过远距离输送是导致札幌、那霸O3浓度增加的主要原因之一。珠江三角洲人为污染源的增加及偏北气流的影响,是导致香港地区秋季O3增加的主要原因。  相似文献   

6.
为了进一步了解青藏高原闪电的产生氮氧化物(LNOx)经由光化学反应对O3浓度变化及夏季O3低谷形成的可能影响,本文利用2005~2013年由OMI卫星得到的对流层NO2垂直浓度柱(NO2 VCD)、O3总浓度柱(TOC)和O3廓线以及星载光学瞬变探测器OTD和闪电成像仪LIS获取的总闪电数资料,对青藏高原和同纬度长江中下游地区的TOC和NO2 VCD月均值时空分布特征、闪电与NO2 VCD的相关性和O3的垂直分布特征及其与LNOx的关系进行了对比分析。结果表明,青藏高原的O3低谷主要出现在夏季和秋季,其TOC值比同纬度长江中下游地区低约10~15 DU(Dobson unit)。青藏高原NO2VCD总体较小,表现为夏高冬低的分布特征。青藏高原夏季O3浓度受南亚高压的影响总体呈减小趋势,但因强雷暴天气导致对流层中上部LNOx浓度升高,并随强上升气流向对流层顶输送,同时通过光化学反应使O3浓度增加,缩小了青藏高原和同纬度地区的O3浓度差,减缓了O3总浓度的下降,抑制了夏季O3低谷的进一步深化。  相似文献   

7.
根据丰都县1961—2010年50 a气象资料统计,伏旱发生频率76%。时间分布(以年代为单位),从20世纪60年代以来,丰都伏旱频率呈现中-高-中-低-中的变化特点,一般伏旱呈减弱趋势,严重伏旱呈增加趋势。丰都伏旱开始期最早出现于6月21日,最晚出现于8月17日,平均日期7月14日[1];50 a伏旱天数平均为37 d,最少20 d,最多72 d。从空间分布看:丰都伏旱强度随海拔高度增加具有减弱的特征。防御伏旱措施有水利工程建设、科学蓄水保水、实施人工增雨、合理布局播栽期、植树造林等。  相似文献   

8.
根据1980—2006年长三角地区6个站点累计27a的雾资料,分析了长江三角洲地区雾的时间、空间分布特征。结果表明,秋末、冬季和春季长江三角洲地区雾频次较多,夏季较少,年平均雾日数呈缓慢减少趋势;雾区域分布不均匀,总体说来是东多西少。在此基础上,用时间序列方法建立了雾频次预测模型,并对2007年1—12月各月的雾频次进行预测检验,结果表明预测值与实际值误差较小,该模型具备较好的预测能力。  相似文献   

9.
文章利用呼和浩特地区1971—2010年扬沙、沙尘暴资料,采用线性倾向估计、多项式拟合、经验正交函数分解、小波分析、Mann-Kendall检验、滑动t检验、Yamamoto法等分析了1971—2010年呼和浩特地区扬沙、沙尘暴日数的时空分布特征及演变规律。结果表明:⑴呼和浩特各地区扬沙、沙尘暴日数空间分布具有高度的一致性,由西到东呈现出高—低分布特点。⑵春季(3—5月)是扬沙、沙尘暴天气现象最频发季节,不频发时段是秋季(9—10月),沙尘暴的季节分布基本上是春多秋少。⑶从年际分布特征来讲,扬沙、沙尘暴日数总体呈现显著地下降趋势,但在总体下降的同时到21世纪初期又有所上升。⑷扬沙日数序列研究时段内显著存在着5~8a周期振荡;沙尘暴日数序列的周期特征不明显。⑸通过突变检测得知:沙尘天气在20世纪70年代末、80年代初开始突变减少,之后整体呈现波动减少的趋势。⑹20世纪70年代呼和浩特地区扬沙、沙尘暴发生最多,80年代沙尘天气在逐步减少,90年代达最少,到了21世纪前10年扬沙、沙尘暴发生日数均较20世纪90年代有所增多。  相似文献   

10.
应用WRF—Chem(Weather Research and Forecasting Model with Chemistry)模式模拟研究了2007年8月京津冀地区近地面O3、NO2、PM2.5浓度的时空变化特征,将模拟结果与观测数据进行详细对比,结果表明,模式可以较好地模拟O3、PM2.5,浓度的空间分布和时间变化特征,成功再现了8月33和PM2.5的几次积累增加过程,其中O,的模拟值与观测值的相关系数为0.69~0.86,PM2.5的相关系数为0.44~0.49,但模式对NO2的模拟相对较差,相关系数为0.27~0.43。北京、天津地区为O3月均低值区,月均体积浓度约30×10^-9,渤海及京津冀以西地区O3月平均体积浓度可达60×10^-9;PM2,呈现南高北低的分布特征,变化范围为120~240μg/m3。14时月平均03体积浓度在北京、天津地区低于周边地区,约为60×10^-9;而PM2.5质量浓度在环渤海地区和河北南部较高,为100~120μg/m^3。8月17日北京出现一次典型的高浓度O,污染事件,14时北京地区温度达到33℃,O3体积浓度为80×10^-9~110×10^-9。在局地排放、化学反应和外来输送的共同作用下,渤海西岸和北岸PM2.5的质量浓度超过120μg/m3,其中二次气溶胶质量浓度为50~100μg/m3,一次排放人为气溶胶质量浓度为10~20μg/m3,海盐质量浓度为1~7μg/m3,二次气溶胶是该地区PM2.5的主要贡献者。  相似文献   

11.
传统的空气质量模型多使用简化的光化学反应机制来模拟大气污染物的形成.这些机制主要基于烟雾箱实验拟合的反应速率和产物来模拟二次产物(如臭氧(O3))前体物的氧化反应,具有一定的不确定性,导致模拟结果产生偏差.针对该问题,本研究将详细的大气化学机理(MCMv3.3.1)与美国国家环境保护局研制的第三代空气质量预报和评估系统CMAQ相结合(CMAQ-MCM),模拟研究长三角地区2015年8月27—9月5日臭氧高发时段的空气质量.CMAQ-MCM模型可以较好地模拟长三角地区6个代表城市O3和其前体物随时间的变化趋势.对模拟的O3日最大8 h平均浓度的统计分析表明,徐州表现最好(标准平均误差=-0.15,标准平均偏差=0.23).在长三角地区,居民源对挥发性有机物(VOCs)的贡献最大,占39.08%,其次是交通运输(33.25%)和工业(25.56%).能源对总VOCs的贡献最小,约为2.11%.对活性氧化氮(NOy)的分析表明,其主要组分是NOx(80%),其次是硝酸(HNO3)(<10%).O3的空间分布与NOy和NOx非常相似.HCHO等其他氧化产物的分布与NOx相似,这很可能是由于在高NOx条件下VOCs氧化产生的产物.甲基乙烯基酮(MVK)和甲基丙烯醛(MACR)的空间分布与自然源VOCs (BVOCs)非常相似,表明长三角地区MVK和MACR主要由BVOCs氧化生成.长三角地区受到人为源和自然源排放相互作用的影响.  相似文献   

12.
O_3和PM_(2.5)是影响长三角地区空气质量的主要污染物。利用2016年33个城市大气环境监测站6项污染物的小时浓度及4个省会城市的气象数据进行统计分析,研究了该地区O_3和PM_(2.5)浓度的时空分布特征及其影响因素。结果表明:长三角地区O_3年平均浓度为50~73μg·m~(-3),平均为61μg·m~(-3);除芜湖和宣城外,其余31城市均存在不同程度的超标状况,超标率为0.34%~18.86%,平均为5.68%。O_3在5月和9月达到浓度高值;四季O_3日变化均呈单峰型,峰值出现在15∶00,夏季O_3峰值浓度最高值为157μg·m~(-3)。O_3浓度沿海城市整体高于内陆城市;夏季宿迁—淮安—滁州片区O_3污染较重。O_3与NO_2、CO显著负相关,且与NO_2相关性较强;O_3与气温、日照时数显著正相关,与相对湿度、降水呈负相关。PM_(2.5)年平均浓度在25~62μg·m~(-3)范围内,平均为49μg·m~(-3);各城市均出现PM_(2.5)超标,滁州PM_(2.5)超标率最大,为23.91%。PM_(2.5)在3月和12、1月达到浓度峰值;其日变化呈双峰型,09∶00—10∶00和22∶00—23∶00达到峰值。冬季徐州PM_(2.5)浓度最高,为102μg·m~(-3)。PM_(2.5)与NO_2、CO、SO_2、PM_(10)显著正相关,与气温、风速、降水负相关。  相似文献   

13.
Surface ozone data from 25 Europeanlow-altitude sites and mountain sites located between79°N and 28°N were studied. The analysiscovered the time period March 1989–February 1993.Average summer and winter O3 concentrations inthe boundary layer over the continent gave rise togradients that were strongest in the north-west tosouth-east direction and west-east direction, respectively. WintertimeO3 ranged from 19 to 27 ppbover the continent, compared to about 32 ppb at thewestern border, while for summer the continentalO3 values ranged between 39 and 56 ppb and theoceanic mixing ratios were around 37 ppb. In the lowerfree troposphere average wintertime O3 mixingratios were around 38 ppb, with only an 8 ppbdifference between 28°N and 79°N. For summerthe average O3 levels decreased from about 55 ppbover Central Europe to 32 ppb at 79°N. Inaddition, O3 and Ox(= O3 + NO2)in polluted and clean air were compared. Theamplitudes of the seasonal ozone variations increasedin the north-west to south-east direction, while thetime of the annual maximum was shifted from spring (atthe northerly sites) to late summer (at sites inAustria and Hungary), which reflected the contributionof photochemical ozone production in the lower partsof the troposphere.  相似文献   

14.
以东亚酸沉降监测网近地面O3资料,结合NCEP/NCAR的全球再分析风场、NOAA总云量及全球降水气候项目降水资料,分析2000~2007年东亚西太平洋地区近地层O3的区域和季节变化,重点分析不同站点O3月均浓度最大值时间差异的原因。结果表明,东亚以及大部分北半球中纬度清洁背景地区,近地层O3春季最高、夏季最低是广泛存在的现象。东亚夏季风的推进过程造成不同地区春季O3月均最大值出现的时间略有不同,Ogasawara和Hedo站O3浓度在3月达最大值,而Rishiri、Happo、Oki和Cheju站在4、5月达最大值。2007年副热带高压西进较晚且推进过程受阻导致Happo站2007年春季O3浓度高于气候平均值,Cheju地区2007年5月O3浓度达最大;2004年东亚夏季风爆发较早导致Hedo站2004年春季O3浓度明显低于平均值。  相似文献   

15.
针对当前单模式系统臭氧(O3)预报的不确定性问题,提出了一种基于活动区间的多模式超级集成的、高效的预报方法。本研究基于长江三角洲(长三角)地区多模式空气质量预报系统,将改进后的超级集成预报方法(AR-SUP)运用到2015年长三角地区的O3预报中,并与滑动训练期的超级集成预报(R-SUP)、多模式集成平均预报(EMN)、消除偏差的集成平均预报(BREM)对比,结果表明AR-SUP对预报效果的改善最明显,其在暖季和冷季的均方根误差(RMSE)较最优单模式平均下降了20%和23%。将AR-SUP运用到48 h和72 h预报中发现,当预报时效增加时该方法依旧保持较高的预报技巧。多项统计数据均证明AR-SUP在研究时段内所有站点均能显著减小O3预报误差、提高整体相关性和一致性,有效提高当前短期(三天)预报准确率。  相似文献   

16.
长三角工业区夏季近地层臭氧和颗粒物污染相互关系研究   总被引:4,自引:0,他引:4  
利用2013年5月15日到8月31日南京江北工业区(长三角典型工业区)同步的观测资料分析了近地层臭氧(O3)和细颗粒物(PM2.5)、气溶胶光学厚度(AOD)的变化特征及相互间的关系,并结合光化学箱模式分析了AOD对近地层O3生成的影响。结果表明,观测期间PM2.5平均质量浓度为56.2±20.1 μg m-3;AOD(500 nm)均值为1.4±0.9;波长指数α(440~870 nm)均值为1.0±0.3。PM2.5质量浓度24 h均值超国家二级标准20.2%,超标时AOD均值增加14.7%,α平均值增加23.9%,O3体积分数均值减少12.3%。O3超国家二级标准10.1%,超标时段AOD增加34.9%,α变化不显著。高温低湿条件下,O3日变化峰值(y)和PM2.5质量浓度(x)存在较高的线性相关。相对湿度<60%时,两者拟合曲线为y=0.97x+43.96(拟合度R2=0.60),温度>32°C时,两者拟合方程为y=1.24x+30.61(R2=0.64)。夏季长三角工业区呈现高浓度O3与高浓度PM2.5叠加的大气复合污染。O3日变化峰值和AOD变化呈显著负相关。模拟结果显示,O3日变化峰值(y)和AOD(x)呈现极高的负相关[y=-34.28x+181.62,R2 = 0.93或y=220.62·exp (-x/3.17)-19.50,R2=0.99]。  相似文献   

17.
对临安大气本底站2003-2004年冬、夏季二氧化氮(NO2)、二氧化硫(SO2)、臭氧(O3)进行了分析.结果表明:冬季NO2和SO2平均体积分数分别为19.48×10-9和35.74 x10-9,而夏季的平均体积分数分别为4.81×10-9和8.12×10-9,冬季高于夏季;O3在夏季的平均体积分数为33.55×10-9,略高于冬季的25.44×10-9;夜间NO2和SO2体积分数比白天高,并且NO2呈明显的单峰单谷型分布,O3也呈单峰型但峰值出现在白天.NO2、SO2体积分数存在着明显的“假日效应”,假日比非假日低,周五高于假日和非假日;但O3体积分数没有明显的假日效应.降水对SO2有明显的清除作用,但对NO2的清除作用不明显.与风向对比发现,夏季高体积分数的NO2、SO2都受到NW、WNW风的影响,冬季则分别受NE和SW、SSW风的影响;而O3受风向的影响较复杂,与局地光化学反应有关.  相似文献   

18.
成都市冰雹的时空变化与地形特征分析   总被引:1,自引:0,他引:1  
祁红彦  刘立兵 《气象科技》2015,43(3):503-505
利用成都市1984—2012年冰雹日志数据,分析了成都市近30年冰雹发生的时间变化、空间分布和地形特征。结果表明:成都市冰雹主要集中在春夏之交的5月和受副高阻塞型系统影响的8月,发生时间集中在13:00—20:00。每年的冰雹日数在2004年前呈增加,最多时为8次,之后呈下降特点。东部的龙门山带降雹次数最多,受沱江水系的影响主要分布在官仓、柏合和书房,而北部和西南部降雹次数较少;主要受白马河水系影响,分布隆丰、安德和西崃区域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号