首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Directional dependence of horizontal wind direction fluctuations (Σθ) is studied at the coastal site of Madras Atomic Power Project, Kalpakkam with significant inhomogeneity in roughness element distribution around the location of measurement. Σθ is measured by a potentiometric wind vane mounted on a 30 m meteorological tower. Values of Σθ showed as high as threefold variation for the same atmospheric stability depending on the effective roughness length of the upwind sector. Average Σθ values separated for sea- and land-breeze conditions, when correlated with Pasquill stability categories showed a monotonic decrease with increasing stability for land breeze but was found to increase for change from D to F category during sea breezes presumably due to the influence of an internal boundary-layer development.  相似文献   

2.
Continuous measurements of surface ozone (O3), NOx (NO + NO2) and meteorological parameters have been made in Kannur (11.9?°N, 75.4?°E, 5?m asl), India from November 2009 to October 2010. It was observed that O3 and NOx showed distinct diurnal and seasonal variabilities at this site. The annual average diurnal profile of O3 showed a peak of (30.3?±?10.4) ppbv in the late afternoon and a minimum of (3.2?±?0.7) ppbv in the early morning. The maximum value of O3 mixing ratio was observed in winter (44?±?3.1) ppbv and minimum during monsoon (18.46?±?3.5) ppbv. The rate of production of O3 was found to be higher in December (10.1?ppbv/h) and lower in July (1.8?ppbv/h) during the time interval 0800?C1000?h. A correlation coefficient of 0.52 for the relationship between O3 and [NO2]/[NO] reveals the role of NO2 photolysis that generates O3 at this site. The correlation between O3 and meteorological parameters indicate the influence of seasonal changes on O3 production. Investigations were further extended to explore the week day weekend variations in O3 mixing ratio at an urban site reveals the enhancement of O3. The variations of O3 mixing ratio with seasonal air mass flows were elucidated with the aid of backward air trajectories. This study also indicates how vapor phase organic species present in the ambient air at this location may influence the complex chemistry involving (VOCs) that enhances the production of O3 at this location.  相似文献   

3.
Meteorological measurements were carried out at North Chennai semi rural area during pre-monsoon period as a part of an air quality study program. Analysis of the data showed the effects of coastal terrain namely the land-sea breeze circulation, temperature cooling during the sea breeze, difference in onset times at these sites etc. Sea breeze onset was observed with a sharp turning of the wind from westerly to south easterly associated with rise in wind speed. Advection speed of the front was about 2.0 m s− 1. A simple mesoscale meteorological model (MAM-I) developed at Kalpakkam for coastal atmospheric dispersion estimation was used to simulate the observed characteristics. All the major features observed could be simulated by the model while significant difference was noticed in sea breeze frontal movement. MAM results were also inter-compared with MM5. There were no significant differences in the estimate of mean parameters by both the models. It is concluded that the simple model, which takes less run time in a desktop PC, is adequate enough for practical application of providing wind field for plume dispersion models at coastal sites.  相似文献   

4.
Neutral surface layer flow over low hills and varying surface roughness is considered with emphasis on closure schemes in relation to the prediction of turbulence quantities. The equations are linearised, Fourier transformed in the two horizontal directions and solved by means of a finite difference method in the vertical. Three closure schemes are. employed, namely mixing length, E- and e-- closure where E, and indicate that differential equations are used for turbulent kinetic energy, dissipation rate and shear stress. Model calculations are compared with experimental data for the step in roughness problem and for the Askervein hill. The mean flow results turn out to be relatively insensitive to the closure scheme. The shear stress and the dimensionless shear, however, are much better predicted with the E- equations than with mixing length closure. In the outer layer of the hill problem, advection of shear stress becomes important. An equation for is needed here.  相似文献   

5.
Aerosol size spectra (d=10 nm–10 μm) were measured with an electrical aerosol spectrometer (EAS) at Mace Head on the west coast of Ireland. Several small aerosol particle (diameter 10–32 nm) concentration bursts were observed during the measurement period. Relationships between the events, air mass trajectories, tide height, and meteorological parameters are examined. Series of bursts were observed when a spectral transformation due to subsequent particle growth from 10 to 56–100 nm can be identified in an Eulerian experiment. Particle growth rates of between 1 and 3 nm/h were determined. These bursts appear in cold and comparatively clean arctic or polar air masses with temperature and relative humidity fluctuations, and do not correlate with low tide in some cases. These episodes, similar to those frequently found in the continental boundary layer, are thought to occur over a wide area and, for clear detection, require stable airflow for a few days. Elevated small-particle concentration events are more common during low tide or shortly after, and are typically associated with low wind speeds. Here, the increased shore exposure during low tide is thought to influence the nucleation and the subsequent growth of these aerosol particles. The occurrences of the bursts are found to depend on local wind direction. The highest d=10–32 nm particle concentrations appeared for wind sectors furthest from the tidal regions when the wind direction was 150–160°(south-easterly). Most of the events occurred during daytime when solar irradiation is most intense.  相似文献   

6.
Measurements of OH reactivity were made at the Weybourne Atmospheric Observatory on the North Norfolk coast, UK in May 2004. A wide range of supporting species was also measured concurrently as part of the TORCH-2 field campaign, allowing a detailed study of the OH oxidation chemistry to be carried out. Measurements were made in a variety of air masses, with the 3 most prevalent being air from the Atlantic that arrived at the site from over mainland UK in a South Westerly direction, and much cleaner Northerly air that originated over the far North Sea or Arctic, passed over the North Sea and arrived at the site from a North/North Easterly direction. Direct OH reactivity measurements were made on 6 days during the campaign and with influence of 2 of the 3 air masses prevalent during the study period. The average, minimum and maximum measured OH reactivity are: 4.9, 1.3 and 9.7 respectively. The measured OH reactivity was compared to key OH sinks such as NO2 and CO and a general positive correlation was observed. OH reactivity (k′) was then calculated using the full range of OH sinks species that were measured (including >30 NMHCs) and their pseudo first order rate constants for reaction with OH. For much of the measurement period there is a significant difference between the measured and calculated k′, with an average value of kmeas- kcalc?=?1.9 s-1, indicative of unmeasured OH sinks. A zero-dimensional box model containing a subset of the Master Chemical Mechanism was used to calculate the OH reactivity more accurately. The simultaneously measured trace species were used as inputs to the model and their oxidative degradation was described by a chemical mechanism containing ~5,000 species. The extra OH sinks species produced by the model, resulted in an improvement in the agreement between kmeas and kcalc, however the averaged missing OH reactivity across the entire measurement period remained at 1.4 s-1. Speculation is made as to the source of this missing reactivity, including reference to studies showing that a potentially large number of high molecular weight aromatic species could be unmeasured by standard instrumentation.  相似文献   

7.
Two years of individual nonmethane hydrocarbon (NMHC) measurements at a rural site close to the south coast of Norway show that there was a distinct annual cycle with a late winter maximum and late summer minimum in the slowly reacting NMHCs acetylene, ethane, propane and i- and n-butane. The average January—March concentrations were a factor 2–4 higher than the July-September concentrations. Also ethene, propene and the pentanes show a similar annual cycle, but the individual scatter in the measurements in particular of propene, is large. The highest concentrations of NMHC were found in winter for easterly transport on a regional scale (out to 1500 km from the site), and for southeasterly transport in the summer.  相似文献   

8.
Aerodynamic roughness of the sea surface at high winds   总被引:2,自引:0,他引:2  
The role of the surface roughness in the formation of the aerodynamic friction of the water surface at high wind speeds is investigated. The study is based on a wind-over-waves coupling theory. In this theory waves provide the surface friction velocity through the form drag, while the energy input from the wind to waves depends on the friction velocity and the wind speed. The wind-over-waves coupling model is extended to high wind speeds taking into account the effect of sheltering of the short wind waves by the air-flow separation from breaking crests of longer waves. It is suggested that the momentum and energy flux from the wind to short waves locally vanishes if they are trapped into the separation bubble of breaking longer waves. At short fetches, typical for laboratory conditions, and strong winds the steep dominant wind waves break frequently and provide the major part of the total form drag through the air-flow separation from breaking crests, and the effect of short waves on the sea drag is suppressed. In this case the dependence of the drag coefficient on the wind speed is much weaker than would be expected from the standard parameterization of the roughness parameter through the Charnock relation. At long fetches, typical for the field, waves in the spectral peak break rarely and their contribution to the air-flow separation is weak. In this case the surface form drag is determined predominantly by the air-flow separation from breaking of the equilibrium range waves. As found at high wind speeds up to 60 m s−1 the modelled aerodynamic roughness is consistent with the Charnock relation, i.e. there is no saturation of the sea drag. Unlike the aerodynamic roughness, the geometrical surface roughness (height of short waves) could be saturated or even suppressed when the wind speed exceeds 30 m s−1.  相似文献   

9.
10.
11.
Season- and stability-dependent turbulence intensity (σ u /u *, σ v /u *, σ w /u *) relationships are derived from experimental turbulence measurements following surface layer scaling and local stability at the tropical coastal site Kalpakkam, India for atmospheric dispersion parameterization. Turbulence wind components (u′, v′, w′) measured with fast response UltraSonic Anemometers during an intense observation campaign for wind field modeling called Round Robin Exercise are used to formulate the flux–profile relationships using surface layer similarity theory and Fast Fourier Transform technique. The new relationships (modified Hanna scheme) are incorporated in a Lagrangian Particle Dispersion model FLEXPART-WRF and tested by conducting simulations for a field tracer dispersion experiment at Kalpakkam. Plume dispersion analysis of a ground level hypothetical release indicated that the new turbulent intensity formulations provide slightly higher diffusivity across the plume relative to the original Hanna scheme. The new formulations for σ u , σ v , σ w are found to give better agreement with observed turbulent intensities during both stable and unstable conditions under various seasonal meteorological conditions. The simulated concentrations using the two methods are compared with those obtained from a classical Gaussian model and the observed SF6 concentration. It has been found that the new relationships provide comparatively higher diffusion across the plume relative to the model default Hanna scheme and provide downwind concentration results in better agreement with observations.  相似文献   

12.
Summary Pasquill's stability (PS) classification, surface turbulence (ST) and mixing height (MH) have been computed for four selected stations in South India, namely, Bangalore, Hyderabad, Mangalore and Nagpur. The interrelationships between the three parameters have been studied and a comparison has been made with those computed by others. In addition, the diurnal and seasonal variation of ST has been studied. There is strong diurnal variation of ST in all seasons. It is concluded that in the absence of upper air data, good estimates of MH can be obtained from surface anemograms. Regression equations have been developed for obtaining MH from ST.With 2 Figures  相似文献   

13.
14.
15.
Simultaneous observations of surface ozone (O3) with its precursors namely, carbon monoxide (CO) and oxides of nitrogen (NOx) have been taken on diurnal scale from a tropical semi-urban site, Pune (18.54°N, 73.81°E) in India. We present the data for one year (2003–2004) period to study the salient features of these trace gases. The peak in amplitude of ozone is found during the noontime whereas in CO and NOX it is observed in the morning hours between 0800 and 0900 H. The concentration of these pollutants drop down considerably during southwest monsoon months and the diurnal pattern also become very weak. The diurnal trends of these gases are found to be different for different seasons, which are specific to the receptor site. Model simulations using 3-D chemical-transport model with regional emission inventories and observed winds have also been carried out. The comparison of model results with observations, on seasonal basis yielded a reasonable qualitative agreement. The relative role of local emissions and long range transport in the diurnal pattern for different seasons has been outlined, which reveals that the ozone is highly influenced by regional/long range transport in this region. The effect of precursor amounts in the morning on afternoon ozone peak levels has been investigated using the lag correlation study, which reveals that a time lag of 5–7 h is required for most of these precursor gases to photo-chemically produce ozone to its maximum potential. Results are discussed in the light of available topographic and meteorological conditions.  相似文献   

16.
From a large group of both simple and complex canopies, the following properties have been identified. (1) For simple canopies (rice paddy, wheat field, larch tree plantation, and wind-tunnel wooden pegs), the intensity of turbulence was constant with height and decreased slowly above the vegetation. (2) For forests, wind-tunnel model trees and immature corn plants, the intensity of turbulence had a maximum in the main crown layer, a minimum in the trunk space and decreased gradually above the vegetation. (3) Seasonal variations of the turbulence intensities occurred in deciduous vegetation where the turbulence levels increased from the bare branch case to the leafy crown case. (4) In regard to thermal stability, the intensity of turbulence increased as the stability ratio decreased in a forest canopy. (5) Passage of larger-scale eddies and disturbances over or through the roughness elements produced high intensity levels both immediately above and below the canopy-air interface. (6) The intensity of turbulence increased as the density and structural complexity of the vegetation increased.  相似文献   

17.
大气边界层湍流相干结构的识别   总被引:5,自引:0,他引:5  
首先利用数字滤波方法对淮河流域试验的大气边界层湍流观测资料进行三项分解,将大气边界层湍流的风速信号分解为近似各项同性的小尺度涡和各向异性的大尺度涡。然后再将大尺度涡信号进行离散正交小波分解,寻求相干结构的主要特征尺度。对于大气边界层湍流垂直脉动风速来说,其相干结构的主要特征尺度为16s;对径向与纬向脉动来说,其相干结构的主要特征尺度为32-64s。在此基础上,利用小波的反变换提取出相干结构的信号与非相干结构的信号,并计算两间的相关系数,最大仅有0.02。此外,对原始大气湍流观测信号不进行数字滤波,直接利用本中子波分析法提取湍流相干结构所得结果作比较研究;并探讨了采用对称或似对称离散正交小波对此研究的影响。  相似文献   

18.
19.
20.
Determining surface roughness and displacement height   总被引:7,自引:0,他引:7  
Vertical flux densities of momentum and sensible heat, obtained from simultaneous wind speed and air temperature profiles in the surface layer, depend on the displacement height of the profile system and the surface roughness. A criterion for selecting the displacement height and the surface roughness is introduced, which requires a minimum value for the error squares between the observed and a calculated wind speed profile as determined by diabatic surface layer theory. Values of displacement height and surface roughness, which provide a minimum error squares fit within a desired tolerance, are selected by the rule of false position. The method is programmed for digital computer solution and applied to a total number of 628 profiles obtained during a 7-day period at a micrometeorological test site near Davis, California, using five measurement levels to 160 cm height.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号