首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
William T. Reach 《Icarus》2010,209(2):848-850
Interplanetary dust particles from comets and asteroids pervade the Solar System and become temporarily trapped into orbital resonances with Earth, leading to a circumsolar dust ring. Using the unique vantage point of the Spitzer Space Telescope from its Earth-trailing solar orbit, we have measured for the first time the azimuthal structure of the Earth’s resonant dust ring. There is a relative paucity of particles within 0.1 AU of the Earth, followed by an enhancement in a cloud that is centered 0.2 AU behind Earth with a width of 0.08 AU along the Earth’s orbit. The North ecliptic pole is ∼3% brighter at 8 μm wavelength when viewed from inside the enhancement. The presence of azimuthal asymmetries in debris disks around other stars is considered strong evidence for planets. By measuring the properties of the Earth’s resonant ring, we can provide “ground truth” to models for interactions of planets and debris disks, possibly leading to improved predictions for detectability of life-bearing planets. The low amplitude of the azimuthal asymmetry in the Earth’s circumsolar ring suggests significant contributions to the zodiacal light from particles that are large (>30 μm) or have large orbital eccentricity that makes capture into mean motion resonances inefficient.  相似文献   

2.
We present observations of the uranian ring system at a wavelength of 2.2 μm, taken between 2003 and 2008 with NIRC2 on the W.M. Keck telescope in Hawaii, and on 15–17 August 2007 with NaCo on the Very Large Telescope (VLT) in Chile. Of particular interest are the data taken around the time of the uranian ring plane crossing with Earth on 16 August 2007, and with the Sun (equinox) on 7 December 2007. We model the data at the different viewing aspects with a Monte Carlo model to determine: (1) the normal optical depth τ0, the location, and the radial extent of the main rings, and (2) the parameter 0 (A is the particle geometric albedo), the location, and the radial plus vertical extent of the dusty rings. Our main conclusions are: (i) The brightness of the ? ring is significantly enhanced at small phase and ring inclination angles; we suggest this extreme opposition effect to probably be dominated by a reduction in interparticle shadowing. (ii) A broad sheet of dust particles extends inwards from the λ ring almost to the planet itself. This dust sheet has a vertical extent of ∼140 km, and 0 = 2.2 × 10−6. (iii) The dusty rings between ring 4 and the α ring and between the α and β rings are vertically extended with a thickness of ∼300 km. (iv) The ζ ring extends from ∼41,350 km almost all the way inwards to the planet. The main ζ ring, centered at ∼39,500 km from the planet, is characterized by 0 = 3.7 × 10−6; this parameter decreases closer to the planet. The ζ ring has a full vertical extent of order 800–900 km, with a pronounced density enhancement in the mid-plane. (v) The ηc ring is optically thin and less than several tens of km in the vertical direction. This ring may be composed of macroscopic material, surrounded by clumps of dust.  相似文献   

3.
Pawe? Wajer 《Icarus》2010,209(2):488-493
We study the dynamical evolution of Asteroids (164207) 2004 GU9 and 2006 FV35, which are currently Earth quasi-satellites (QS). Our analysis is based on numerical computation of their orbits, and we also applied the theory of co-orbital motion developed in Wajer (Wajer, P. [2009]. Icarus 200, 147-153) to describe and analyze the objects’ dynamics. 2004 GU9 stays as an Earth QS for about a 1000 years. In the present epoch it is in the middle of its stay in this regime. After leaving the QS orbit near 2600 this asteroid will move inside the Earth’s co-orbital region on a regular horseshoe (HS) orbit for a few 1000 years. Later, either HS-QS or HS-P transitions are possible, where P means “passing”. Although 2004 GU9 moves primarily under the influence of the Sun and Earth, Venus plays a significant role in destabilizing the object’s orbit. Our analysis showed that the guiding center of 2006 FV35 moves deep inside the averaged potential well, and since the asteroid’s argument of perihelion precesses at a rate of approximately , it prevents the QS state begin left for a long period of time; consequently the asteroid has occupied this state for about 104 years and will stay in this orbit for about 800 more years. Near 2800 the asteroid’s close approach with Venus will cause it to exit the QS state, but probably it will still be moving inside the Earth’s co-orbital region and will experience transitions between HS, TP (tadpole) and P types of motion.  相似文献   

4.
Laboratory simulations using the Arizona State University Vortex Generator (ASUVG) were run to simulate sediment flux in dust devils in terrestrial ambient and Mars-analog conditions. The objective of this study was to measure vortex sediment flux in the laboratory to yield estimations of natural dust devils on Earth and Mars, where all parameters may not be measured. These tests used particles ranging from 2 to 2000 μm in diameter and 1300 to 4800 kg m−3 in density, and the results were compared with data from natural dust devils on Earth and Mars. Typically, the cores of dust devils (regardless of planetary environment) have a pressure decrease of ∼0.1-1.5% of ambient atmospheric pressure, which enhances the lifting of particles from the surface. Core pressure decreases in our experiments ranged from ∼0.01% to 5.00% of ambient pressure (10 mbar Mars cases and 1000 mbar for Earth cases) corresponding to a few tenths of a millibar for Mars cases and a few millibars for Earth cases. Sediment flux experiments were run at vortex tangential wind velocities of 1-45 m s−1, which typically correspond to ∼30-70% above vortex threshold values for the test particle sizes and densities. Sediment flux was determined by time-averaged measurements of mass loss for a given vortex size. Sediment fluxes of ∼10−6-100 kg m−2 s−1 were obtained, similar to estimates and measurements for fluxes in dust devils on Earth and Mars. Sediment flux is closely related to the vortex intensity, which depends on the strength of the pressure decrease in the core (ΔP). This study found vortex size is less important for lifting materials because many different diameters can have the same ΔP. This finding is critical in scaling the laboratory results to natural dust devils that can be several orders of magnitude larger than the laboratory counterparts.  相似文献   

5.
G. Robert Brakenridge 《Icarus》2011,215(1):101-106
Early predictions that some supernovae release large quantities of prompt high energy photons are now corroborated by optical identification of core-collapse supernovae associated with extragalactic GRBS (beamed γ-ray bursts) and XRFS (beamed or un-beamed X-ray flashes). Given the in-galaxy supernova frequency and GRB and XRF recurrence statistics, significant Earth-incident events during the past several million years very likely occurred and nearby events should have affected the Earth and other planetary atmospheres, including terrestrial surface solar UV, the Earth’s climate, and its ecology. The Younger Dryas Stadial (∼12,900 to 11,550 calendar yr BP) began with sharply cooler temperatures in the Earth’s northern hemisphere, regional drought, paleoecological evidence compatible with increased UV, and abrupt increases in cosmogenic 14C and 10Be in ice and marine cores and tree rings. In North America, stratigraphic and faunal sequences indicate that a major pulse of mammalian extinctions (at least 23-31 genera) began very close to 12,830 calendar yr BP and was sudden: deposits one century younger are devoid of diverse extinct fauna remains. A 10 s beamed GRB within 2 kpc of the Earth delivers 100 kJ m−2 fluence to the Earth’s atmosphere, where it causes spallation and catalytic reactions depleting 35-50% O3, and producing excess NOx species (which favor cooling, drought, and surface fertility), 14C, and 10Be. An un-beamed, 1050 erg hard photon impulse at ∼250 pc produces similar terrestrial atmospheric effects. A well-characterized massive star supernova, the unusually close Vela event (d = 250 ± 30 pc; total energy of 1-2 × 1051 erg; age constrained from remnant nebula shock velocities considerations at 13,000-16,000 yr and from the pulsar characteristic age at ∼11,400 yr) may have initiated the Younger Dryas climate change, and caused the extinction of the terminal Rancholabrean fauna.  相似文献   

6.
Galileo was the first artificial satellite to orbit Jupiter. During its late orbital mission the spacecraft made two passages through the giant planet’s gossamer ring system. The impact-ionization dust detector on board successfully recorded dust impacts during both ring passages and provided the first in-situ measurements from a dusty planetary ring. During the first passage—on 5 November 2002 while Galileo was approaching Jupiter—dust measurements were collected until a spacecraft anomaly at 2.33RJ (Jupiter radii) just 16 min after a close flyby of Amalthea put the spacecraft into a safing mode. The second ring passage on 21 September 2003 provided ring dust measurements down to about 2.5RJ and the Galileo spacecraft was destroyed shortly thereafter in a planned impact with Jupiter. In all, a few thousand dust impacts were counted with the instrument accumulators during both ring passages, but only a total of 110 complete data sets of dust impacts were transmitted to Earth. Detected particle sizes range from about 0.2 to 5 μm, extending the known size distribution by an order of magnitude towards smaller particles than previously derived from optical imaging [Showalter, M.R., de Pater, I., Verbanac, G., Hamilton, D.P., Burns, J.A., 2008. Icarus 195, 361-377; de Pater, I., Showalter, M.R., Macintosh, B., 2008. Icarus 195, 348-360]. The grain size distribution increases towards smaller particles and shows an excess of these tiny motes in the Amalthea gossamer ring compared to the Thebe ring. The size distribution for the Amalthea ring derived from our in-situ measurements for the small grains agrees very well with the one obtained from images for large grains. Our analysis shows that particles contributing most to the optical cross-section are about 5 μm in radius, in agreement with imaging results. The measurements indicate a large drop in particle flux immediately interior to Thebe’s orbit and some detected particles seem to be on highly-tilted orbits with inclinations up to 20°. Finally, the faint Thebe ring extension was detected out to at least 5RJ, indicating that grains attain higher eccentricities than previously thought. The drop interior to Thebe, the excess of submicron grains at Amalthea, and the faint ring extension indicate that grain dynamics is strongly influenced by electromagnetic forces. These findings can all be explained by a shadow resonance as detailed by Hamilton and Krüger [Hamilton, D.P., Krüger, H., 2008. Nature 453, 72-75].  相似文献   

7.
Stephen J. Kortenkamp 《Icarus》2005,175(2):409-418
Numerical simulations of the gravitational scattering of planetesimals by a protoplanet reveal that a significant fraction of scattered planetesimals can become trapped as so-called quasi-satellites in heliocentric 1:1 co-orbital resonance with the protoplanet. While trapped, these resonant planetesimals can have deep low-velocity encounters with the protoplanet that result in temporary or permanent capture onto highly eccentric prograde or retrograde circumplanetary orbits. The simulations include solar nebula gas drag and use planetesimals with diameters ranging from ∼1 to ∼1000 km. Initial protoplanet eccentricities range from ep=0 to 0.15 and protoplanet masses range from 300 Earth-masses (M) down to 0.1M. This mass range effectively covers the final masses of all planets currently thought to be in possession of captured satellites—Jupiter, Saturn, Neptune, Uranus, and Mars. For protoplanets on moderately eccentric orbits (ep?0.1) most simulations show from 5-20% of all scattered planetesimals becoming temporarily trapped in the quasi-satellite co-orbital resonance. Typically, 20-30% of the temporarily trapped quasi-satellites of all sizes came within half the Hill radius of the protoplanet while trapped in the resonance. The efficiency of the resonance trapping combined with the subsequent low-velocity circumplanetary capture suggests that this trapped-to-captured transition may be important not only for the origin of captured satellites but also for continued growth of protoplanets.  相似文献   

8.
Disruptive collisions in the main belt can liberate fragments from parent bodies ranging in size from several micrometers to tens of kilometers in diameter. These debris bodies group at initially similar orbital locations. Most asteroid-sized fragments remain at these locations and are presently observed as asteroid families. Small debris particles are quickly removed by Poynting-Robertson drag or comminution but their populations are replenished in the source locations by collisional cascade. Observations from the Infrared Astronomical Satellite (IRAS) showed that particles from particular families have thermal radiation signatures that appear as band pairs of infrared emission at roughly constant latitudes both above and below the Solar System plane. Here we apply a new physical model capable of linking the IRAS dust bands to families with characteristic inclinations. We use our results to constrain the physical properties of IRAS dust bands and their source families. Our results indicate that two prominent IRAS bands at inclinations ≈2.1° and ≈9.3° are byproducts of recent asteroid disruption events. The former is associated with a disruption of a ≈30-km asteroid occurring 5.8 Myr ago; this event gave birth to the Karin family. The latter came from the breakup of a large >100-km-diameter asteroid 8.3 Myr ago that produced the Veritas family. Using an N-body code, we tracked the dynamical evolution of ≈106 particles, 1 μm to 1 cm in diameter, from both families. We then used these results in a Monte Carlo code to determine how small particles from each population undergo collisional evolution. By computing the thermal emission of particles, we were able to compare our results with IRAS observations. Our best-fit model results suggest the Karin and Veritas family particles contribute by 5-9% in 10-60-μm wavelengths to the zodiacal cloud's brightness within 50° latitudes around the ecliptic, and by 9-15% within 10° latitudes. The high brightness of the zodiacal cloud at large latitudes suggests that it is mainly produced by particles with higher inclinations than what would be expected for asteroidal particles produced by sources in the main belt. From these results, we infer that asteroidal dust represents a smaller fraction of the zodiacal cloud than previously thought. We estimate that the total mass accreted by the Earth in Karin and Veritas particles with diameters 20-400 μm is ≈15,000-20,000 tons per year (assuming 2 g cm−3 particles density). This is ≈30-50% of the terrestrial accretion rate of cosmic material measured by the Long Duration Exposure Facility. We hypothesize that up to ≈50% of our collected interplanetary dust particles and micrometeorites may be made up of particle species from the Veritas and Karin families. The Karin family IDPs should be about as abundant as Veritas family IDPs though this ratio may change if the contribution of third, near-ecliptic source is significant. Other sources of dust and/or large impact speeds must be invoked to explain the remaining ≈50-70%. The disproportional contribution of Karin/Veritas particles to the zodiacal cloud (only 5-9%) and to the terrestrial accretion rate (30-50%) suggests that the effects of gravitational focusing by the Earth enhance the accretion rate of Karin/Veritas particles relative to those in the background zodiacal cloud. From this result and from the latitudinal brightness of the zodiacal cloud, we infer that the zodiacal cloud emission may be dominated by high-speed cometary particles, while the terrestrial impactor flux contains a major contribution from asteroidal sources. Collisions and Poynting-Robertson drift produce the size-frequency distribution (SFD) of Karin and Veritas particles that becomes increasingly steeper closer to the Sun. At 1 AU, the SFD is relatively shallow for small particle diameters D (differential slope exponent of particles with D?100 μm is ≈2.2-2.5) and steep for D?100 μm. Most of the mass at 1 AU, as well as most of the cross-sectional area, is contributed by particles with D≈100-200 μm. Similar result has been found previously for the SFD of the zodiacal cloud particles at 1 AU. The fact that the SFD of Karin/Veritas particles is similar to that of the zodiacal cloud suggests that similar processes shaped these particle populations. We estimate that there are ≈5×1024 Karin and ≈1025 Veritas family particles with D>30 μm in the Solar System today. The IRAS observation of the dust bands may be satisfactorily modeled using ‘averaged’ SFDs that are constant with semimajor axis. These SFDs are best described by a broken power-law function with differential power index α≈2.1-2.4 for D?100 μm and by α?3.5 for 100 μm?D?1 cm. The total cross-sectional surface area of Veritas particles is a factor of ≈2 larger than the surface area of the particles producing the inner dust bands. The total volumes in Karin and Veritas family particles with 1 μm<D<1 cm correspond to D=11 km and D=14 km asteroids with equivalent masses ≈1.5×1018 g and ≈3.0×1018 g, respectively (assuming 2 g cm−3 bulk density). If the size-frequency and radial distribution of particles in the zodiacal cloud were similar to those in the asteroid dust bands, we estimate that the zodiacal cloud represents ∼3×1019 g of material (in particles with 1 μm<D<1 cm) at ±10° around the ecliptic and perhaps as much as ∼1020 g in total. The later number corresponds to about a 23-km-radius sphere with 2 g cm−3 density.  相似文献   

9.
Processes such as the solar wind sputtering and micrometeorite impacts can modify optical properties of surfaces of airless bodies. This explains why spectra of the main belt asteroids, exposed to these ‘space weathering’ processes over eons, do not match the laboratory spectra of ordinary chondrite (OC) meteorites. In contrast, an important fraction of Near Earth Asteroids (NEAs), defined as Q-types in the asteroid taxonomy, display spectral attributes that are a good match to OCs. Here we study the possibility that the Q-type NEAs underwent recent encounters with the terrestrial planets and that the tidal gravity (or other effects) during these encounters exposed fresh OC material on the surface (thus giving it the Q-type spectral properties). We used numerical integrations to determine the statistics of encounters of NEAs to planets. The results were used to calculate the fraction and orbital distribution of Q-type asteroids expected in the model as a function of the space weathering timescale, tsw (see main text for definition), and maximum distance, r, at which planetary encounters can reset the surface. We found that tsw ∼ 106 yr (at 1 AU) and r ∼ 5Rpl, where Rpl is the planetary radius, best fit the data. Values tsw < 105 yr would require that r > 20Rpl, which is probably implausible because these very distant encounters should be irrelevant. Also, the fraction of Q-type NEAs would be probably much larger than the one observed if tsw > 107 yr. We found that tsw ∝ q2, where q is the perihelion distance, expected if the solar wind sputtering controls tsw, provides a better match to the orbital distribution of Q-type NEAs than models with fixed tsw. We also discuss how the Earth magnetosphere and radiation effects such as YORP can influence the spectral properties of NEAs.  相似文献   

10.
We present RPWS Langmuir probe data from the third Enceladus flyby (E3) showing the presence of dusty plasma near Enceladus’ South Pole. There is a sharp rise in both the electron and ion number densities when the spacecraft traverses through Enceladus plume. The ion density near Enceladus is found to increase abruptly from about 102 cm−3 before the closest approach to 105 cm−3 just 30 s after the closest approach, an amount two orders of magnitude higher than the electron density. Assuming that the inconsistency between the electron and ion number densities is due to the presence of dust particles that are collecting the missing electron charges, we present dusty plasma characteristics down to sub-micron particle sizes. By assuming a differential dust number density for a range in dust sizes and by making use of Langmuir probe data, the dust densities for certain lower limits in dust size distribution were estimated. In order to achieve the dust densities of micrometer and larger sized grains comparable to the ones reported in the literature, we show that the power law size distribution must hold down to at least 0.03 μm such that the total differential number density is dominated by the smallest sub-micron sized grains. The total dust number density in Enceladus’ plume is of the order of 102 cm−3 reducing to 1 cm−3 in the E-ring. The dust density for micrometer and larger sized grains is estimated to be about 10−4 cm−3 in the plume while it is about 10−6-10−7 cm−3 in the E-ring. Dust charge for micron sized grains is estimated to be about eight thousand electron charges reducing to below one hundred electron charges for 0.03 μm sized grains. The effective dusty plasma Debye length is estimated and compared with inter-grain distance as well as the electron Debye length. The maximum dust charging time of 1.4 h is found for 0.03 μm sized grains just 1 min before the closest approach. The charging time decreases substantially in the plume where it is only a fraction of a second for 1 μm sized grains, 1 s for 0.1 μm sized grains and about 10 s for 0.03 μm sized grains.  相似文献   

11.
C. Sotin  O. Grasset  A. Mocquet 《Icarus》2007,191(1):337-351
By comparison with the Earth-like planets and the large icy satellites of the Solar System, one can model the internal structure of extrasolar planets. The input parameters are the composition of the star (Fe/Si and Mg/Si), the Mg content of the mantle (Mg# = Mg/[Mg + Fe]), the amount of H2O and the total mass of the planet. Equation of State (EoS) of the different materials that are likely to be present within such planets have been obtained thanks to recent progress in high-pressure experiments. They are used to compute the planetary radius as a function of the total mass. Based on accretion models and data on planetary differentiation, the internal structure is likely to consist of an iron-rich core, a silicate mantle and an outer silicate crust resulting from magma formation in the mantle. The amount of H2O and the surface temperature control the possibility for these planets to harbor an ocean. In preparation to the interpretation of the forthcoming data from the CNES led CoRoT (Convection Rotation and Transit) mission and from ground-based observations, this paper investigates the relationship between radius and mass. If H2O is not an important component (less than 0.1%) of the total mass of the planet, then a relation (R/REarth)=ab(M/MEarth) is calculated with (a,b)=(1,0.306) and (a,b)=(1,0.274) for 10−2MEarth<M<MEarth and MEarth<M<10MEarth, respectively. Calculations for a planet that contains 50% H2O suggest that the radius would be more than 25% larger than that based on the Earth-like model, with (a,b)=(1.258,0.302) for 10−2MEarth<M<MEarth and (a,b)=(1.262,0.275) for MEarth<M<10MEarth, respectively. For a surface temperature of 300 K, the thickness of the ocean varies from 150 to 50 km for planets 1 to 10 times the Earth's mass, respectively. Application of this algorithm to bodies of the Solar System provides not only a good fit to most terrestrial planets and large icy satellites, but also insights for discussing future observations of exoplanets.  相似文献   

12.
To date, no accretion model has succeeded in reproducing all observed constraints in the inner Solar System. These constraints include: (1) the orbits, in particular the small eccentricities, and (2) the masses of the terrestrial planets - Mars’ relatively small mass in particular has not been adequately reproduced in previous simulations; (3) the formation timescales of Earth and Mars, as interpreted from Hf/W isotopes; (4) the bulk structure of the asteroid belt, in particular the lack of an imprint of planetary embryo-sized objects; and (5) Earth’s relatively large water content, assuming that it was delivered in the form of water-rich primitive asteroidal material. Here we present results of 40 high-resolution (N = 1000-2000) dynamical simulations of late-stage planetary accretion with the goal of reproducing these constraints, although neglecting the planet Mercury. We assume that Jupiter and Saturn are fully-formed at the start of each simulation, and test orbital configurations that are both consistent with and contrary to the “Nice model”. We find that a configuration with Jupiter and Saturn on circular orbits forms low-eccentricity terrestrial planets and a water-rich Earth on the correct timescale, but Mars’ mass is too large by a factor of 5-10 and embryos are often stranded in the asteroid belt. A configuration with Jupiter and Saturn in their current locations but with slightly higher initial eccentricities (e = 0.07-0.1) produces a small Mars, an embryo-free asteroid belt, and a reasonable Earth analog but rarely allows water delivery to Earth. None of the configurations we tested reproduced all the observed constraints. Our simulations leave us with a problem: we can reasonably satisfy the observed constraints (except for Earth’s water) with a configuration of Jupiter and Saturn that is at best marginally consistent with models of the outer Solar System, as it does not allow for any outer planet migration after a few Myr. Alternately, giant planet configurations which are consistent with the Nice model fail to reproduce Mars’ small size.  相似文献   

13.
S.M. Metzger  M.C. Towner 《Icarus》2011,214(2):766-772
In situ (mobile) sampling of 33 natural dust devil vortices reveals very high total suspended particle (TSP) mean values of 296 mg m−3 and fine dust loadings (PM10) mean values ranging from 15.1 to 43.8 mg m−3 (milligrams per cubic meter). Concurrent three-dimensional wind profiles show mean tangential rotation of 12.3 m s−1 and vertical uplift of 2.7 m s−1 driving mean vertical TSP flux of 1689 mg m−3 s−1 and fine particle flux of ∼1.0 to ∼50 mg m−3 s−1. Peak PM10 dust loading and flux within the dust column are three times greater than mean values, suggesting previous estimates of dust devil flux might be too high. We find that deflation rates caused by dust devil erosion are ∼2.5-50 μm per year in dust devil active zones on Earth. Similar values are expected for Mars, and may be more significant there where competing erosional mechanisms are less likely.  相似文献   

14.
15.
We use numerical integrations to investigate the dynamical evolution of resonant Trojan and quasi-satellite companions during the late stages of migration of the giant planets Jupiter, Saturn, Uranus, and Neptune. Our migration simulations begin with Jupiter and Saturn on orbits already well separated from their mutual 2:1 mean-motion resonance. Neptune and Uranus are decoupled from each other and have orbital eccentricities damped to near their current values. From this point we adopt a planet migration model in which the migration speed decreases exponentially with a characteristic timescale τ (the e-folding time). We perform a series of numerical simulations, each involving the migrating giant planets plus test particle Trojans and quasi-satellites. We find that the libration frequencies of Trojans are similar to those of quasi-satellites. This similarity enables a dynamical exchange of objects back and forth between the Trojan and quasi-satellite resonances during planetary migration. This exchange is facilitated by secondary resonances that arise whenever there is more than one migrating planet. For example, secondary resonances may occur when the circulation frequencies, f, of critical arguments for the Uranus-Neptune 2:1 mean-motion near-resonance are commensurate with harmonics of the libration frequency of the critical argument for the Trojan and quasi-satellite 1:1 mean-motion resonance . Furthermore, under the influence of these secondary resonances quasi-satellites can have their libration amplitudes enlarged until they undergo a close-encounter with their host planet and escape from the resonance. High-resolution simulations of this escape process reveal that ≈80% of jovian quasi-satellites experience one or more close-encounters within Jupiter’s Hill radius (RH) as they are forced out of the quasi-satellite resonance. As many as ≈20% come within RH/4 and ≈2.5% come within RH/10. Close-encounters of escaping quasi-satellites occur near or even below the 2-body escape velocity from the host planet. Finally, the exchange and escape of Trojans and quasi-satellites continues to as late as 6-9τ in some simulations. By this time the dynamical evolution of the planets is strongly dominated by distant gravitational perturbations between the planets rather than the migration force. This suggests that exchange and escape of Trojans and quasi-satellites may be a contemporary process associated with the present-day near-resonant configuration of some of the giant planets in our Solar System.  相似文献   

16.
We obtained time-resolved, near-infrared spectra of Io during the 60-90 min following its reappearance from eclipse by Jupiter on five occasions in 2004. The purpose was to search for spectral changes, particularly in the well-known SO2 frost absorption bands, that would indicate surface-atmosphere exchange of gaseous SO2 induced by temperature changes during eclipse. These observations were a follow-on to eclipse spectroscopy observations in which Bellucci et al. [Bellucci et al., 2004. Icarus 172, 141-148] reported significant changes in the strengths of two strong SO2 bands in data acquired with the VIMS instrument aboard the Cassini spacecraft. One of the bands (4.07 μm [ν1 + ν3]) observed by Bellucci et al. is visible from ground-based observatories and is included in our data. We detected no changes in Io’s spectrum at any of the five observed events during the approximately 60-90 min during which spectra were obtained following Io’s emergence from Jupiter’s shadow. The areas of the three strongest SO2 bands in the region 3.5-4.15 μm were measured for each spectrum; the variation of the band areas with time does not exceed that which can be explained by the Io’s few degrees of axial rotation during the intervals of observation, and in no case does the change in band strength approach that seen in the Cassini VIMS data. Our data are of sufficient quality and resolution to show the weak 2.198 μm (4549.6 cm−1) 4ν1 band of SO2 frost on Io for what we believe is the first time. At one of the events (June 22, 2004), we began the acquisition of spectra ∼6 min before Io reappeared from Jupiter’s shadow, during which time it was detected through its own thermal emission. No SO2 bands were superimposed on the purely thermal spectrum on this occasion, suggesting that the upper limit to condensed SO2 in the vertical column above Io’s surface was ∼4 × 10−5 g cm−2.  相似文献   

17.
Fluvial features on Titan and drainage basins on Earth are remarkably similar despite differences in gravity and surface composition. We determined network bifurcation (Rb) ratios for five Titan and three terrestrial analog basins. Tectonically-modified Earth basins have Rb values greater than the expected range (3.0-5.0) for dendritic networks; comparisons with Rb values determined for Titan basins, in conjunction with similarities in network patterns, suggest that portions of Titan’s north polar region are modified by tectonic forces. Sufficient elevation data existed to calculate bed slope and potential fluvial sediment transport rates in at least one Titan basin, indicating that 75 mm water ice grains (observed at the Huygens landing site) should be readily entrained given sufficient flow depths of liquid hydrocarbons. Volumetric sediment transport estimates suggest that ∼6700-10,000 Titan years (∼2.0-3.0 × 105 Earth years) are required to erode this basin to its minimum relief (assuming constant 1 m and 1.5 m flows); these lowering rates increase to ∼27,000-41,000 Titan years (∼8.0-12.0 × 105 Earth years) when flows in the north polar region are restricted to summer months.  相似文献   

18.
Diagnostic infrared spectra of individual nanogram-sized interplanetary dust particles (IDPs) collected in the Earth's stratosphere have been obtained. A mount containing three crushed “chondritic” IDPs shows features near 1000 and 500 cm?1, suggestive of crystalline pyroxene, and different from those of crystalline olivine, amorphous olivine, or meteoritic clay minerals. The structural diversity of chondritic IDPs and possible effects of atmospheric heating must be considered when comparing this spectrum with astrophysical spectra of interplanetary and cometary dust. Transmission electron microscope (TEM) and infrared observations are also reported on one member of the rare subset of IDPs which resemble hydrated carbonaceous chondrite matrix material. The infrared spectrum of this particle between 4000 and 400 cm?1 closely matches that of the C2 meteorite Murchison. TEM observations suggest that this class of particles might serve as a thermometer for the process of heating on atmospheric entry.  相似文献   

19.
During 2006 March-2007 January, we used the IRAC and MIPS instruments on the Spitzer Space Telescope to study the infrared emission from the ensemble of fragments, meteoroids, and dust tails in the more than 3° wide 73P/Schwassmann-Wachmann 3 debris field. We also investigated contemporaneous ground-based and HST observations. In 2006 May, 55 fragments were detected in the Spitzer image. The wide spread of fragments along the comet’s orbit indicates they were formed from the 1995 splitting event. While the number of major fragments in the Spitzer image is similar to that seen from the ground by optical observers, the correspondence between the fragments with optical astrometry and those seen in the Spitzer images cannot be readily established, due either to strong non-gravitational terms, astrometric uncertainties, or transience of the fragments’ outgassing. The Spitzer data resolve the structure of the dust comae at a resolution of ∼1000 km, and they reveal the infrared emission due to large (mm to cm size) particles in a continuous dust trail that closely follows the projected orbit. We detect fluorescence from outflowing CO2 gas from the largest fragments (B and C), and we measure the CO2:H2O proportion (1:10 and 1:20, respectively). We use three dimensionless parameters to explain dynamics of the solid particles: the rocket parameter α is the reaction force from day-side sublimation divided by solar gravity, the radiation pressure parameter β is the force due to solar radiation pressure divided by solar gravity, and the ejection velocity parameter ν is the particle ejection speed divided by the orbital speed of the comet at the time of ejection. The major fragments have ν>α>β and are dominated by the kinetic energy imparted to them by the fragmentation process. The small, ephemeral fragments seen by HST in the tails of the major fragments have α>ν>β and are dominated by rocket forces (until they become devolatilized). The meteoroids along the projected orbit seen by Spitzer have βν?α and are dominated by radiation pressure and ejection velocity, though both influences are much less than gravity. Dust in the fragments’ tails has β?(ν+α) and is dominated by radiation pressure.  相似文献   

20.
B. Gundlach  S. Kilias  E. Beitz  J. Blum 《Icarus》2011,214(2):717-723
Coagulation models assume a higher sticking threshold for micrometer-sized ice particles than for micrometer-sized silicate particles. However, in contrast to silicates, laboratory investigations of the collision properties of micrometer-sized ice particles (in particular, of the most abundant H2O-ice) have not been conducted yet. Thus, we used two different experimental methods to produce micrometer-sized H2O-ice particles, i.e. by spraying H2O droplets into liquid nitrogen and by spraying H2O droplets into a cold nitrogen atmosphere. The mean particle radii of the ice particles produced with these experimental methods are (1.49 ± 0.79) μm and (1.45 ± 0.65) μm. Ice aggregates composed of the micrometer-sized ice particles are highly porous (volume filling factor: ? = 0.11 ± 0.01) or rather compact (volume filling factor: ? = 0.72 ± 0.04), depending on the method of production. Furthermore, the critical rolling friction force of FRoll,ice = (114.8 ± 23.8) × 10−10 N was measured for micrometer-sized ice particles, which exceeds the critical rolling friction force of micrometer-sized SiO2 particles . This result implies that the adhesive bonding between micrometer-sized ice particles is stronger than the bonding strength between SiO2 particles. An estimation of the specific surface energy of micrometer-sized ice particles, derived from the measured critical rolling friction forces and the surface energy of micrometer-sized SiO2 particles, results in γice = 0.190 J m−2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号