首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— The lengths of the shadows cast within simple, bowl‐shaped impact craters have been used to constrain their depths on a variety of planetary bodies. This technique, however, only yields the “true” crater depth if the shadow transects the crater center where the floor is deepest. In the past, attempts have been made to circumvent this limitation by choosing only craters where the shadow tip lies very near the crater center; but this approach may introduce serious artifacts that adversely affect the slope of the regressed depth vs. diameter data and its variance. Here we introduce an improved method for deriving depth information from shadow measurements that considers three basic shape variations of simple craters: paraboloidal, conical, and flat‐floored. We show that the shape of the cast shadow can be used to constrain crater shape and we derive improved equations for finding the depths of these simple craters.  相似文献   

2.
E.M. Parmentier  J.W. Head 《Icarus》1981,47(1):100-111
Spacecraft images show that the icy Galilean satellites have surfaces with very low topographic relief. Impact craters on Ganymede and Callisto are anomalously shallow and are characterized by sharp well-defined rims and domed floors. These morphological characteristics can be explained by viscous relaxation of topography on an icy crust in which the viscosity is uniform or decreases with depth. Under these conditions, large craters relax more rapidly than small craters, therefore explaining a possible underabundance of large craters. Viscous relaxation on an icy crust that is thin compared to the crater diameter or on a thick icy crust in which viscosity increases with depth could not produce this crater morphology and would result in the more rapid relaxation of small craters rather than large craters. The results of this study suggest that more detailed analysis of relaxing impact crater morphology may resolve the rate of viscosity decrease with depth and so provide evidence on the interior thermal evolution of icy planetary bodies.  相似文献   

3.
The plains materials that form the martian northern lowlands suggest large-scale sedimentation in this part of the planet. The general view is that these sedimentary materials were transported from zones of highland erosion via outflow channels and other fluvial systems. The study region, the northern circum-polar plains south of Gemini Scopuli on Planum Boreum, comprises the only extensive zone in the martian northern lowlands that does not include sub-basin floors nor is downstream from outflow channel systems. Therefore, within this zone, the ponding of fluids and fluidized sediments associated with outflow channel discharges is less likely to have taken place relative to sub-basin areas that form the other northern circum-polar plains surrounding Planum Boreum. Our findings indicate that during the Late Hesperian sedimentary deposits produced by the erosion of an ancient cratered landscape, as well as via sedimentary volcanism, were regionally emplaced to form extensive plains materials within the study region. The distribution and magnitude of surface degradation suggest that groundwater emergence from an aquifer that extended from the Arabia Terra cratered highlands to the northern lowlands took place non-catastrophically and regionally within the study region through faulted upper crustal materials. In our model the margin of the Utopia basin adjacent to the study region may have acted as a boundary to this aquifer. Partial destruction and dehydration of these Late Hesperian plains, perhaps induced by high thermal anomalies resulting from the low thermal conductivity of these materials, led to the formation of extensive knobby fields and pedestal craters. During the Early Amazonian, the rates of regional resurfacing within the study region decreased significantly; perhaps because the knobby ridges forming the eroded impact crater rims and contractional ridges consisted of thermally conductive indurated materials, thereby inducing freezing of the tectonically controlled waterways associated with these features. This hypothesis would explain why these features were not completely destroyed. During the Late Amazonian, high-obliquity conditions may have led to the removal of large volumes of volatiles and sediments being eroded from Planum Boreum, which then may have been re-deposited as thick, circum-polar plains. Transition into low obliquity ∼5 myr ago may have led to progressive destabilization of these materials leading to collapse and pedestal crater formation. Our model does not contraindicate possible large-scale ponding of fluids in the northern lowlands, such as for example the formation of water and/or mud oceans. In fact, it provides a complementary mechanism involving large-scale groundwater discharges within the northern lowlands for the emplacement of fluids and sediments, which could have potentially contributed to the formation of these bodies. Nevertheless, our model would spatially restrict to surrounding parts of the northern plain either the distribution of the oceans or the zones within these where significant sedimentary accumulation would have taken place.  相似文献   

4.
This work reviews factors which are important for the evolution of habitable Earth-like planets such as the effects of the host star dependent radiation and particle fluxes on the evolution of atmospheres and initial water inventories. We discuss the geodynamical and geophysical environments which are necessary for planets where plate tectonics remain active over geological time scales and for planets which evolve to one-plate planets. The discoveries of methane–ethane surface lakes on Saturn’s large moon Titan, subsurface water oceans or reservoirs inside the moons of Solar System gas giants such as Europa, Ganymede, Titan and Enceladus and more than 335 exoplanets, indicate that the classical definition of the habitable zone concept neglects more exotic habitats and may fail to be adequate for stars which are different from our Sun. A classification of four habitat types is proposed. Class I habitats represent bodies on which stellar and geophysical conditions allow Earth-analog planets to evolve so that complex multi-cellular life forms may originate. Class II habitats includes bodies on which life may evolve but due to stellar and geophysical conditions that are different from the class I habitats, the planets rather evolve toward Venus- or Mars-type worlds where complex life-forms may not develop. Class III habitats are planetary bodies where subsurface water oceans exist which interact directly with a silicate-rich core, while class IV habitats have liquid water layers between two ice layers, or liquids above ice. Furthermore, we discuss from the present viewpoint how life may have originated on early Earth, the possibilities that life may evolve on such Earth-like bodies and how future space missions may discover manifestations of extraterrestrial life.  相似文献   

5.
Abstract— Marine impacts are one category of crater formation in volatile targets. At target water depths exceeding the diameter of the impactor, the zones of vaporization, melting, and excavation of the standard land‐target cratering model develop partially or entirely in the water column. The part of the crater that has a potential of being preserved (seafloor crater) may to a great extent be formed by material emplacement and excavation processes that are very different from land‐target craters. These processes include a high‐energy, water‐jet‐driven excavation flow. At greater water depths, the difference in strength of the target layers causes a concentric crater to evolve. The crater consists of a wide water cavity with a shallow excavation flow along the seabed surrounding a nested, deeper crater in the basement. The modification of the crater is likewise influenced by the water through its forceful resurge to fill the cavity in the water mass and the seafloor. The resurge flow is strongly erosive and incorporates both ejecta and rip‐up material from the seabed surrounding the excavated crater. A combination of field observations and impact experiments has helped us analyze the processes affecting the zone between the basement crater and the maximum extent of the water cavity. The resurge erosion is facilitated by fragmentation of the upper parts of the solid target caused by a) spallation and b) vibrations from the shallow excavation flow and, subsequently, c) the vertical collapse of the water cavity rim wall. In addition, poorly consolidated and saturated sediments may collapse extensively, possibly aided by a violent expansion of the pore water volume when it turns into a spray during passage of the rarefaction wave. This process may also occur at impacts into water‐saturated targets without an upper layer of seawater present. Our results have implications for impacts on both Earth and Mars, and possibly anywhere in the solar system where volatiles exist/have existed in the upper part of the target.  相似文献   

6.
Lunar crater degradation can be divided into two time periods based on differing styles and rates of crater degradation processes. Comparison of lunar radiometric age scales and the relative degradation of crater morphologic features for craters larger than about 5 km diam shows that Period I, prior to about 3.85–3.95 b.y. ago, is characterized by a high influx rate and by formation of large, multi-ringed basins. Period II, from about 3.85–3.95 b.y. to present, is characterized by a much lower influx rate and lack of large multi-ringed basins. Craters formed throughout Period II show generally constant morphologic characteristics. Craters formed in Period I show markedly different characteristics although their residence time could not have increased more than 15% over the total time of Period II. The vast majority of crater degradation of Period I craters took place nearly coincident with their time of formation. Elements of crater degradation and modification during Period I include destruction of crater exterior, rim, and wall facies and structures, decrease in crater depth, and increase in crater floor width. Examination of fresh crater geometry reveals that major changes in crater depth and floor width parameters can occur with the addition of only minor volumes of material as crater fill. Volumes sufficient to produce these characteristic changes are readily available in the surrounding crater wall and rim deposits and can be derived by erosion associated with the observed morphologic changes. Depositional mechanisms associated with lunar landslides are capable of moving material across the crater floor-wall boundary while maintaining and propagating the characteristic break in slope. A prime source of crater degradation during Period I is related to the formation of multiringed basins. The widespread ballistic sedimentation associated with the formation of these basins produces a near-saturation bombardment which excavates and mobilizes large volumes of local material and preferentially moves it into nearby low regions. Seismic effects contribute to degradation by enhancing slope instability and by mobilizing material for downslope movement. The net effect for a crater influenced by multi-ringed basin formation is a tendency toward destruction of crater facies and structure by near-saturation bombardment and seismic effects, the erosion and mobilization of crater material, and the redeposition of this material in nearby low regions, primarily on the crater floor. This process appears to be of major importance in the degradation and modification of craters, in generation of interior crater fill, and in the formation and propagation of Cayley-type plains surfaces.  相似文献   

7.
Craters     
Abstract Recent observational evidence emphasizes the importance of craters as a prominent surface characteristic of the smaller planetary bodies in the solar system. Craters of similar appearance may have very diverse origins. An initial assumption as to the type of origin should not influence an impartial and detailed physical study of any given crater.  相似文献   

8.
Most impacts occur at an angle with respect to the horizontal plane. This is primarily reflected in the ejecta distribution, but at very low angle structural asymmetries such as elongation of the crater and nonradial development of the central peak become apparent. Unfortunately, impact craters with pristine ejecta layers are rare on Earth and also in areas with strong past or ongoing surface erosion on other planetary bodies, and the structural analysis of central peaks requires good exposures or even on‐site access to outcrop. However, target properties are known to greatly influence the shape of the crater, especially the relatively common target configuration of a weaker layer covering a more rigid basement. One such effect is the formation of concentric craters, i.e., a nested, deeper, inner crater surrounded by a shallow, outer crater. Here, we show that with decreasing impact angle there is a downrange shift of the outer crater with respect to the nested crater. We use a combination of (1) field observation and published 3‐D numerical simulation of one of the best examples of a terrestrial, concentric impact crater formed in a layered target with preserved ejecta layer: the Lockne crater, Sweden; (2) remote sensing data for three pristine, concentric impact craters on Mars with preserved ejecta layers further constraining the direction of impact; as well as (3) laboratory impact experiments, to develop the offset in crater concentricity into a complementary method to determine the direction of impact for layered‐target craters with poorly preserved ejecta layers.  相似文献   

9.
Abstract— Terrestrial impact structures provide field evidence for cratering processes on planetary bodies that have an atmosphere and volatiles in the target rocks. Here we discuss two examples that may yield implications for Martian craters: 1. Recent field analysis of the Ries crater has revealed the existence of subhorizontal shear planes (detachments) in the periphery of the crater beneath the ejecta blanket at 0.9–1.8 crater radii distance. Their formation and associated radial outward shearing was caused by weak spallation and subsequent dragging during deposition of the ejecta curtain. Both processes are enhanced in rheologically layered targets and in the presence of fluids. Detachment faulting may also occur in the periphery of Martian impacts and could be responsible for the formation of lobe‐parallel ridges and furrows in the inner layer of double‐layer and multiple‐layer ejecta craters. 2. The ejecta blanket of the Chicxulub crater was identified on the southeastern Yucatán Peninsula at distances of 3.0–5.0 crater radii from the impact center. Abundance of glide planes within the ejecta and particle abrasion both rise with crater distance, which implies a ground‐hugging, erosive, and cohesive secondary ejecta flow. Systematic measurement of motion indicators revealed that the flow was deviated by a preexisting karst relief. In analogy with Martian fluidized ejecta blankets, it is suggested that the large runout was related to subsurface volatiles and the presence of basal glide planes, and was influenced by eroded bedrock lithologies. It is proposed that ramparts may result from enhanced shear localization and a stacking of ejecta material along internal glide planes at decreasing flow rates when the flow begins to freeze below a certain yield stress.  相似文献   

10.
Abstract— Observations of impact craters on Earth show that a water column at the target strongly influences lithology and morphology of the resultant crater. The degree of influence varies with the target water depth and impactor diameter. Morphological features detectable in satellite imagery include a concentric shape with an inner crater inset within a shallower outer crater, which is cut by gullies excavated by the resurge of water. In this study, we show that if oceans, large seas, and lakes existed on Mars for periods of time, marine‐target craters must have formed. We make an assessment of the minimum and maximum amounts of such craters based on published data on water depths, extent, and duration of putative oceans within “contacts 1 and 2,” cratering rate during the different oceanic phases, and computer modeling of minimum impactor diameters required to form long‐lasting craters in the seafloor of the oceans. We also discuss the influence of erosion and sedimentation on the preservation and exposure of the craters. For an ocean within the smaller “contact 2” with a duration of 100,000 yr and the low present crater formation rate, only ?1–2 detectable marine‐target craters would have formed. In a maximum estimate with a duration of 0.8 Gyr, as many as 1400 craters may have formed. An ocean within the larger “contact 1‐Meridiani,” with a duration of 100,000 yr, would not have received any seafloor craters despite the higher crater formation rate estimated before 3.5 Gyr. On the other hand, with a maximum duration of 0.8 Gyr, about 160 seafloor craters may have formed. However, terrestrial examples show that most marine‐target craters may be covered by thick sediments. Ground penetrating radar surveys planned for the ESA Mars Express and NASA 2005 missions may reveal buried craters, though it is uncertain if the resolution will allow the detection of diagnostic features of marine‐target craters. The implications regarding the discovery of marine‐target craters on Mars is not without significance, as such discoveries would help address the ongoing debate of whether large water bodies occupied the northern plains of Mars and would help constrain future paleoclimatic reconstructions.  相似文献   

11.
Scott C. Mest  David A. Crown 《Icarus》2005,175(2):335-359
The geology and stratigraphy of Millochau crater (21.4° S, 275° W), located in the highlands of Tyrrhena Terra, Mars, are documented through geomorphic analyses and geologic mapping. Crater size-frequency distributions and superposition relationships are used to constrain relative ages of geologic units and determine the timing and duration of the geologic processes that modified Millochau rim materials and emplaced deposits on Millochau's floor. Crater size-frequency distributions show a Middle Noachian age for rim materials and Middle Noachian to Early Hesperian ages for most of the interior deposits. Valley networks and gullies incised within Millochau's rim materials and interior wall, respectively, indicate fluvial activity was an important erosional process. Millochau contains an interior plateau, offset northeast of Millochau's center, which rises up to 400 m above the surrounding crater floor and slopes downward to the south and west. Layers exposed along the northern and eastern scarp boundaries of the plateau are tens to hundreds of meters thick and laterally continuous in MOC images. These layers suggest most materials within Millochau were emplaced by sedimentary processes (e.g., fluvial or eolian), with the potential for lacustrine deposition in shallow transient bodies of water and contributions of volcanic airfall. Mass wasting may have also contributed significant quantities of material to Millochau's interior, especially to the deposits surrounding the plateau. Superposition relationships combined with impact crater statistics indicate that most deposition and erosion of Millochau's interior deposits is ancient, which implies that fluvial activity in this part of Tyrrhena Terra is much older than in the eastern Hellas region. Eolian processes mobilized sediment to form complicated patterns of long- and short-wavelength dunes, whose emplacement is controlled by local topography. These deposits are some of the youngest within Millochau (Amazonian) and eolian modification may be ongoing.  相似文献   

12.
Abstract— Environmental conditions on Mars are conducive to the modification and erosion of impact craters, potentially revealing the nature of their substructure. On Earth, postimpact erosion of complex craters in a wide range of target rocks has revealed the nature and distribution of craterrelated fault structures and a complex array of breccia and pseudotachylyte dikes, which range up to tens of meters in width and tens of kilometers in length. We review the characteristics of fault structures, breccia dikes, and pseudotachylyte dikes on Earth, showing that they occur in complex network‐like patterns and are often offset along late‐stage crater‐related faults. Individual faults and dikes can undulate in width and can branch and bifurcate along strike. Detailed geological analyses of terrestrial craters show that faults and breccia dikes form during each of the major stages of the impact‐cratering process (compression, excavation, and modification). We report here on the discovery of prominent, lattice‐like ridge networks occurring on the floor of a highly modified impact crater 75 km in diameter near the dichotomy boundary of the northern lowland and southern upland. Interior fill and crater‐floor units have been exhumed by fluvial and eolian processes to reveal a unit below the crater floor containing a distinctive set of linear ridges of broadly similar width and forming a lattice‐like pattern. Ridge exposures range from ?1–4 km in length and ?65–120 m in width, are broadly parallel, straight to slightly curving, and are cross‐cut by near‐orthogonal ridges, forming a box or lattice‐like pattern. Ridges are exposed on the exhumed crater floor, extending from the base of the wall toward the center. On the basis of the strong similarities of these features to terrestrial crater‐related fault structures and breccia dikes, we interpret these ridges to be faults and breccia dikes formed below the floor of the crater during the excavation and modification stages of the impact event, and subsequently exhumed by erosion. The recognition of such features on Mars will help in documenting the nature of impact‐cratering processes and aid in assessment of crustal structure. Faults and breccia dikes can also be used as data for the assessment of post‐cratering depths and degrees of landform exhumation.  相似文献   

13.
Since the discovery of shatter cones (SCs) near the village of Agoudal (Morocco, Central High Atlas Mountains) in 2013, the absence of one or several associated circular structures led to speculation about the age of the impact event, the number, and the size of the impact crater or craters. Additional constraints on the crater size, age, and erosion rates are obtained here from geological, structural, and geophysical mapping and from cosmogenic nuclide data. Our geological maps of the Agoudal impact site at the scales of 1:30,000 (6 km2) and 1:15,000 (2.25 km2) include all known occurrences of SCs in target rocks, breccias, and vertical to overturned strata. Considering that strata surrounding the impact site are subhorizontal, we argue that disturbed strata are related to the impact event. Three types of breccias have been observed. Two of them (br1‐2 and br2) could be produced by erosion–sedimentation–consolidation processes, with no evidence for impact breccias, while breccia (br1) might be impact related. The most probable center of the structure is estimated at 31°59′13.73?N, 5°30′55.14?W using the concentric deviation method applied to the orientation of strata over the disturbed area. Despite the absence of a morphological expression, the ground magnetic and electromagnetic surveys reveal anomalies spatially associated with disturbed strata and SC occurrences. The geophysical data, the structural observations, and the area of occurrence of SCs in target rocks are all consistent with an original size of 1.4–4.2 km in diameter. Cosmogenic nuclide data (36Cl) constrain the local erosion rates between 220 ± 22 m Ma?1 and 430 ± 43 m Ma?1. These erosion rates may remove the topographic expression of such a crater and its ejecta in a time period of about 0.3–1.9 Ma. This age is older than the Agoudal iron meteorite age (105 ± 40 kyr). This new age constraint excludes the possibility of a genetic relationship between the Agoudal iron meteorite fall and the formation of the Agoudal impact site. A chronolgy chart including the Atlas orogeny, the alternation of sedimentation and erosion periods, and the meteoritic impacts is presented based on all obtained and combined data.  相似文献   

14.
We estimate the impact flux and cratering rate as a function of latitude on the terrestrial planets using a model distribution of planet crossing asteroids and comets [Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.-M., Levison, H.F., Michel, P., Metcalfe, T.S., 2002. Icarus 156, 399-433]. After determining the planetary impact probabilities as a function of the relative encounter velocity and encounter inclination, the impact positions are calculated analytically, assuming the projectiles follow hyperbolic paths during the encounter phase. As the source of projectiles is not isotropic, latitudinal variations of the impact flux are predicted: the calculated ratio between the pole and equator is 1.05 for Mercury, 1.00 for Venus, 0.96 for the Earth, 0.90 for the Moon, and 1.14 for Mars over its long-term obliquity variation history. By taking into account the latitudinal dependence of the impact velocity and impact angle, and by using a crater scaling law that depends on the vertical component of the impact velocity, the latitudinal variations of the cratering rate (the number of craters with a given size formed per unit time and unit area) is in general enhanced. With respect to the equator, the polar cratering rate is about 30% larger on Mars and 10% on Mercury, whereas it is 10% less on the Earth and 20% less on the Moon. The cratering rate is found to be uniform on Venus. The relative global impact fluxes on Mercury, Venus, the Earth and Mars are calculated with respect to the Moon, and we find values of 1.9, 1.8, 1.6, and 2.8, respectively. Our results show that the relative shape of the crater size-frequency distribution does not noticeably depend upon latitude for any of the terrestrial bodies in this study. Nevertheless, by neglecting the expected latitudinal variations of the cratering rate, systematic errors of 20-30% in the age of planetary surfaces could exist between equatorial and polar regions when using the crater chronology method.  相似文献   

15.
Solar System Research - The impact crater formation on the surface of the Earth and other planetary bodies is accompanied by the action of shock waves on rocks and their displacement into a new...  相似文献   

16.
Abstract— We have developed a quantitative model for predicting characteristics of ejecta deposits that result from basin‐sized cratering events. This model is based on impact crater scaling equations (Housen, Schmitt, and Holsapple 1983; Holsapple 1993) and the concept of ballistic sedimentation (Oberbeck 1975), and takes into account the size distribution of the individual fragments ejected from the primary crater. Using the model, we can estimate, for an area centered at the chosen location of interest, the average distribution of thicknesses of basin ejecta deposits within the area and the fraction of primary ejecta contained within the deposits. Model estimates of ejecta deposit thicknesses are calibrated using those of the Orientale Basin (Moore, Hodges, and Scott 1974) and of the Ries Basin (Hörz, Ostertag, and Rainey 1983). Observed densities of secondary craters surrounding the Imbrium and Orientale Basins are much lower than the modeled densities. Similarly, crater counts for part of the northern half of the Copernicus secondary cratering field are much lower than the model predicts, and variation in crater densities with distance from Copernicus is less than expected. These results suggest that mutual obliteration erases essentially all secondary craters associated with the debris surge that arises from the impacting primary fragments during ballistic sedimentation; if so, a process other than ballistic sedimentation is needed to produce observable secondary craters. Regardless, our ejecta deposit model can be useful for suggesting provenances of sampled lunar materials, providing information complementary to photogeological and remote sensing interpretations, and as a tool for planning rover traverses (e.g., Haskin et al. 1995, 2002).  相似文献   

17.
Statistical analysis of crater size-frequency distributions (CSFDs) of impact craters on planetary surfaces is a well-established method to derive absolute ages on the basis of remotely-sensed image data. Although modelling approaches and the derivation of absolute ages from a given CSFD have been described and discussed in considerable depth since the late 1960s, there is no standardised methodology or guideline for the measurement of impact-crater diameters and area sizes that are both needed to determine absolute ages correctly. Distortions of distances (i.e., diameters) and areas within different map projections are considerable error sources during crater and area measurements.In order to address this problem and to minimize such errors, a software extension for Environmental Systems Research Institute's (ESRI's) ArcMap (ArcGIS) has been developed measuring CSFDs on planetary surfaces independently of image and data frame map projections, which can also be theoretically transferred to every Geographic Information System (GIS) capable of working with different map projections.Using this new approach each digitized impact crater is internally projected to a stereographic map projection with the crater's central-point set as the projection center. In this projection, the circle is defined without any distortion of its shape (i.e., conformality). Using a sinusoidal map projection with a center longitude set to the crater's central-point, the diameter of the impact crater is measured along this central meridian which is true-scale and does not show any distortion. The crater is re-projected to the map projection of the current data frame and stored as vector geometry with attributes. Output from this workflow comprises correct impact-crater diameters and area sizes in sinusoidal map projections and can be used for further processing, i.e. absolute age determinations (e.g., using the software CraterStats). The ArcMap toolbar CraterTools developed in this context significantly helps to improve and simplify the crater size-frequency (CSF) measurement process. For GIS-based measurements, we strongly recommend our procedure as the standard method for determining CSFDs on planetary surfaces to minimize map distortion effects for further analysis.  相似文献   

18.
The existence of large terrestrial impact crater doublets and Martian crater doublets that have been inferred to be impact craters demonstrates that simultaneous impact of two or more bodies occurs at nearly the same point on planetary surfaces. An experimental study of simultaneous impact of two projectiles near one another shows that doublet craters with ridges perpendicular to the bilateral axis of symmetry result when separation between impact points relative to individual crater diameter is large. When separation is progressively less, elliptical craters with central ridges and central peaks, circular craters with flat floors containing ridges and peaks, and circular craters with deep round bottoms are produced. These craters are similar in structure to many of the large lunar craters. Results suggest that the simultaneous impact of meteoroids near one another may be an important mechanism for the production of central peaks in large lunar craters.  相似文献   

19.
The ion-sputtering (IS) process is active in many planetary environments in the solar system where plasma precipitates directly on the surface (for instance, Mercury, Moon and Europa). In particular, solar wind sputtering is one of the most important agents for the surface erosion of a near-Earth object (NEO), acting together with other surface release processes, such as photon stimulated desorption (PSD), thermal desorption (TD) and micrometeoroid impact vaporization (MIV). The energy distribution of the IS-released neutrals peaks at a few eVs and extends up to hundreds of eVs. Since all other release processes produce particles of lower energies, the presence of neutral atoms in the energy range above 10 eV and below a few keVs (sputtered high-energy atoms (SHEA)) identifies the IS process. SHEA easily escape from the NEO, due to NEO's extremely weak gravity. Detection and analysis of SHEA will give important information on surface-loss processes as well as on surface elemental composition. The investigation of the active release processes, as a function of the external conditions and the NEO surface properties, is crucial for obtaining a clear view of the body's present loss rate as well as for getting clues on its evolution, which depends significantly on space weather.In this work, an attempt to analyze processes that take place on the surface of these small airless bodies, as a result of their exposure to the space environment, has been realized. For this reason, a new space weathering model (space weathering on NEO-SPAWN) is presented. Moreover, an instrument concept of a neutral-particle analyzer specifically designed for the measurement of neutral density and the detection of SHEA from a NEO is proposed.  相似文献   

20.
Origin of the atmospheres of the terrestrial planets   总被引:1,自引:0,他引:1  
A.G.W. Cameron 《Icarus》1983,56(2):195-201
The monotonic decrease in the atmospheric abundance of 36Ar per gram of planet in the sequence, Venus, Earth, and Mars has been assumed to reflect some conditions in the primitive solar nebula at the time of formation of the planetary atmospheres, having to do either with the composition of the nebula itself or the composition of the trapped gases in small solid bodies in the nebula. Behind such hypotheses lies the assumption that planetary atmospheres steadily gain components. However, not only can gases enter atmospheres; they may also be lost from atmospheres both by adsorption into the planetary interior and by loss into space as a result of collisions with minor and major planetesimals. In this paper a necessarily qualitative discussion is given of the problem of collisions with minor planetesimals, a process called atmospheric cratering or atmospheric erosion, and a discussion is given of atmospheric loss accompanying collision of a planet with a major planetesimal, such as may have produced the Earth's Moon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号