首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is shown that the mean longitudinal field in a magnetic flux tube is reduced, rather than enhanced, by twisting the tube to form a rope. It is shown that there is no magnetohydrostatic equilibrium when one twisted rope is wound around another. Instead there is rapid line cutting (neutral point annihilation). It is shown that the twisting increases, and the field strength decreases, along a flux tube extending upward through a stratified atmosphere.These facts are at variance with Piddington's recent suggestion that solar activity is to be understood as the result of flux tubes which are enormously concentrated by twisting, which consist of several twisted ropes wound around each other, and which came untwisted where they emerge through the photosphere.This work was supported in part by the National Aeronautics and Space Administration under Grant NGL 14-001-001.  相似文献   

2.
Riemannian geometrical effects on the expansion of the electron magnetohydrodynamical (EMH) superconductivity modeled twisted nonplanar thin magnetic flux tubes are considered. A solution is found which represents almost incompressible plasma flows, where the twist of flux tube is computed in terms of the continuous variation of its cross-section. It is shown that the twist increases in regions where twisted flux tube expands as in Parker’s conjecture. From computation of compression along the tube we show that when the torsion is weak a centrifugal or vorticity effect on the longitudinal direction of the tube enhances the screening effect on the “superconductor”. Throughout the paper we consider helical flux tubes where torsion and curvature of the tube are constants. Thus we show that the Parker’s conjecture is valid in a continuos manner for these type II superconducting twisted flux tubes. Throughout the paper we adopt the approximation that the radial component of the magnetic field varies so slowly along the tube axis that it can be approximated to zero along the tube. It is suggested that the models discussed here may also be applied to DNA and nanotubes.  相似文献   

3.
A magnetodynamic mechanism for the acceleration of jets in the solar atmosphere (surges, Brueckner's EUV jets, and so on) is proposed, and a 2.5-dimensional MHD simulation is performed to show how this mechanism operates in the situation of the chromosphere-corona region of the solar atmosphere. It is seen from the result of simulation that together with the release of the magnetic twist, e.g., into a reconnected open flux tube, the mass in the high density twisted loop is driven out into the open flux tube due both to the pinch effect progressing with the packet of the magnetic twist into the open flux tube, and to the j × B force at the front of the packet of the unwinding twist in the off-axis part of the tube. The former, the progressing pinch, is accompanied by an accelerated hot blob, while the latter, the unwinding front of the magnetic twist, drives a cool cylindrical flow, both with velocities of the order of the local Alfvén velocity. One of the characteristic properties of the jet in our model is that the jet, consisting of hot core and cool sheath, has a helical velocity field in it, explaining the thus-far unexplained observed feature.The sudden release of the magnetic twist into an open flux tube is most likely to be due to the reconnection between a twisted loop and the open flux tube. The mass is driven out in the relaxation process of the magnetic twist from the twisted loop to the open flux tube.  相似文献   

4.
The equilibrium shape of a slender flux tube in the stratified solar atmosphere is studied. The path is determined by a balance between the downwards magnetic tension, which depends on the curvature of the loop, and the upwards buoyancy force. Previous results for untwisted slender tubes are extended to include twisted tubes embedded in an external magnetic field.The path of an untwisted tube in an atmosphere with an ambient magnetic field is calculated. For a given footpoint separation, the height of the tube is lowered by increasing the strength of the external magnetic field. If the footpoints are slowly moved apart, the tube rises, until a threshold separation is reached beyond which there is no possible equilibrium height. This threshold width does not depend on the strength of the external field.The effects of twisting up a curved loop are studied, using an extension of results obtained for slender curved tubes with a straight axis. It is shown that for a twisted tube of given width, there can be two possible values of the equilibrium height. If, however, the tube is twisted more than a certain amount or if the footpoints are too widely separated there is no equilibrium. The critical footpoint separation for non-equilibrium is smaller for a twisted tube that an untwisted one.Twisting a tube or moving its feet apart is thus likely to result in non-equilibrium, causing the tube to rise indefinitely under the influence of the unbalanced buoyant force. It is suggested that this phenomenon could be important in the preflare stage of a large two-ribbon solar flare, by causing the initial slow rise of an active region filament. As well as being involved in the onset of an erupting prominence, this non-equilibrium may also be relevant to the formation of coronal loop transients.  相似文献   

5.
In this paper the twisted flux-tube model for the support of a prominence sheet with constant axial current density, given by Ridgway, Priest, and Amari (1991), is considered.The model is extended in Section 2 to incorporate a current sheet of finite height. The sheet is supported in a constant current density force-free field in the configuration of a twisted flux tube. The mass of the prominence sheet, using a typical height and field strength, is computed. Outside the flux tube the background magnetic field is assumed to be potential but the matching of the flux tube onto this background field is not considered here.Instead our attention is focussed, in Section 3, on the interior of the prominence. An expanded scale is used to stretch the prominence sheet to a finite width. We analytically select solutions for the internal magnetic field in this region which match smoothly onto the external force-free solutions at the prominence edge.The force balance equation applied inside the prominence then yields expressions for the pressure and density and a corresponding temperature may be computed.  相似文献   

6.
EIT waves are observed in EUV as bright fronts. Some of these bright fronts propagate across the solar disk. EIT waves are all associated with a flare and a CME and are commonly interpreted as fast-mode magnetosonic waves. Propagating EIT waves could also be the direct signature of the gradual opening of magnetic field lines during a CME. We quantitatively addressed this alternative interpretation. Using two independent 3D MHD codes, we performed nondimensional numerical simulations of a slowly rotating magnetic bipole, which progressively result in the formation of a twisted magnetic flux tube and its fast expansion, as during a CME. We analyse the origins, the development, and the observability in EUV of the narrow electric currents sheets that appear in the simulations. Both codes give similar results, which we confront with two well-known SOHO/EIT observations of propagating EIT waves (7 April and 12 May 1997), by scaling the vertical magnetic field components of the simulated bipole to the line of sight magnetic field observed by SOHO/MDI and the sign of helicity to the orientation of the soft X-ray sigmoids observed by Yohkoh/SXT. A large-scale and narrow current shell appears around the twisted flux tube in the dynamic phase of its expansion. This current shell is formed by the return currents of the system, which separate the twisted flux tube from the surrounding fields. It intensifies as the flux tube accelerates and it is co-spatial with weak plasma compression. The current density integrated over the altitude has the shape of an ellipse, which expands and rotates when viewed from above, reproducing the generic properties of propagating EIT waves. The timing, orientation, and location of bright and faint patches observed in the two EIT waves are remarkably well reproduced. We conjecture that propagating EIT waves are the observational signature of Joule heating in electric current shells, which separate expanding flux tubes from their surrounding fields during CMEs or plasma compression inside this current shell. We also conjecture that the bright edges of halo CMEs show the plasma compression in these current shells.  相似文献   

7.
The aim of this paper is to look at the magnetic helicity structure of an emerging active region and show that both emergence and flaring signatures are consistent with a same sign for magnetic helicity. We present a multiwavelength analysis of an M1.6 flare occurring in the NOAA active region 10365 on 27 May 2003, in which a large new bipole emerges in a decaying active region. The diverging flow pattern and the “tongue” shape of the magnetic field in the photosphere with elongated polarities are highly suggestive of the emergence of a twisted flux tube. The orientation of these tongues indicates the emergence of a flux tube with a right-hand twist (i.e., positive magnetic helicity). The flare signatures in the chromosphere are ribbons observed in Hα by the MSDP spectrograph in the Meudon solar tower and in 1600 Å by TRACE. These ribbons have a J shape and are shifted along the inversion line. The pattern of these ribbons suggests that the flare was triggered by magnetic reconnection at coronal heights below a twisted flux tube of positive helicity, corresponding to that of the observed emergence. It is the first time that such a consistency between the signatures of the emerging flux through the photosphere and flare ribbons has been clearly identified in observations. Another type of ribbons observed during the flare at the periphery of the active region by the MSDP and SOHO/EIT is related to the existence of a null point, which is found high in the corona in a potential field extrapolation. We discuss the interpretation of these secondary brightenings in terms of the “breakout” model and in terms of plasma compression/heating within large-scale separatrices.  相似文献   

8.
Kuznetsov  V. D.  Hood  A. W. 《Solar physics》1997,171(1):61-80
A lack of equilibrium of twisted magnetic flux tubes emerging from the photosphere into the corona is considered. Assuming mass and flux conservation in the tube and an isothermal tube that is in thermal equilibrium with the surrounding plasma, it is shown that a sufficently rapid temperature increase through the transition zone may lead to the loss of magnetohydrostatic equilibrium of the emerging flux tube due to the enhancement of the plasma pressure inside the tube. The non-equilibrium leads to a rapid expansion of the tube to reach a new equilibrium state. The rise and expansion of the tube before and after the non-equilibrium are accompanied by an increase in the twist of the magnetic field. This may lead to the field exceeding the threshold for the onset of the kink instability and a subsequent explosive release of magnetic energy.  相似文献   

9.
The role of null-point reconnection in a three-dimensional numerical magnetohydrodynamic (MHD) model of solar emerging flux is investigated. The model consists of a twisted magnetic flux tube rising through a stratified convection zone and atmosphere to interact and reconnect with a horizontal overlying magnetic field in the atmosphere. Null points appear as the reconnection begins and persist throughout the rest of the emergence, where they can be found mostly in the model photosphere and transition region, forming two loose clusters on either side of the emerging flux tube. Up to 26 nulls are present at any one time, and tracking in time shows that there is a total of 305 overall, despite the initial simplicity of the magnetic field configuration. We find evidence for the reality of the nulls in terms of their methods of creation and destruction, their balance of signs, their long lifetimes, and their geometrical stability. We then show that due to the low parallel electric fields associated with the nulls, null-point reconnection is not the main type of magnetic reconnection involved in the interaction of the newly emerged flux with the overlying field. However, the large number of nulls implies that the topological structure of the magnetic field must be very complex and the importance of reconnection along separators or separatrix surfaces for flux emergence cannot be ruled out.  相似文献   

10.
In this paper we extend previous work of Browning and Priest (1984, 1986) by studying the equilibrium path of twisted and untwisted thin flux tubes in a stratified, isothermal atmosphere using as the ambient field a linear force-free field. When an untwisted flux tube is considered, we find that shearing the magnetic arcade provides a different form to change the parameter which characterizes the external atmosphere, but at the same time this introduces a limitation in the width allowed for the external arcade. Also, the critical width found for the different analytical cases considered is always greater than one arch of the ambient arcade which prevents an eruption inside the arcade. In the case of twisted flux tubes, an analytical solution can be found for the critical c , which separates regimes of strong and weak gravity, and the shape of the flux tube is now dependent on , a parameter which represents the magnetic field enhancement of the loop at the photosphere.  相似文献   

11.
The ideal MHD stability of the 2D twisted magnetic flux tube prominence model of Cartledge and Hood (1993) is investigated. The model includes a temperature profile that varies from realistic prominence values up to typical coronal values. The prominence is considered to be of finite-width and finite height. The stability properties of the prominence models are studied by using a method that generates a separate necessary condition and a sufficient condition. These conditions give bounds on the parameters that define marginal stability. In many cases these bounds are quite close so that further, more detailed, stability calculations are not necessary. A number of parameter regimes are examined, corresponding to different profiles of the prominence temperatures, densities, and magnetic field shear. It is found that the model admits realistic stable and unstable loop lengths for observed prominence parameters when the axial magnetic field component does not vanish.  相似文献   

12.
A. D. Crouch 《Solar physics》2012,281(2):669-695
We investigate least-squares fitting methods for estimating the winding rate of field lines about the axis of twisted magnetic-flux tubes. These methods estimate the winding rate by finding the values for a set of parameters that correspond to the minimum of the discrepancy between vector magnetic-field measurements and predictions from a twisted flux-tube model. For the flux-tube model used in the fitting, we assume that the magnetic field is static, axisymmetric, and does not vary in the vertical direction. Using error-free, synthetic vector magnetic-field data constructed with models for twisted magnetic-flux tubes, we test the efficacy of fitting methods at recovering the true winding rate. Furthermore, we demonstrate how assumptions built into the flux-tube models used for the fitting influence the accuracy of the winding-rate estimates. We identify the radial variation of the winding rate within the flux tube as one assumption that can have a significant impact on the winding-rate estimates. We show that the errors caused by making a fixed, incorrect assumption about the radial variation of the winding rate can be largely avoided by fitting directly for the radial variation of the winding rate. Other assumptions that we investigate include the lack of variation of the field in the azimuthal and vertical directions in the magnetic-flux tube model used for the fitting, and the inclination, curvature, and location of the flux-tube axis. When the observed magnetic field deviates substantially from the flux-tube model used for the fitting, we find that the winding-rate estimates can be unreliable. We conclude that the magnetic-flux tube models used in this investigation are probably too simple to yield reliable estimates for the winding rate of the field lines in solar magnetic structures in general, unless additional information is available to justify the choice of flux-tube model used for the fitting.  相似文献   

13.
Twisted magnetic flux tubes are of considerable interest because of their natural occurrence from the Sun’s interior, throughout the solar atmosphere and interplanetary space up to a wide range of applicabilities to astrophysical plasmas. The aim of the present work is to obtain analytically a dispersion equation of linear wave propagation in twisted incompressible cylindrical magnetic waveguides and find appropriate solutions for surface, body and pseudobody sausage modes (i.e. m = 0) of a twisted magnetic flux tube embedded in an incompressible but also magnetically twisted plasma. Asymptotic solutions are derived in long- and short-wavelength approximations. General solutions of the dispersion equation for intermediate wavelengths are obtained numerically. We found, that in case of a constant, but non-zero azimuthal component of the equilibrium magnetic field outside the flux tube the index ν of Bessel functions in the dispersion relation is not integer any more in general. This gives rise to a rich mode-structure of degenerated magneto-acoustic waves in solar flux tubes. In a particular case of a uniform magnetic twist the total pressure is found to be constant across the boundary of the flux tube. Finally, the effect of magnetic twist on oscillation periods is estimated under solar atmospheric conditions. It was found that a magnetic twist will increase, in general, the periods of waves approximately by a few percent when compared to their untwisted counterparts.  相似文献   

14.
We consider a pressureless plasma in a thin magnetic-flux tube with a twisted magnetic field. We study the effect of twisted magnetic field on the nature of propagating kink waves. To do this, the restoring forces of oscillations in the linear ideal magnetohydrodynamics (MHD) were obtained. In the presence of a twisted magnetic field, the ratio of the magnetic-tension force to the gradient of the magnetic pressure increases for the mode with negative azimuthal wave number, but it decreases for the mode with positive azimuthal wave number. For the kink mode with positive azimuthal mode number, the ratio of the forces is more affected by the twisted magnetic field in dense loops. For the kink mode with negative azimuthal mode number, the perturbed magnetic pressure is negligible under some conditions. The magnetic twist increases (diminishes) the damping of the kink waves with positive (negative) azimuthal mode number due to resonant absorption. Our conclusion is that introducing a twisted magnetic field breaks the symmetry between the nature of the kink waves with positive and negative azimuthal wave number, and the wave can be a purely Alfvénic wave in the entire loop.  相似文献   

15.
16.
Recent studies of NOAA active region 10953, by Okamoto et al. (Astrophys. J. Lett. 673, 215, 2008; Astrophys. J. 697, 913, 2009), have interpreted photospheric observations of changing widths of the polarities and reversal of the horizontal magnetic field component as signatures of the emergence of a twisted flux tube within the active region and along its internal polarity inversion line (PIL). A filament is observed along the PIL and the active region is assumed to have an arcade structure. To investigate this scenario, MacTaggart and Hood (Astrophys. J. Lett. 716, 219, 2010) constructed a dynamic flux emergence model of a twisted cylinder emerging into an overlying arcade. The photospheric signatures observed by Okamoto et al. (2008, 2009) are present in the model although their underlying physical mechanisms differ. The model also produces two additional signatures that can be verified by the observations. The first is an increase in the unsigned magnetic flux in the photosphere at either side of the PIL. The second is the behaviour of characteristic photospheric flow profiles associated with twisted flux tube emergence. We look for these two signatures in AR 10953 and find negative results for the emergence of a twisted flux tube along the PIL. Instead, we interpret the photospheric behaviour along the PIL to be indicative of photospheric magnetic cancellation driven by flows from the dominant sunspot. Although we argue against flux emergence within this particular region, the work demonstrates the important relationship between theory and observations for the successful discovery and interpretation of signatures of flux emergence.  相似文献   

17.
Bipolar active regions (ARs) are thought to be formed by twisted flux tubes, as the presence of such twist is theoretically required for a cohesive rise through the whole convective zone. We use longitudinal magnetograms to demonstrate that a clear signature of a global magnetic twist is present, particularly, during the emergence phase when the AR is forming in a much weaker pre-existing magnetic field environment. The twist is characterised by the presence of elongated polarities, called “magnetic tongues”, which originate from the azimuthal magnetic field component. The tongues first extend in size before retracting when the maximum magnetic flux is reached. This implies an apparent rotation of the magnetic bipole. Using a simple half-torus model of an emerging twisted flux tube having a uniform twist profile, we derive how the direction of the polarity inversion line and the elongation of the tongues depend on the global twist in the flux rope. Using a sample of 40 ARs, we verify that the helicity sign, determined from the magnetic polarity distribution pattern, is consistent with the sign derived from the photospheric helicity flux computed from magnetogram time series, as well as from other proxies such as sheared coronal loops, sigmoids, flare ribbons and/or the associated magnetic cloud observed in situ at 1 AU. The evolution of the tongues observed in emerging ARs is also closely similar to the evolution found in recent MHD numerical simulations. We also found that the elongation of the tongue formed by the leading magnetic polarity is significantly larger than that of the following polarity. This newly discovered asymmetry is consistent with an asymmetric Ω-loop emergence, trailing the solar rotation, which was proposed earlier to explain other asymmetries in bipolar ARs.  相似文献   

18.
The Magnetic Helicity Injected by Shearing Motions   总被引:1,自引:0,他引:1  
Photospheric shearing motions are one of the possible ways to inject magnetic helicity into the corona. We explore their efficiency as a function of their particular properties and those of the magnetic field configuration. Based on the work of M. A. Berger, we separate the helicity injection into two terms: twist and writhe. For shearing motions concentrated between the centers of two magnetic polarities the helicity injected by twist and writhe add up, while for spatially more extended shearing motions, such as differential rotation, twist and writhe helicity have opposite signs and partially cancel. This implies that the amount of injected helicity can change in sign with time even if the shear velocity is time independent. We confirm the amount of helicity injected by differential rotation in a bipole in the two particular cases studied by DeVore (2000), and further explore the parameter space on which this injection depends. For a given latitude, tilt and magnetic flux, the generation of helicity is slightly more efficient in young active regions than in decayed ones (up to a factor 2). The helicity injection is mostly affected by the tilt of the AR with respect to the solar equator. The total helicity injected by shearing motions, with both spatial and temporal coherence, is at most equivalent to that of a twisted flux tube having the same magnetic flux and a number of turns of 0.3. In the solar case, where the motions have not such global coherence, the injection of helicity is expected to be much smaller, while for differential rotation this maximum value reduces to 0.2 turns. We conclude that shearing motions are a relatively inefficient way to bring magnetic helicity into the corona (compared to the helicity carried by a significantly twisted flux tube).  相似文献   

19.
We study the flux emergence process in NOAA active region 11024, between 29 June and 7 July 2009, by means of multi-wavelength observations and nonlinear force-free extrapolation. The main aim is to extend previous investigations by combining, as much as possible, high spatial resolution observations to test our present understanding of small-scale (undulatory) flux emergence, whilst putting these small-scale events in the context of the global evolution of the active region. The combination of these techniques allows us to follow the whole process, from the first appearance of the bipolar axial field on the east limb, until the buoyancy instability could set in and raise the main body of the twisted flux tube through the photosphere, forming magnetic tongues and signatures of serpentine field, until the simplification of the magnetic structure into a main bipole by the time the active region reaches the west limb. At the crucial time of the main emergence phase high spatial resolution spectropolarimetric measurements of the photospheric field are employed to reconstruct the three-dimensional structure of the nonlinear force-free coronal field, which is then used to test the current understanding of flux emergence processes. In particular, knowledge of the coronal connectivity confirms the identity of the magnetic tongues as seen in their photospheric signatures, and it exemplifies how the twisted flux, which is emerging on small scales in the form of a sea-serpent, is subsequently rearranged by reconnection into the large-scale field of the active region. In this way, the multi-wavelength observations combined with a nonlinear force-free extrapolation provide a coherent picture of the emergence process of small-scale magnetic bipoles, which subsequently reconnect to form a large-scale structure in the corona.  相似文献   

20.
In this paper, we study multiwavelength observations of an M6.4 flare in Active Region NOAA 11045 on 7 February 2010. The space- and ground-based observations from STEREO, SoHO/MDI, EIT, and Nobeyama Radioheliograph were used for the study. This active region rapidly appeared at the north-eastern limb with an unusual emergence of a magnetic field. We find a unique observational signature of the magnetic field configuration at the flare site. Our observations show a change from dipolar to quadrapolar topology. This change in the magnetic field configuration results in its complexity and a build-up of the flare energy. We did not find any signature of magnetic flux cancellation during this process. We interpret the change in the magnetic field configuration as a consequence of the flux emergence and photospheric flows that have opposite vortices around the pair of opposite polarity spots. The negative-polarity spot rotating counterclockwise breaks the positive-polarity spot into two parts. The STEREO-A 195 Å and STEREO-B 171 Å coronal images during the flare reveal that a twisted flux tube expands and erupts resulting in a coronal mass ejection (CME). The formation of co-spatial bipolar radio contours at the same location also reveals the ongoing reconnection process above the flare site and thus the acceleration of non-thermal particles. The reconnection may also be responsible for the detachment of a ring-shaped twisted flux tube that further causes a CME eruption with a maximum speed of 446 km/s in the outer corona.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号