首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The diffusion of water in dacitic and andesitic melts was investigated at temperatures of 1458 to 1858 K and pressures between 0.5 and 1.5 GPa using the diffusion couple technique. Pairs of nominally dry glasses and hydrous glasses containing between 1.5 and 6.3 wt.% dissolved H2O were heated for 60 to 480 s in a piston cylinder apparatus. Concentration profiles of hydrous species (OH groups and H2O molecules) and total water (CH2Ot = sum of OH and H2O) were measured along the cylindrical axis of the diffusion sample using IR microspectroscopy. Electron microprobe traverses show no significant change in relative proportions of anhydrous components along H2O profiles, indicating that our data can be treated as effective binary interdiffusion between H2O and the rest of the silicate melt. Bulk water diffusivity (DH2Ot) was derived from profiles of total water using a modified Boltzmann-Matano method as well as using fittings assuming a functional relationship between DH2Ot and CH2Ot. In dacitic melts DH2Ot is proportional to CH2Ot up to 6 wt.%. In andesitic melts the dependence of DH2Ot on CH2Ot is less pronounced. A pressure effect on water diffusivity could not be resolved for either dacitic or andesitic melt in the range 0.5 to 1.5 GPa. Combining our results with previous studies on water diffusion in rhyolite and basalt show that for a given water content DH2Ot increases monotonically with increasing melt depolymerization at temperatures >1500 K. Assuming an Arrhenian behavior in the whole compositional range, the following formulation was derived to estimate DH2Ot (m2/s) at 1 wt.% H2Ot in melts with rhyolitic to andesitic composition as a function of T (K), P (MPa) and S (wt.% SiO2):
  相似文献   

2.
Solubility mechanisms of water in depolymerized silicate melts quenched from high temperature (1000°-1300°C) at high pressure (0.8-2.0 GPa) have been examined in peralkaline melts in the system Na2O-SiO2-H2O with Raman and NMR spectroscopy. The Na/Si ratio of the melts ranged from 0.25 to 1. Water contents were varied from ∼3 mol% and ∼40 mol% (based on O = 1). Solution of water results in melt depolymerization where the rate of depolymerization with water content, ∂(NBO/Si)/∂XH2O, decreases with increasing total water content. At low water contents, the influence of H2O on the melt structure resembles that of adding alkali oxide. In water-rich melts, alkali oxides are more efficient melt depolymerizers than water. In highly polymerized melts, Si-OH bonds are formed by water reacting with bridging oxygen in Q4-species to form Q3 and Q2 species. In less polymerized melts, Si-OH bonds are formed when bridging oxygen in Q3-species react with water to form Q2-species. In addition, the presence of Na-OH complexes is inferred. Their importance appears to increase with Na/Si. This apparent increase in importance of Na-OH complexes with increasing Na/Si (which causes increasing degree of depolymerization of the anhydrous silicate melt) suggests that water is a less efficient depolymerizer of silicate melts, the more depolymerized the melt. This conclusion is consistent with recently published 1H and 29Si MAS NMR and 1H-29Si cross polarization NMR data.  相似文献   

3.
The solubility behavior of H2O in melts in the system Na2O-SiO2-H2O was determined by locating the univariant phase boundary, melt = melt + vapor in the 0.8-2 GPa and 1000°-1300°C pressure and temperature range, respectively. The NBO/Si-range of the melts (0.25-1) was chosen to cover that of most natural magmatic liquids. The H2O solubility in melts in the system Na2O-SiO2-H2O (XH2O) ranges between 18 and 45 mol% (O = 1) with (∂XH2O/∂P)T∼14-18 mol% H2O/GPa. The (∂XH2O/∂P)T is negatively correlated with NBO/Si (= Na/Si) of the melt. The (∂XH2O/∂T)P is in the −0.03 to +0.05 mol% H2O/°C range, and is negatively correlated with NBO/Si. The [∂XH2O/∂(NBO/Si)]P,T is in the −3 to −8 mol% H2O/(NBO/Si) range. Melts with NBO/Si similar to basaltic liquids (∼0.6-∼1.0) show (∂XH2O/∂T)P<0, whereas more polymerized melts exhibit (∂XH2O/∂T)P>0. Complete miscibility between hydrous melt and aqueous fluid occurs in the 0.8-2 GPa pressure range for melts with NBO/Si ≤0.5 at T >1100°C. Miscibility occurs at lower pressure the more polymerized the melt.  相似文献   

4.
The structure of H2O-saturated silicate melts, coexisting silicate-saturated aqueous solutions, and supercritical silicate liquids in the system Na2O·4SiO2–H2O has been characterized with the sample at high temperature and pressure in a hydrothermal diamond anvil cell (HDAC). Structural information was obtained with confocal microRaman and with FTIR microscopy. Fluids and melts were examined along pressure-temperature trajectories defined by the isochores of H2O at nominal densities, ρfluid, (from EOS of pure H2O) of 0.90 and 0.78 g/cm3. With ρfluid = 0.78 g/cm3, water-saturated melt and silicate-saturated aqueous fluid coexist to the highest temperature (800 °C) and pressure (677 MPa), whereas with ρfluid = 0.90 g/cm3, a homogeneous single-phase liquid phase exists through the temperature and pressure range (25–800 °C, 0.1–1033 MPa). Less than 5 vol% quartz precipitates near 650 °C in both experimental series, thus driving Na/Si-ratios of melt + fluid phase assemblages to higher values than that of the Na2O·4SiO2 starting material.Molecular H2O (H2O°) and structurally bonded OH groups were observed in coexisting melts and fluids as well as in supercritical liquids. Their OH/(H2O)-ratio is positively correlated with temperature. The OH/(H2O)° in melts is greater than in coexisting fluids. Structural units of Q3, Q2, Q1, and Q0 type are observed in all phases under all conditions. An expression of the form, 12Q3 + 13H2O2Q2 + 6Q1 + 4Q0, describes the equilibrium among those structural units. This equilibrium shifts to the right with increasing pressure and temperature with a ΔH of the reaction near 425 kJ/mol.  相似文献   

5.
The sodium solubility in silicate melts in the CaO-MgO-SiO2 (CMS) system at 1400 °C has been measured by using a closed thermochemical reactor designed to control alkali metal activity. In this reactor, Na(g) evaporation from a Na2O-xSiO2 melt imposes an alkali metal vapor pressure in equilibrium with the molten silicate samples. Because of equilibrium conditions in the reactor, the activity of sodium-metal oxide in the molten samples is the same as that of the source, i.e., aNa2O(sample) = aNa2O(source). This design also allows to determine the sodium oxide activity coefficient in the samples. Thirty-three different CMS compositions were studied. The results show that the amount of sodium entering from the gas phase (i.e., Na2O solubility) is strongly sensitive to silica content of the melt and, to a lesser extent, the relative amounts of CaO and MgO. Despite the large range of tested melt compositions (0 < CaO and MgO < 40; 40 < SiO2 < 100; in wt%), we found that Na2O solubility is conveniently modeled as a linear function of the optical basicity (Λ) calculated on a Na-free basis melt composition. In our experiments, γNa2O(sample) ranges from 7 × 10−7 to 5 × 10−6, indicating a strongly non-ideal behavior of Na2O solubility in the studied CMS melts (γNa2O(sample) ? 1). In addition to showing the effect of sodium on phase relationships in the CMS system, this Na2O solubility study brings valuable new constraints on how melt structure controls the solubility of Na in the CMS silicate melts. Our results suggest that Na2O addition causes depolymerization of the melt by preferential breaking of Si-O-Si bonds of the most polymerized tetrahedral sites, mainly Q4.  相似文献   

6.
Armenite, ideal formula BaCa2Al6Si9O30·2H2O, and its dehydrated analog BaCa2Al6Si9O30 and epididymite, ideal formula Na2Be2Si6O15·H2O, and its dehydrated analog Na2Be2Si6O15 were studied by low-temperature relaxation calorimetry between 5 and 300 K to determine the heat capacity, Cp, behavior of their confined H2O. Differential thermal analysis and thermogravimetry measurements, FTIR spectroscopy, electron microprobe analysis and powder Rietveld refinements were undertaken to characterize the phases and the local environment around the H2O molecule.The determined structural formula for armenite is Ba0.88(0.01)Ca1.99(0.02)Na0.04(0.01)Al5.89(0.03)Si9.12(0.02)O30·2H2O and for epididymite Na1.88(0.03)K0.05(0.004)Na0.01(0.004)Be2.02(0.008)Si6.00(0.01)O15·H2O. The infrared (IR) spectra give information on the nature of the H2O molecules in the natural phases via their H2O stretching and bending vibrations, which in the case of epididymite only could be assigned. The powder X-ray diffraction data show that armenite and its dehydrated analog have similar structures, whereas in the case of epididymite there are structural differences between the natural and dehydrated phases. This is also reflected in the lattice IR mode behavior, as observed for the natural phases and the H2O-free phases. The standard entropy at 298 K for armenite is S° = 795.7 ± 6.2 J/mol K and its dehydrated analog is S° = 737.0 ± 6.2 J/mol K. For epididymite S° = 425.7 ± 4.1 J/mol K was obtained and its dehydrated analog has S° = 372.5 ± 5.0 J/mol K. The heat capacity and entropy of dehydration at 298 K are Δ = 3.4 J/mol K and ΔSrxn = 319.1 J/mol K and Δ = −14.3 J/mol K and ΔSrxn = 135.7 J/mol K for armenite and epididymite, respectively. The H2O molecules in both phases appear to be ordered. They are held in place via an ion-dipole interaction between the H2O molecule and a Ca cation in the case of armenite and a Na cation in epididymite and through hydrogen-bonding between the H2O molecule and oxygen atoms of the respective silicate frameworks. Of the three different H2O phases ice, liquid water and steam, the Cp behavior of confined H2O in both armenite and epididymite is most similar to that of ice, but there are differences between the two silicates and from the Cp behavior of ice. Hydrogen-bonding behavior and its relation to the entropy of confined H2O at 298 K is analyzed for various microporous silicates.The entropy of confined H2O at 298 K in various silicates increases approximately linearly with increasing average wavenumber of the OH-stretching vibrations. The interpretation is that decreased hydrogen-bonding strength between a H2O molecule and the silicate framework, as well as weak ion-dipole interactions, results in increased entropy of H2O. This results in increased amplitudes of external H2O vibrations, especially translations of the molecule, and they contribute strongly to the entropy of confined H2O at T < 298 K.  相似文献   

7.
We determined total CO2 solubilities in andesite melts with a range of compositions. Melts were equilibrated with excess C-O(-H) fluid at 1 GPa and 1300°C then quenched to glasses. Samples were analyzed using an electron microprobe for major elements, ion microprobe for C-O-H volatiles, and Fourier transform infrared spectroscopy for molecular H2O, OH, molecular CO2, and CO32−. CO2 solubility was determined in hydrous andesite glasses and we found that H2O content has a strong influence on C-O speciation and total CO2 solubility. In anhydrous andesite melts with ∼60 wt.% SiO2, total CO2 solubility is ∼0.3 wt.% at 1300°C and 1 GPa and total CO2 solubility increases by about 0.06 wt.% per wt.% of total H2O. As total H2O increases from ∼0 to ∼3.4 wt.%, molecular CO2 decreases (from 0.07 ± 0.01 wt.% to ∼0.01 wt.%) and CO32− increases (from 0.24 ± 0.04 wt.% to 0.57 ± 0.09 wt.%). Molecular CO2 increases as the calculated mole fraction of CO2 in the fluid increases, showing Henrian behavior. In contrast, CO32− decreases as the calculated mole fraction of CO2 in the fluid increases, indicating that CO32− solubility is strongly dependent on the availability of reactive oxygens in the melt. These findings have implications for CO2 degassing. If substantial H2O is present, total CO2 solubility is higher and CO2 will degas at relatively shallow levels compared to a drier melt. Total CO2 solubility was also examined in andesitic glasses with additional Ca, K, or Mg and low H2O contents (<1 wt.%). We found that total CO2 solubility is negatively correlated with (Si + Al) cation mole fraction and positively correlated with cations with large Gibbs free energy of decarbonation or high charge-to-radius ratios (e.g., Ca). Combining our andesite data with data from the literature, we find that molecular CO2 is more abundant in highly polymerized melts with high ionic porosities (>∼48.3%), and low nonbridging oxygen/tetrahedral oxygen (<∼0.3). Carbonate dominates most silicate melts and is most abundant in depolymerized melts with low ionic porosities, high nonbridging oxygen/tetrahedral oxygen (>∼0.3), and abundant cations with large Gibbs free energy of decarbonation or high charge-to-radius ratio. In natural silicate melt, the oxygens in the carbonate are likely associated with tetrahedral and network-modifying cations (including Ca, H, or H-bonds) or a combinations of those cations.  相似文献   

8.
Hydrogen isotope exchange between water and orthosilicic acid (H4SiO4) was modeled using B3LYP calculations and classical transition-state theory. Configurations of 1, 2, 3 and 7 water molecules and H4SiO4 were used to investigate energetically viable reaction pathways. An upper-bound of 71 kJ/mol was assumed for the zero-point energy corrected barrier (ZPECB) because this is the experimentally determined activation energy for Si-O bond breaking (Rimstidt and Barnes, 1980) and ZPECB is expected to be close to this value. Long range solvation forces were accounted for using the integral equation formalism polarized continuum model (IEFPCM; Cancès et al., 1997). Primary and secondary isotope effects were computed by exchanging hydrogen atoms with deuterium. Results show that reaction mechanisms involving 3 and 7 water molecules have ZPECB of 34 to 38 kJ/mol, whereas those involving 1 and 2 water molecules have ZPECB in excess of the set upper-bound. The lower range of ZPECB with 3 or 7 water molecules is reasonable to explain rapid hydrogen isotope exchange with silicates. Rate constant calculations accounting for tunneling, anharmonicity and scaling factors indicate that the reaction is fast and equilibrium can be assumed under most geologic conditions.  相似文献   

9.
Solubility and solution mechanisms of H2O in depolymerized melts in the system Na2O-Al2O3-SiO2 were deduced from spectroscopic data of glasses quenched from melts at 1100 °C at 0.8-2.0 GPa. Data were obtained along a join with fixed nominal NBO/T = 0.5 of the anhydrous materials [Na2Si4O9-Na2(NaAl)4O9] with Al/(Al+Si) = 0.00-0.25. The H2O solubility was fitted to the expression, XH2O=0.20+0.0020fH2O-0.7XAl+0.9(XAl)2, where XH2O is the mole fraction of H2O (calculated with O = 1), fH2O the fugacity of H2O, and XAl = Al/(Al+Si). Partial molar volume of H2O in the melts, , calculated from the H2O-solulbility data assuming ideal mixing of melt-H2O solutions, is 12.5 cm3/mol for Al-free melts and decreases linearly to 8.9 cm3/mol for melts with Al/(Al+Si) ∼ 0.25. However, if recent suggestion that is composition-independent is applied to constrain activity-composition relations of the hydrous melts, the activity coefficient of H2O, , increases with Al/(Al+Si).Solution mechanisms of H2O were obtained by combining Raman and 29Si NMR spectroscopic data. Degree of melt depolymerization, NBO/T, increases with H2O content. The rate of NBO/T-change with H2O is negatively correlated with H2O and positively correlated with Al/(Al+Si). The main depolymerization reaction involves breakage of oxygen bridges in Q4-species to form Q2 species. Steric hindrance appears to restrict bonding of H+ with nonbridging oxygen in Q3 species. The presence of Al3+ does not affect the water solution mechanisms significantly.  相似文献   

10.
Phase equilibria data in the systems SiO2-P2O5, P2O5-MxOy, and P2O5-MxOy-SiO2 are employed in conjunction with Chromatographic and spectral data to investigate the role of P2O5 in silicate melts. Such data indicate that the behavior of P2O5 is complex. P2O5 depolymerizes pure SiO2 melts by entering the network as a four-fold coordinated cation, but polymerizes melts in which an additional metal cation other than silicon is present. The effect of this polymerization is apparent in the widening of the granite-ferrobasalt two-liquid solvus. In this complex system P2O5 acts to increase phase separation by further enrichment of the high charge density cations Ti, Fe, Mg, Mn, Ca, in the ferrobasaltic liquid. P2O5 also produces an increase in the ferrobasalt-granite REE liquid distribution coefficients. These distribution coefficients are close to 4 in P2O5-free melts, but close to 15 in P2O5-bearing melts.The dual behavior of P2O5 is explained in a model which requires complexing of phosphate anions (analogous to silicate anions) and metal cations in the melt. This interaction destroys Si-O-M-O-Si bonds polymerizing the melt. The higher concentration of Si-O-M-O-Si bond complexes in immiscible ferrobasaltic liquids relative to their conjugate immiscible granite liquids explains the partitioning of P2O5 into the ferrobasaltic liquid.  相似文献   

11.
The magnitude of equilibrium iron isotope fractionation between Fe(H2O)63+ and Fe(H2O)62+ is calculated using density functional theory (DFT) and compared to prior theoretical and experimental results. DFT is a quantum chemical approach that permits a priori estimation of all vibrational modes and frequencies of these complexes and the effects of isotopic substitution. This information is used to calculate reduced partition function ratios of the complexes (103 · ln(β)), and hence, the equilibrium isotope fractionation factor (103 · ln(α)). Solvent effects are considered using the polarization continuum model (PCM). DFT calculations predict fractionations of several per mil in 56Fe/54Fe favoring partitioning of heavy isotopes in the ferric complex. Quantitatively, 103 · ln(α) predicted at 22°C, ∼ 3 , agrees with experimental determinations but is roughly half the size predicted by prior theoretical results using the Modified Urey-Bradley Force Field (MUBFF) model. Similar comparisons are seen at other temperatures. MUBFF makes a number of simplifying assumptions about molecular geometry and requires as input IR spectroscopic data. The difference between DFT and MUBFF results is primarily due to the difference between the DFT-predicted frequency for the ν4 mode (O-Fe-O deformation) of Fe(H2O)63+ and spectroscopic determinations of this frequency used as input for MUBFF models (185-190 cm−1 vs. 304 cm−1, respectively). Hence, DFT-PCM estimates of 103 · ln(β) for this complex are ∼ 20% smaller than MUBFF estimates. The DFT derived values can be used to refine predictions of equilibrium fractionation between ferric minerals and dissolved ferric iron, important for the interpretation of Fe isotope variations in ancient sediments. Our findings increase confidence in experimental determinations of the Fe(H2O)63+ − Fe(H2O)62+ fractionation factor and demonstrate the utility of DFT for applications in “heavy” stable isotope geochemistry.  相似文献   

12.
Hydrothermal experiments were conducted to evaluate the kinetics of H2(aq) oxidation in the homogeneous H2-O2-H2O system at conditions reflecting subsurface/near-seafloor hydrothermal environments (55-250 °C and 242-497 bar). The kinetics of the water-forming reaction that controls the fundamental equilibrium between dissolved H2(aq) and O2(aq), are expected to impose significant constraints on the redox gradients that develop when mixing occurs between oxygenated seawater and high-temperature anoxic vent fluid at near-seafloor conditions. Experimental data indicate that, indeed, the kinetics of H2(aq)-O2(aq) equilibrium become slower with decreasing temperature, allowing excess H2(aq) to remain in solution. Sluggish reaction rates of H2(aq) oxidation suggest that active microbial populations in near-seafloor and subsurface environments could potentially utilize both H2(aq) and O2(aq), even at temperatures lower than 40 °C due to H2(aq) persistence in the seawater/vent fluid mixtures. For these H2-O2 disequilibrium conditions, redox gradients along the seawater/hydrothermal fluid mixing interface are not sharp and microbially-mediated H2(aq) oxidation coupled with a lack of other electron acceptors (e.g. nitrate) could provide an important energy source available at low-temperature diffuse flow vent sites.More importantly, when H2(aq)-O2(aq) disequilibrium conditions apply, formation of metastable hydrogen peroxide is observed. The yield of H2O2(aq) synthesis appears to be enhanced under conditions of elevated H2(aq)/O2(aq) molar ratios that correspond to abundant H2(aq) concentrations. Formation of metastable H2O2 is expected to affect the distribution of dissolved organic carbon (DOC) owing to the existence of an additional strong oxidizing agent. Oxidation of magnetite and/or Fe++ by hydrogen peroxide could also induce formation of metastable hydroxyl radicals (•OH) through Fenton-type reactions, further broadening the implications of hydrogen peroxide in hydrothermal environments.  相似文献   

13.
The effect of the group IA and VIIA ions, as well as Mg2+, and the molecules H2O, CO2, H3O+ and OH? on the energy of the Si-O bond in a H6Si2O7 cluster has been calculated using semiempirical molecular orbital calculations (CNDO/2). Three types of elementary processes, i.e. substitution, addition, and polymerization reactions have been used to interpret data on the dynamic viscosity, surface tension and surface charge, hydrolytic weakening, diffusivity, conductivity, freezing point depression, and degree of polymerization of silicates in melts, glasses, and aqueous solutions. As a test of our calculational procedure, observed X-ray emission spectra of binary alkali silicate glasses were compared with calculated electronic spectra. The well known bondlength variations between the bridging bond [Si-O(br)] and the non-bridging bond [Si-O(nbr)] in alkali silicates are shown to be due to the propagation of oscillating bond-energy patterns through the silica framework. A kinetic interpretation of some results of our calculations is given in terms of the Bell-Evans-Polanyi reaction principle.  相似文献   

14.
As part of a study of the effect of geologically common network modifiers on polymerization in silicate melts, glasses, and silica-rich aqueous solutions, we have studied the energies, electronic structures, and inferred chemical properties of IVT-O-IVT linkages in the tetrahedral dimers H6,Si2O7, H6AlSiO71?, and H6Al2O72? using semi-empirical molecular orbital theory (CNDO/2). Our results indicate that the electron donating character of the bridging oxygen, O(br), linking two tetrahedra increases with increasing T-O(br) bond length but decreases with decreasing T-O(br)-T angles and increasing O-T-O(br) angles. This increase or decrease of the donor character of O(br) coincides with an increase or decrease of the affinity of O(br) for hard acceptors. The calculated electronic structure for the H6Si2O7 molecule is compared with the observed X-ray emission, absorption, and photoelectron spectra of quartz and vitreous silica; the reasonable match between calculated and observed oxygen Kα emission spectra of vitreous silica supports our assertion that non-bonded O(br) electron density energetically at the top of the valence band controls the chemical reactivity of IVT-O-IVT linkages in polymerized tetrahedral environments.  相似文献   

15.
Oxygen isotope exchange between H2O and H4SiO4 was modeled with ab initio calculations on H4SiO4 + 7H2O. Constrained optimizations were performed with the B3LYP/6-31+G(d,p) method to determine reactants, transition states, and intermediates. Long-range solvation was accounted for using self-consistent reaction field calculations. The mechanism for exchange involves two steps, a concerted proton transfer from H4SiO4 forming a 5-coordinated Si followed by a concerted proton transfer from the 5-coordinated Si forming another H4SiO4. The 5-coordinated Si intermediate is C2 symmetric. At 298K and with implicit solvation included, the Gibbs free energy of activation from transition state theory is 66 kJ/mol and the predicted rate constant is 16 s−1. Equilibrium calculations between 298K and 673K yield αH4SiO4-H2O that are uniformly less than, but similar to, αqtz-H2O, and therefore αqtz-H4SiO4 is expected to be relatively small in this temperature range.  相似文献   

16.
Summary Phase fields intersected by three joins in the System CaO-MgO-SiO2-CO2-H2O at 2 kbar were investigated experimentally to determine the melting relationships and the sequences of crystallization of liquids co-precipitating silicate minerals and carbonates. These joins connect SiO2 to three mixtures of CaCO3-MgCO3-Mg(OH)2 with compositions on the primary îield for calcite, between the composition CaCO3 and the low-temperature (650°C eutectic liquid co-precipitating calcite, dolomite and periclase. In the pseudo-quaternary tetrahedron calcite-magnesite-brucite-diopside, two of the significant reactions found are: (1) a eutectic at 650°C, calcite + dolomite + periclase + forsterite + vapor = liquid, and (2) a peritectic at 1038°Cwhich is either calcite + åkermanite + forsterite + vapor = monticellite + liquid calcite + monticellite + forsterite + vapor = åkermanite + liquid. The eutectic liquid has high MgO/CaO and CO2/H2O and only 2–3% SiO2 (estimated 15–20% MgCO3, 35–40% CaCO3, 40–45% Mg(OH)2, and 5–6% Mg2SiO4). The composition joins intersect a thermal maximum for åkermanite + forsterite + vapor = liquid, which separates high-temperature liquids precipitating silicates together with a little calcite, from low-temperature liquids precipitating carbonates with a few percent of forsterite; there is no direct path between the silicate and synthetic carbonatite liquids on these joins, but it is possible that fractionating liquid paths diverging from the joins may connect them. More complex relationships involving the pprecipitatioon off monticellite and åkermanite are also outlined. Magnetite-magnesioferrite may replace periclase in natural magmatic systems. The results indicate that the assemblage calcite-dolomite-magnetite-forsterite represents the closing stages of crystallization of carbonatites, whereas assemblages such as calcite-magnetite-forsterite and dolomite-magnetite-forsterite span the whole range of carbonatite evolution in terms of temperature and composition, and provide the link between liquids precipitating silicates and those precipitating carbonates.
Die Beziehungen zwischen silikarischen Schmelzen und karbonatbildenden Schmelzen im System CaO-MgO-SiO2-CO2-H2O bei 2 kbar
Zusammenfassung Phasenfelder, die durch den Schnitt von drei Verbindungslinien im System CaO-MgO-SiO2-CO2-H2Odefiniert werden, wurden experimentell bei 2 kbar untersucht, um die Schmelzbeziehungen und die Kristallisationsfolge von Schmelzen, die gleichzeitig silikatische und karbonatische Minerale ausscheiden, zu bestimmen. Diese Linien verbinden SiO2 mit drei Mischungen von CaCO3-M9CO3-Mg(OH)2 mit Zusammensetzungen im primären Calcitfeld, zwischen der Zusammensetzung CaCO3 und der tieftemperierten (650°C Calcit-, Dolomit- und Periklasbildenden eutektischen Schmelze. Zwei wichtige im ppseudo-quaternären Tetraeder Calcit-Magnetit-Brucit-Diopsid gefundene Reaktionen sind: (1) Ein Eutektikum bei 650°C Calcit + Dolomit + Periklas + Forsterit + Vapor = Liquid und (2) ein Peritektikum bei 1038°C mit entweder Calcit + Åkermanit + Forsterit + Vapor = Monticellit + Liquid oder Calcit + Monticellit + Forsterit + Vapo = Åkermanit + Liquid Die eutektische Schmelze zeigt hohe MgO/CaO und CCO2H2O Verhältnisse und nur 2–3% SiO2(geschätzter Anteil an MgCO315–20%, CaCO3 35–40%, Mg(OH)2 40–50% und Mg2SiO4 5–6%). Die Verbindungslinie schneidet ein thermisches Maximum von Åkermanit + Forsterit + Vapor = Liquid, das höher temperierte Schmelzen, die Silikate gemeinsam mit etwas Clacit ausscheiden, von tiefer temperierten Schmelzen trennt, aus denen sich Karbonate gemeinsam mit wenigen Prozenten Forsterit abscheiden. Es existiert keine direkte Verbindung zwischen silikatischen und synthetischen karbonatitischen Schmelzen entlang dieser Verbindungslinien, es wäre aber möglich, daß Fraktionierungspfade, die von diesen Verbindungslinien ausgehen, sie verbinden. Komplexere Beziehungen, die die Kristallisation von Monticellit und Åkermanit beinhalten, werden ebenfalls aufgezeigt. Magnetit-Magnesioferrit könntean die Stelle von Periklas in nnatürlichenmagmatischen Systemen treten. Die Ergebnisse weisen darauf bin, daß die Vergesellschaftung Calcit-Dolomit-Magnetit-Forsterit das Endstadium der Karbonatitkristallisation repräsentiert, während die Vergesellsschaftungen von Calcit-Magnetit-Forsterit bzw. Dolomit-Magnetit-Forsterit die gesamte Spannweite der Karbonatitevolution hinsichtlich Temperatur und Zusammensetzung umfassen und demnach ein Verbindungsglied zwischen silikat- und karbonatausscheidenden Schmelzen darstellen.


With 8 Figures  相似文献   

17.
The solubility of CO2 in dacitic melts equilibrated with H2O-CO2 fluids was experimentally investigated at 1250°C and 100 to 500 MPa. CO2 is dissolved in dacitic glasses as molecular CO2 and carbonate. The quantification of total CO2 in the glasses by mid-infrared (MIR) spectroscopy is difficult because the weak carbonate bands at 1430 and 1530 cm−1 can not be reliably separated from background features in the spectra. Furthermore, the ratio of CO2,mol/carbonate in the quenched glasses strongly decreases with increasing water content. Due to the difficulties in quantifying CO2 species concentrations from the MIR spectra we have measured total CO2 contents of dacitic glasses by secondary ion mass spectrometry (SIMS).At all pressures, the dependence of CO2 solubility in dacitic melts on xfluidCO2,total shows a strong positive deviation from linearity with almost constant CO2 solubility at xCO2fluid > 0.8 (maximum CO2 solubility of 795 ± 41, 1376 ± 73 and 2949 ± 166 ppm at 100, 200 and 500 MPa, respectively), indicating that dissolved water strongly enhances the solubility of CO2. A similar nonlinear variation of CO2 solubility with xCO2fluid has been observed for rhyolitic melts in which carbon dioxide is incorporated exclusively as molecular CO2 (Tamic et al., 2001). We infer that water species in the melt do not only stabilize carbonate groups as has been suggested earlier but also CO2 molecules.A thermodynamic model describing the dependence of the CO2 solubility in hydrous rhyolitic and dacitic melts on T, P, fCO2 and the mol fraction of water in the melt (xwater) has been developed. An exponential variation of the equilibrium constant K1 with xwater is proposed to account for the nonlinear dependence of xCO2,totalmelt on xCO2fluid. The model reproduces the CO2 solubility data for dacitic melts within ±14% relative and the data for rhyolitic melts within 10% relative in the pressure range 100-500 MPa (except for six outliers at low xCO2fluid). Data obtained for rhyolitic melts at 75 MPa and 850°C show a stronger deviation from the model, suggesting a change in the solubility behavior of CO2 at low pressures (a Henrian behavior of the CO2 solubility is observed at low pressure and low H2O concentrations in the melt). We recommend to use our model only in the pressure range 100-500 MPa and in the xCO2fluid range 0.1-0.95. The thermodynamic modeling indicates that the partial molar volume of total CO2 is much lower in rhyolitic melts (31.7 cm3/mol) than in dacitic melts (46.6 cm3/mol). The dissolution enthalpy for CO2 in hydrous rhyolitic melts was found to be negligible. This result suggests that temperature is of minor importance for CO2 solubility in silicic melts.  相似文献   

18.
Trevor H. Green  John Adam 《Lithos》2002,61(3-4):271-282
The solubility of Ti- and P-rich accessory minerals has been examined as a function of pressure and K2O/Na2O ratio in two series of highly evolved silicate systems. These systems correspond to (a) alkaline, varying from alkaline to peralkaline with increasing K2O/Na2O ratio; and (b) strongly metaluminous (essentially trondhjemitic at the lowest K2O/Na2O ratio) and remaining metaluminous with increasing K2O/Na2O ratio (to 3). The experiments were conducted at a fixed temperature of 1000 °C, with water contents varying from 5 wt.% at low pressure (0.5 GPa), increasing through 5–10 wt.% at 1.5–2.5 GPa to 10 wt.% at 3.5 GPa. Pressure was extended outside the normal crustal range, so that the results may also be applied to derivation of hydrous silicic melts from subducted oceanic crust.

For the alkaline composition series, the TiO2 content of the melt at Ti-rich mineral saturation decreases with increasing pressure but is unchanged with increasing K content (at fixed pressure). The P2O5 content of the alkaline melts at apatite saturation increases with increased pressure at 3.5 GPa only, but decreases with increasing K content (and peralkalinity). For the metaluminous composition series (termed as “trondhjemite-based series” (T series)), the TiO2 content of the melt at Ti-rich mineral saturation decreases with increasing pressure and with increasing K content (at fixed pressure). The P2O5 content of the T series melts at apatite saturation is unchanged with increasing pressure, but decreases with increasing K content. The contrasting results for P and Ti saturation levels, as a function of pressure in both compositions, point to contrasting behaviour of Ti and P in the structure of evolved silicate melts. Ti content at Ti-rich mineral saturation is lower in the alkaline compared with the T series at 0.5 GPa, but is similar at higher pressures, whereas P content at apatite saturation is lower in the T series at all pressures studied. The results have application to A-type granite suites that are alkaline to peralkaline, and to I-type metaluminous suites that frequently exhibit differing K2O/Na2O ratios from one suite to another.  相似文献   


19.
Chemical equilibrium between sodium-aluminum silicate minerals and chloride bearing fluid has been experimentally determined in the range 500–700°C at 1 kbar, using rapid-quench hydrothermal methods and two modifications of the Ag + AgCl acid buffer technique. The temperature dependence of the thermodynamic equilibrium constant (K) for the reaction NaAlSi3O8 + HClo = NaClo + 12Al2SiO5, + 52SiO2 + 12H2O Albite Andalusite Qtz. K = (aNaClo)(aH2O)1/2(aHClo) can be described by the following equation: log k = ?4.437 + 5205.6/T(K) The data from this study are consistent with experimental results reported by Montoya and Hemley (1975) for lower temperature equilibria defined by the assemblages albite + paragonite + quartz + fluid and paragonite + andalusite + quartz + fluid. Values of the equilibrium constants for the above reactions were used to estimate the difference in Gibbs free energy of formation between NaClo and HClo in the range 400–700°C and 1–2 kbar. Similar calculations using data from phase equilibrium studies reported in the literature were made to determine the difference in Gibbs free energy of formation between KClo and HClo. These data permit modelling of the chemical interaction between muscovite + kspar + paragonite + albite + quartz assemblages and chloride-bearing hydrothermal fluids.  相似文献   

20.
Edet E. Isuk 《Lithos》1983,16(1):17-22
The effects of excess SiO2 and CO2 on the solubility of molybdenite in hydrous sodium disilicate melts were experimentally determined at 680 bars and 650°C. The molybdenite solubility decreases with increasing SiO2 and CO2. Under the experimental conditions, the MoS2 content of the vapor-saturated liquid decreases from 10 wt.% to 2.5 wt.% at SiO2 saturation. In the presence of CO2, the solubility decreases to 4.6 wt.% MoS2 and becomes negligible at high PCO2. These results are explained as deriving from the increased polymerization and hence decreased NBO/Si ratio of the melt with increasing SiO2 content and CO2, respectively. Sulfur dissolves principally as SO4?2 at the relatively high fo2 of the experiments. Consequently, the effect of sulfur is to lower the Mo solubility by effectively decreasing the NBO/Si ratio of the melt. Sulfur saturation is, therefore, likely to be a limiting factor in the Mo content of alkali silicate melts because of the chalcophile affinities of molybdenum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号