首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 831 毫秒
1.
The enantiomeric and carbon-isotopic composition of the amino acid isovaline have been analyzed in several samples of the Murchison meteorite and one sample of the Murray meteorite. l-Enantiomeric excesses of the amino acid were found to range from 0 to 15.2%, varying significantly both between meteorite stones and at short distances within a single stone. The upper limit of this range is the largest enantiomeric excess measured to date for a biologically rare meteoritic amino acid and raises doubts that circularly polarized light irradiation could have been the sole cause of amino acids chiral asymmetry in meteorites. Individual d- and l-isovaline δ13C values ware found to be about +18‰, with no significant differences between the two enantiomers to suggest terrestrial contamination. The amino acid relative abundance also varied between samples, with isovaline/alanine ratios of 0.5 to 6.5. X-ray diffraction analyses of contiguous meteorite fragments suggest a possible correlation between isovaline and hydrous silicates abundances.  相似文献   

2.
Small (1.0-9.2%) L-enantiomer excesses were found in six alpha-methyl-alpha-amino alkanoic acids from the Murchison (2.8-9.2%) and Murray (1.0-6.0%) carbonaceous chondrites by gas chromatography-mass spectroscopy of their N-trifluoroacetyl or N-pentafluoropropyl isopropyl esters. These amino acids [2-amino-2,3-dimethylpentanoic acid (both diastereomers), isovaline, alpha-methyl norvaline, alpha-methyl valine, and alpha-methyl norleucine] are either unknown or rare in the terrestrial biosphere. Enantiomeric excesses were either not observed in the four alpha-H-alpha-amino alkanoic acids analyzed (alpha-amino-n-butyric acid, norvaline, alanine, and valine) or were attributed to terrestrial contamination. The substantial excess of L-alanine reported by others was not found in the alanine in fractionated extracts of either meteorite. The enantiomeric excesses reported for the alpha-methyl amino acids may be the result of partial photoresolution of racemic mixtures caused by ultraviolet circularly polarized light in the presolar cloud. The alpha-methyl-alpha-amino alkanoic acids could have been significant in the origin of terrestrial homochirality given their resistance to racemization and the possibility for amplification of their enantiomeric excesses suggested by the strong tendency of their polymers to form chiral secondary structure.  相似文献   

3.
The hydroxy acid suites extracted from the Murchison (MN), GRA 95229 (GRA) and LAP 02342 (LAP) meteorites have been investigated for their molecular, chiral and isotopic composition. Substantial amounts of the compounds have been detected in all three meteorites, with a total abundance that is lower than that of the amino acids in the same stones. Overall, their molecular distributions mirror closely that of the corresponding amino acids and most evidently so for the LAP meteorite. A surprising l-lactic acid enantiomeric excess was found present in all three stones, which cannot be easily accounted by terrestrial contamination; all other compounds of the three hydroxy acid suites were found racemic. The branched-chain five carbon and the diastereomer six-carbon hydroxy acids were also studied vis-a-vis the corresponding amino acids and calculated ab initio thermodynamic data, with the comparison allowing the suggestion that meteoritic hydroxyacid at these chain lengths formed under thermodynamic control and, possibly, at a later stage than the corresponding amino acids. 13C and D isotopic enrichments were detected for many of the meteoritic hydroxy acids and found to vary between molecular species with trends that also appear to correlate to those of amino acids; the highest δD value (+3450‰) was displayed by GRA 2-OH-2-methylbutyric acid. The data suggest that, while the amino- and hydroxy acids likely relate to common presolar precursor, their final distribution in meteorites was determined to large extent by the overall composition of the environments that saw their formation, with ammonia being the determining factor in their final abundance ratios.  相似文献   

4.
The δD values of over 40 amino acids and two pyridine carboxylic acids of the Murchison and Murray meteorites have been obtained by compound-specific isotopic analyses. For compounds with no known terrestrial distribution, these values range from approximately +330 (for cyclic leucine) to +3600 (for 2-amino-2,3-dimethylbutyric acid). The latter value is the highest ever recorded for a soluble organic compound in meteorites and nears deuterium to hydrogen ratios observed remotely in interstellar molecules. Deuterium content varies significantly between molecular species and is markedly higher for amino acids having a branched alkyl chain. The δD value of Murray l-isovaline, with an enantiomeric excess of ∼ 6% in the meteorite, was within experimental error of that determined for the combined dl-isovaline enantiomers. Overall, the hydrogen isotope composition of meteoritic amino acids is relatively simple and their δD values appear to vary more with the structure of their carbon chains than with the number and relative distribution of their functionalities or 13C content. The magnitude and extent of deuterium enrichment shared by many and varied amino acids in meteorites indicate that cosmic regimes such as those found in the interstellar medium were capable of producing, if not all the amino acids directly, at least a suite of their direct precursors that was abundant, varied, and considerably saturated.  相似文献   

5.
We separated and analyzed several organic and inorganic phases of the carbonaceous chondrite matrix to determine whether they contained any inherent asymmetry. Our intent was to determine any possible foci of asymmetry besides the one determined for meteoritic amino acids. As a probe, we employed a very sensitive asymmetric autocatalytic reaction. We were able to determine that asymmetry still resides in powders after extraction with water and solvents as well as in the insoluble organic material (IOM) obtained after demineralization. Asymmetry is not found any longer in the IOM after hydrothermal treatment and in meteorite powders from which all organics had been removed by O2 plasma at low temperature. The data are interpreted to indicate a diverse molecular asymmetry residing in yet unknown meteorite organics; these organics might have had an inductive effect on organic molecular evolution upon exogenous delivery to the early Earth.  相似文献   

6.
All ten of the possible five-carbon acyclic primary β-, γ-, and δ-amino alkanoic acids (amino position isomers of the valines) have been positively identified in hot-water extracts of the Murchison meteorite using combined gas chromatography-mass spectrometry (GC-MS) and ion exchange chromatography. With the exception of δ-aminovaleric acid, none of these amino acids has been previously reported to occur in meteorites or in any other natural material. The γ-amino acids (4-aminopentanoic acid, 4-aminc-2-meth-ylbutanoic acid, and 4-amino-3-methylbutanoic acid) are present at higher concentrations (about 5 nmol g?1) than are the β-amino isomers (3-aminopentanoic acid, 3-amino-2-methylbutanoic acid, allo-3-amino-2-methylbutanoic acid, 3-amino-3-methylbutanoic acid, 3-amino-2-ethylpropanoic acid, and 3-amino-2,2-dimethylpropanoic acid) which are present at concentrations of 1–2 nmol g?1. These amino acids are less abundant in the meteorite than either the corresponding α-amino acids or the four-carbon homologues. Thirty-six amino acids have now been positively identified in the Murchison meteorite, 17 of which are apparently unique to carbonaceous chondrites. The fact that the meteorite contains all possible five-carbon acyclic primary α-, β-, γ-, and δ-amino alkanoic acids is consistent with a synthetic process involving random combination of single-carbon precursors.  相似文献   

7.
All of the eighteen possible seven-carbon acyclic primary α-amino alkanoic acids have been positively identified in a hot-water extract of the Murchison meteorite by the combined use of gas chromatography-mass spectrometry, ion exchange chromatography and reversed-phase chromatography. None of these amino acids has previously been found in meteorites or in any other natural material. They range in concentration from ≤0.5 to 5.3 nmol g−1. Configuration assignments were made for 2-amino-3,4-dimethylpentanoic acid and allo-2-amino-3,4-dimethylpentanoic acid and the diasteromer ratio was determined. Fifty-five amino acids have now been positively identified in the Murchison meteorite, 36 of which are unknown in terrestrial materials. This unique suite of amino acids is characterized by the occurrence of all structural isomers within the two major classes of amino acids represented, by the predominance of branched chain isomers, and by an exponential decline in amount with increasing carbon chain length within homologous series. These characteristics of the Murchison amino acids are suggestive of synthesis before incorporation into a parent body.  相似文献   

8.
Analyses of fractionated aqueous extracts of the Murchison meteorite by gas chromatography-mass spectrometry after silylation with N-methyl-N (tert-butyldimethylsilyl) trifluoroacetamide have revealed an extensive series of linear and cyclic aliphatic amides. These include monocarboxylic acid amides, dicarboxylic acid monoamides, hydroxy acid amides, lactams, carboxy lactams, lactims, N-acetyl amino acids, and substituted hydantoins. Numerous isomers and homologues through at least C8 were observed in all cases, except for the N-acetyl amino acids and hydantoins. Carboxy lactams, lactams, hydantoins, and N-acetyl amino acids are converted to amino acids by acid hydrolysis, thus, these compounds qualitatively account for the earlier observation of acid-labile amino acid precursors in meteoritic extracts. Laboratory studies of the spontaneous decomposition of N-carbamyl-alpha-amino acids and their dehydration products, the 5-substituted hydantoins, have led to the recognition of a series of aqueous phase reactions by which amino acids and cyanic acid/cyanate ion in the primitive parent body might have given rise to several of the observed classes of amides, as well as to monocarboxylic acids, dicarboxylic acids, and hydroxy acids. A previously undescribed reaction of 5-substituted hydantoins with cyanic acid/cyanate ion to give carboxamides of the 5-substituent groups was observed in the course of these studies. The presence of an extensive suite of amides in a CM chondrite appears to be consistent with the interstellar-parent body formation hypothesis for the organic compounds of these meteorites. The presence of carboxy lactams and lactams along with free amino acids suggests the possibility of further chemical evolution of meteorite amino acids by thermal polymerization. The cyclic amides, given their potential for hydrogen-bonded pair formation, might be considered candidate bases for a primitive sequence coding system.  相似文献   

9.
The Bells meteorite is a CM2 chondrite that has long been considered anomalous for having mineralogical and isotopic differences with CMs together with an overall affinity to CIs in its matrix. We extracted a fragment of the only Bells stone collected unweathered with water and solvents and studied the meteorite’s soluble organic composition. We found Bells to contain abundant organic compounds, which are predominantly O-containing such as hydroxy- and di-carboxylic acids, and a scarcity of amino acids and other N-containing compounds. Amines were not detected and ammonia is less abundant than in both the Murchison and Ivuna meteorites. Overall, Bells’ soluble organic composition is more similar to that of Ivuna than of Murchison. The observation that Bells’ amino acid suite shares a distinct distribution of characteristic molecular species with other stones that are thought to have experienced extensive parent body aqueous alteration, such as the Orgueil, Ivuna and recently analyzed GRO 95577 CR1 meteorites, seems to allow the suggestion that such a composition is secondary to prolonged aqueous alteration processes that superseded some of the initial compositional distinctions determined by the asteroidal environments.  相似文献   

10.
Samples of the Murchison (C2), Murray (C2) and Orgueil (C1) carbonaceous meteorites were analyzed for nitrogen-heterocyclic compounds using gas chromatography, cation and anion exclusion liquid chromatography and mass spectrometry. The purines adenine, guanine, hypoxanthine and xanthine were identified in formic acid extracts of all samples, in concentrations ranging from 114–655 ppb. Purines have not previously been found in the Murray meteorite and adenine. hypoxanthine and xanthine have never simultaneously been detected in meteorite extracts. All four biologically significant purines, as well as the pyrimidine uracil have now been identified in these meteorites. A number of other, previously reported N-heterocyclic compounds such as certain hydroxypyrimidines and s-triazines could not be detected in any of the extracts. Laboratory data indicated that both these classes of compounds may be formed from structurally simple precursors (such as guanylurea in the case of s-triazines) during the extraction and analysis of meteorite extracts.We find that the suite of N-heterocyclic compounds identified in meteorites do not, at present, permit a clear distinction to be made between mechanisms of synthesis such as the Fischer-Tropsch type and other candidates. Secondary reactions and conversions in meteorite parent bodies, of HCN and other nitriles produced by Miller-Urey type reactions as well as by Fischer-Tropsch type reactions, must also be considered.  相似文献   

11.
The δ13C values of thirty-four individual amino acids and two pyridine carboxylic acids have been obtained fromthe Murchison meteorite. They were found to range from +4.9 to +52.8‰, with statistically significant differences observed both within and between amino acid subgroups. The 13C content of α-amino acids declines with increasing chain length, a trend similar to the ones previously observed for carboxylic acids and alkanes. Also 2-methyl-2-amino acids were found to be heavier in 13C than the corresponding 2-H homologues. The3-, 4-, and 5-amino acids do not show a comparable declining trend in δ13C values and neither do the amino dicarboxylic acids. This variability in δ 13C values can be interpreted as to indicate that the synthetic histories of soluble organics in meteorites may have been diverse even within groups of compounds with very similar functional group composition.  相似文献   

12.
We review the crystallization of the iron meteorite chemical groups, the thermal history of the irons as revealed by the metallographic cooling rates, the ages of the iron meteorites and their relationships with other meteorite types, and the formation of the iron meteorite parent bodies. Within most iron meteorite groups, chemical trends are broadly consistent with fractional crystallization, implying that each group formed from a single molten metallic pool or core. However, these pools or cores differed considerably in their S concentrations, which affect partition coefficients and crystallization conditions significantly. The silicate-bearing iron meteorite groups, IAB and IIE, have textures and poorly defined elemental trends suggesting that impacts mixed molten metal and silicates and that neither group formed from a single isolated metallic melt. Advances in the understanding of the generation of the Widmanstätten pattern, and especially the importance of P during the nucleation and growth of kamacite, have led to improved measurements of the cooling rates of iron meteorites. Typical cooling rates from fractionally crystallized iron meteorite groups at 500–700 °C are about 100–10,000 °C/Myr, with total cooling times of 10 Myr or less. The measured cooling rates vary from 60 to 300 °C/Myr for the IIIAB group and 100–6600 °C/Myr for the IVA group. The wide range of cooling rates for IVA irons and their inverse correlation with bulk Ni concentration show that they crystallized and cooled not in a mantled core but in a large metallic body of radius 150±50 km with scarcely any silicate insulation. This body may have formed in a grazing protoplanetary impact. The fractionally crystallized groups, according to Hf–W isotopic systematics, are derived originally from bodies that accreted and melted to form cores early in the history of the solar system, <1 Myr after CAI formation. The ungrouped irons likely come from at least 50 distinct parent bodies that formed in analogous ways to the fractionally crystallized groups. Contrary to traditional views about their origin, iron meteorites may have been derived originally from bodies as large as 1000 km or more in size. Most iron meteorites come directly or indirectly from bodies that accreted before the chondrites, possibly at 1–2 AU rather than in the asteroid belt. Many of these bodies may have been disrupted by impacts soon after they formed and their fragments were scattered into the asteroid belt by protoplanets.  相似文献   

13.
Isovaline is present in the Murchison meteorite as a racemic mixture (about equal concentrations of the R and S enantiomers). Since isovaline does not have a hydrogen atom on its asymmetric α-carbon atom, the racemic mixture could not have formed by commonly accepted mechanisms of racemization. Thus, isovaline in the meteorite most probably was synthesized as a racemic mixture and is not the result of the racemization of either the R or S enantiomer. Other chiral amino acids in the meteorite are present as racemic mixtures, and were probably synthesized in a similar manner by abiotic, extraterrestrial processes.  相似文献   

14.
Most iron meteorites presumably formed from the cores of parent bodies having more or less chondritic bulk compositions. Consideration of the behavior of S during condensation and core formation indicates that these cores, at least in the case of groups having high or moderate volatile contents (IIAB, IIIAB), contained a substantial amount of S. When elemental fractionations observed in these iron meteorite groups are compared to model calculations of fractional crystallization it becomes evident that at least the IIAB parent melt, and very likely the IIIAB parent melt as well, did not contain the full S complement of the parent body. We consider three possible scenarios to account for the S depletion: (1) Outgassing of S during parent body differentiation; this was probably only possible if the parent body contained organic material, which is improbable for IIIAB. (2) Liquid immiscibility. Our fractional crystallization model would predict curved log Xvs. log Ni relationships in this case, which for many elements are not observed. (3) Formation of metastable liquid layers by episodic melting during core formation. This is based on the fact that the difference in melting temperature between a FeFeS eutectic and FeNi metals is ~500 K. Two melting episodes would tend to form distinct liquid layers that maintain their identities over the crystallization lifetime of the core.Solidification of the cores parental to the main iron meteorite groups should also produce a significant number of sulfide meteorites. The scarcity of sulfide-rich meteorites can be attributed to their lower mechanical resistance to space attrition, higher ablation during atmospheric passage, and faster weathering on earth.  相似文献   

15.
Total N has been measured in a number of meteorites by neutron activation analysis using the reaction N14(n, p)C14. From each meteorite a number of chips have been analysed to investigate the variation of N contents in a sample. Many meteorites are found to contain a heterogeneous distribution of N. Eighteen chondrites, mostly of the classes C3, H4, H5, L4, L5, L6 and LL6, and six achondrites are found to have average N contents of 10–45 ppm. These do not show any clear-cut dependence of N on petrological group. However, the inherent heterogeneity or the fact that from most meteorite classes only single falls were studied might be responsible for this lack of correlation. In Cold Bokkeveld (C2) N is high (420 ppm). Unlike C, N content of ureilites is low (26 ppm). Nitrogen is enriched in the non-magnetic as compared to the magnetic fractions in H-group chondrites. Analyses of sieved Bjurböle phases show no enrichment of N in finer matrix material, nor any depletion in chondrules. In two gas-rich meteorites, Kapoeta and Assam, there is no excess N in the dark phases. Nine iron meteorites and three mesosiderites were analysed. Twenty analyses of Canyon Diablo and seven of Odessa establish a very heterogeneous N distribution in these meteorites.  相似文献   

16.
综述了非球陨石(铁陨石,石铁陨石和无球粒陨石)在成分结构方面的非分异成因证据,推断其成因是:星云盘中心层中的星云发生气-液凝聚作用形成的熔滴,在较高温度下彼此合并形成了较大熔体,熔体固化后形成该类陨石母体。根据C1陨石不含球粒和其它成分特征,推断它们是星云只发生气-固凝聚作用的产物。对近年来新发现的一些特殊成分的碳质球粒陨石进行了综合分析,暂定名为类C1陨石。通过类C1陨石与其它球粒陨石及C1陨石成分结构特征的对比,推断它们是星云盘边缘层星云发生气-液-固和气-固联合凝聚作用,同时发生水化作用的产物。最后,在对所有陨石凝聚成因进行解释的基础上,建立了小行星区星云凝聚模型。  相似文献   

17.
The hydroxymonocarboxylic acids, dicarboxylic acids, and hydroxydicarboxylic acids of the Murchison meteorite were analyzed as their tert-butyldimethylsilyl derivatives using combined gas chromatography-mass spectrometry. The hydroxydicarboxylic acids have not been found previously in meteorites. Each class of compounds is numerous with carbon chains up to C8 or C9 and many, if not all, chain and substitution position isomers represented at each carbon number. The alpha-hydroxycarboxylic acids and alpha-hydroxydicarboxylic acids correspond structurally to many of the known meteoritic alpha-aminocarboxylic acids and alpha-aminodicarboxylic acids, a fact that supports the proposal that a Strecker synthesis was involved in the formation of both classes of compounds. Isotopic analyses show these acids to be D-rich relative to terrestrial organic compounds as expected; however, the hydroxy acids appear to be isotopically lighter than the amino acids with respect to both carbon and hydrogen. The latter finding would not be expected if both classes of compounds came exclusively from common precursors as would have been the case for a Strecker synthesis.  相似文献   

18.
The optically pure d- and l-enantiomers of isovaline (I), which cannot be racemized by ordinary chemical mechanisms involving α-hydrogen removal, and which has been isolated in apparently racemic form from the Murchison meteorite, have been subjected to partial radiolysis by the ionizing radiation from a 3000 Ci 60Co γ-ray source. Both in the anhydrous and hydrated solid states and as solid sodium or hydrochloride salts each enantiomer suffered significant radioracemization of the undestroyed residue during its partial radiolysis. The sodium salt of isovaline in 0.1 M aqueous solution suffered extensive radiolysis with relatively small radiation doses, but showed no detectable radioracemization. The significance of these observations with respect to the primordial enantiomeric composition of the isovaline (and other amino acids) indigenous to meteroties is discussed.  相似文献   

19.
Magmatic iron meteorites are thought to be samples of the central metallic cores of asteroid-sized parent bodies. Sulfur is believed to have been an important constituent of these parental cores, but due to the low solubility of S in solid metal, initial S-contents for the magmatic groups cannot be determined through direct measurements of the iron meteorites. However, experimental solid metal-liquid metal partition coefficients show a strong dependence on the S-content of the metallic liquid. Thus, by using the experimental partition coefficients to model the fractional crystallization trends within magmatic iron meteorite groups, the S-contents of the parental cores can be indirectly estimated. Modeling the Au, Ga, Ge, and Ir fractionations in four of the largest magmatic iron meteorite groups leads to best estimates for the S-contents of the parental cores of 12 ± 1.5 wt% for the IIIAB group, 17 ± 1.5 wt% for the IIAB group, and 1 ± 1 wt% for the IVB group. The IVA elemental fractionations are not adequately fit by a simple fractional crystallization model with a unique initial S-content. These S-content estimates are much higher than those recently inferred from crystallization models involving trapped melt. The discrepancy is due largely to the different partition coefficients that are used by the two models. When only partition coefficients that are consistent with the experimental data are used, the trapped melt model, and the low S-contents it advocates, cannot match the Ge and Ir fractionations that are observed in IIIAB iron meteorites.  相似文献   

20.
The concentration of eight protein amino acids found in extracts of the Murchison carbonaceous chondrite has been measured by quadrupole mass fragmentography. This result was obtained by using deuterated amino acids as internal standards. In addition, hydrogendeuterium exchange in amino acids was studied by two methods. First, nondeuterated amino acids were added to the meteorite and the amount of deuterium incorporated after extraction with deuterium oxide was determined. Second, deuterated amino acids were added to the dry meteorite and the loss of deuterium after extraction with H2O was measured. It was observed that the degree of hydrogen-deuterium exchange increased with increasing severity of extraction conditions. This exchange resulted in some racemization, presumably catalyzed by constituents of the meteorite. The degree of racemization for each amino acid was determined by gas chromatography of the corresponding N-trifluoroacetyl-O-( + )-2-butyl esters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号