首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Khopoli intrusion, exposed at the base of the Thakurvadi Formation of the Deccan Traps in the Western Ghats, India, is composed of olivine gabbro with 50–55 % modal olivine, 20–25 % plagioclase, 10–15 % clinopyroxene, 5–10 % low-Ca pyroxene, and <5 % Fe-Ti oxides. It represents a cumulate rock from which trapped interstitial liquid was almost completely expelled. The Khopoli olivine gabbros have high MgO (23.5–26.9 wt.%), Ni (733–883 ppm) and Cr (1,432–1,048 ppm), and low concentrations of incompatible elements including the rare earth elements (REE). The compositions of the most primitive cumulus olivine and clinopyroxene indicate that the parental magma of the Khopoli intrusion was an evolved basaltic melt (Mg# 49–58). Calculated parental melt compositions in equilibrium with clinopyroxene are moderately enriched in the light REE and show many similarities with Deccan tholeiitic basalts of the Bushe, Khandala and Thakurvadi Formations. Nd-Sr isotopic compositions of Khopoli olivine gabbros (εNdt?=??9.0 to ?12.7; 87Sr/86Sr?=?0.7088–0.7285) indicate crustal contamination. AFC modelling suggests that the Khopoli olivine gabbros were derived from a Thakurvadi or Khandala-like basaltic melt with variable degrees of crustal contamination. Unlike the commonly alkalic, pre- and post-volcanic intrusions known in the Deccan Traps, the Khopoli intrusion provides a window to the shallow subvolcanic architecture and magmatic processes associated with the main tholeiitic flood basalt sequence. Measured true density values of the Khopoli olivine gabbros are as high as 3.06 g/cm3, and such high-level olivine-rich intrusions in flood basalt provinces can also explain geophysical observations such as high gravity anomalies and high seismic velocity crustal horizons.  相似文献   

2.
Rates of chemical and silicate weathering of the Deccan Trap basalts, India, have been determined through major ion measurements in the headwaters of the Krishna and the Bhima rivers, their tributaries, and the west flowing streams of the Western Ghats, all of which flow almost entirely through the Deccan basalts.Samples (n = 63) for this study were collected from 23 rivers during two consecutive monsoon seasons of 2001 and 2002. The Total dissolved solid (TDS) in the samples range from 27 to 640 mg l−1. The rivers draining the Western Ghats that flow through patches of cation deficient lateritic soils have lower TDS (average: 74 mg l−1), whereas the Bhima (except at origin) and its tributaries that seem to receive Na, Cl, and SO4 from saline soils and anthropogenic inputs have values in excess of 170 mg l−1. Many of the rivers sampled are supersaturated with respect to calcite. The chemical weathering rates (CWR) of “selected” basins, which exclude rivers supersaturated in calcite and which have high Cl and SO4, are in range of ∼3 to ∼60 t km−2 y−1. This yields an area-weighted average CWR of ∼16 t km−2 y−1 for the Deccan Traps. This is a factor of ∼2 lower than that reported for the Narmada-Tapti-Wainganga (NTW) systems draining the more northern regions of the Deccan. The difference can be because of (i) natural variations in CWR among the different basins of the Deccan, (ii) “selection” of river basin for CWR calculation in this study, and (iii) possible contribution of major ions from sources, in addition to basalts, to rivers of the northern Deccan Traps.Silicate weathering rates (SWR) in the selected basins calculated using dissolved Mg as an index varies between ∼3 to ∼60 t km−2 y−1, nearly identical to their CWR. The Ca/Mg and Na/Mg in these rivers, after correcting for rain input, are quite similar to those in average basalts of the region, suggesting near congruent release of Ca, Mg, and Na from basalts to rivers. Comparison of calculated and measured silicate-Ca in these rivers indicates that at most ∼30% of Ca can be of nonsilicate origin, a likely source being carbonates in basalts and sediments.The chemical and silicate weathering rates of the west flowing rivers of the Deccan are ∼4 times higher than the east flowing rivers. This difference is due to the correspondingly higher rainfall and runoff in the western region and thus reemphasises the dominant role of runoff in regulating weathering rates. The silicon weathering rate (SWR) in the Krishna Basin is ∼15 t km−2 y−1, within a factor of ∼2 to those in the Yamuna, Bhagirathi, and Alaknanda basins of the Himalaya, suggesting that under favourable conditions (intense physical weathering, high runoff) granites and the other silicates in the Himalaya weather at rates similar to those of Deccan basalts. The CO2 consumption rate for the Deccan is deduced to be ∼3.6 × 105 moles km−2 y−1 based on the SWR. The rate, though, is two to three times lower than reported for the NTW rivers system; it still reinforces the earlier findings that, in general, basalts weather more rapidly than other silicates and that they significantly influence the atmospheric CO2 budget on long-term scales.  相似文献   

3.
The Hong (Red) River drains the prominent Red River Fault Zone that has experienced various tectonic activities—intrusion of magma, exhumation of basement rocks, and influx of thermal waters—associated with the Cenozoic collision of India and Eurasia. We report dissolved major element and Sr isotope compositions of 43 samples from its three tributary systems (Da, Thao/Hong main channel, and Lo) encompassing summer and winter seasons. Carbonic acid ultimately derived from the atmosphere is the main weathering agent, and sulfuric acid from pyrite oxidation plays a minor role. Seasonality is manifested in higher calcite saturation index and Mg/TZ+ and lower Ca/Mg in summer, suggesting calcite precipitation, and in higher Si/(Na + K) ratios in summer suggesting more intensive silicate weathering. We quantified the input from rain, evaporite, carbonate, and silicate reservoirs using forward and inverse models and examined the robustness of the results. Carbonate dissolution accounts for a significant fraction of total dissolved cations (55-97%), and weathering of silicates makes a minor contribution (1-40%). Our best estimate of the spatially averaged silicate weathering rate in the Hong basin is 170 × 103 mol/km2/yr in summer and 51 × 103 mol/km2/yr in winter. We tested for correlations between the rate of CO2 consumption by silicate weathering and various climatic (air temperature, precipitation, runoff, and potential evapotranspiration) and geologic (relief, elevation, slope, and lithology) parameters calculated using GIS. Clear correlations do not emerge (except for ?CO2 and runoff in winter) which we attribute to the complex geologic setting of the area, the seasonal regime change from physical-dominant in summer to chemical-dominant in winter, and the incoherent timescales involved for the different parameters tested.  相似文献   

4.
Dongre  Ashish  Viljoen  K. S.  Rathod  A. 《Mineralogy and Petrology》2018,112(2):267-277
Mineralogy and Petrology - Constituent mineral compositions and whole rock major element geochemistry of picro-dolerite dykes from the central part of the Deccan flood basalt province are presented...  相似文献   

5.
Many tholeiitic dyke-sill intrusions of the Late Cretaceous Deccan Traps continental flood basalt province are exposed in the Satpura Gondwana Basin around Pachmarhi, central India. We present field, petrographic, major and trace element, and Sr–Nd–Pb isotope data on these intrusions and identify individual dykes and sills that chemically closely match several stratigraphically defined formations in the southwestern Deccan (Western Ghats). Some of these formations have also been identified more recently in the northern and northeastern Deccan. However, the Pachmarhi intrusions are significantly more evolved (lower Mg numbers and higher TiO2 contents) than many Deccan basalts, with isotopic signatures generally different from those of the chemically similar lava formations, indicating that most are not feeders to previously characterized flows. They appear to be products of mixing between Deccan basalt magmas and partial melts of Precambrian Indian amphibolites, as proposed previously for several Deccan basalt lavas of the lower Western Ghats stratigraphy. Broad chemical and isotopic similarities of several Pachmarhi intrusions to the northern and northeastern Deccan lavas indicate petrogenetic relationships. Distances these lava flows would have had to cover, if they originated in the Pachmarhi area, range from 150 to 350 km. The Pachmarhi data enlarge the hitherto known chemical and isotopic range of the Deccan flood basalt magmas. This study highlights the problems and ambiguities in dyke-sill-flow correlations even with extensive geochemical fingerprinting.  相似文献   

6.
Geochemical and geochronological data for rocks from the Rajahmundry Traps, are evaluated for possible correlation with the main Deccan province. Lava flows are found on both banks of the Godavari River and contain an intertrappean sedimentary layer. Based on40Ar/39 Ar age data, rocks on the east bank are post K-T boundary, show normal magnetic polarity, and belong to chron 29N. Their chemistry is identical to lavas in the Mahabaleshwar Formation in the Western Ghats, ∼1000km away. It was suggested earlier that the genetic link between these geographically widely separated rocks resulted from lava flowing down freshly incised river canyons at ∼ 64 Ma. For the west bank rocks, recent paleomagnetic work indicates lava flows below and above the intertrappean (sedimentary) layer show reversed and normal magnetic polarity, respectively. The chemical composition of the west bank flow above the intertrappean layer is identical to rocks on the east bank. The west bank lava lying below the sedimentary layer, shows chemistry similar to Ambenali Formation lava flows in the western Deccan.40Ar/39 Ar dating and complete chemical characterization of this flow is required to elucidate its petrogenesis with respect to the main Deccan Province.  相似文献   

7.
The lava sequence of the central-western Deccan Traps (from Jalgaon towards Mumbai) is formed by basalts and basaltic andesites having a significant variation in TiO2 (from 1.2 to 3.3 wt%), Zr (from 84 to 253 ppm), Nb (from 5 to 16ppm) and Ba (from 63 to 407 ppm), at MgO ranging from 10 to 4.2 wt%. Most of these basalts follow a liquid line of descent dominated by low pressure fractionation of clinopyroxene, plagioclase and olivine, starting from the most mafic compositions, in a temperature range from 1220° to 1125°C. These rocks resemble those belonging to the lower-most formations of the Deccan Traps in the Western Ghats (Jawhar, Igatpuri and Thakurvadi) as well as those of the Poladpur formation. Samples analyzed for87Sr/86Sr give a range of initial ratios from 0.70558 to 0.70621. A group of flows of the Dhule area has low TiO2 (1.2–1.5 wt%) and Zr (84–105 ppm) at moderate MgO (5.2–6.2 wt%), matching the composition of low-Ti basalts of Gujarat, low-Ti dykes of the Tapti swarm and Toranmal basalts, just north of the study area. This allows chemical correlations between the lavas of central Deccan, the Tapti dykes and the north-western outcrops. The mildly enriched high field strength element contents of the samples with TiO2 > 1.5 wt% make them products of mantle sources broadly similar to those which generated the Ambenali basalts, but their high La/Nb and Ba/Nb, negative Nb anomalies in the mantle normalized diagrams, and relatively high87Sr/86Sr, make evident a crustal input with crustally derived materials at less differentiated stages than those represented in this sample set, or even within the sub-Indian lithospheric mantle.  相似文献   

8.
This present study describes the elemental geochemistry of fluvial sediments in the Kurigram (upstream) to Sirajganj–Tangail (downstream) section of the Brahmaputra–Jamuna River, Bangladesh, with the aim of evaluating their provenance, weathering and tectonic setting. Petrographically, the sediments are rich in quartz (68%), followed by feldspars (8.5%) and lithic grains (7%). The bulk sediment chemistry is influenced by grain size. Concentrations of TiO2, Fe2O3, MgO, K2O, P2O5, Rb, Nb, Cr, V, Y, and, Ce, Th and Ga slightly decrease with increasing SiO2/Al2O3 and grain size, suggesting clay matrix control. In contrast, concentrations of CaO, Na2O, Sr and Pb increase with increasing SiO2/Al2O3 and grain size, suggesting residence of these substances in feldspar. Decrease in Zr as grain size increases is likely controlled both by clay matrix and heavy minerals. In addition, heavy minerals' sorting also influences Ce, Th, Y and Cr abundances in some samples. The sediments are predominantly quartzose in composition with abundant low-grade metamorphic and sedimentary lithics, low feldspars and trace volcanic detritus, indicating a quartzose recycled orogen province as a source of the sediments. Discriminant diagrams together with immobile element ratio plots show that, the Brahmaputra–Jamuna River sediments are mostly derived from rocks formed in an active continental margin. Moreover, the rare earth element ratios as well as chondrite-normalized REE patterns with flat HREE, LREE enrichment, and negative Eu anomalies indicate derivation of the sediments of Brahmaputra–Jamuna River from felsic rock sources of upper continental crust (UCC). The chemical indices of alteration suggest that Brahmaputra–Jamuna River sediments are chemically immature and experienced low chemical weathering effects. In the A–CN–K ternary diagram, most of the samples close to the plagioclase–K-feldspar join line and to the UCC plot, and in the field of various lithologies of Higher Himalayan Crystalline Series, suggesting that rocks in these series are likely source rocks. Therefore, the elemental geochemistry of the Brahmaputra–Jamuna River sediments is controlled mostly by mechanical breakdown of lithic fragments and subsequent preferential attrition of muscovite > albite > quartz.  相似文献   

9.
The Deccan Traps or the basalts of western India are the largest exposure of basic lava flows covering about 500,000 km2. Groundwater occurrence in the Deccan Traps is in phreatic condition in the weathered zone above the hard rock and in semi-confined condition in the fissures, fractures, joints, cooling cracks, lava flow junctions and in the inter-trappean beds between successive lava flows, within the hard rock. Dug wells, dug-cum-bored wells and boreholes or bore wells are commonly used for obtaining groundwater. The yield is small, usually in the range of 1–100 m3/day. The average land holding per farming family is only around 2 ha. Recently, due to the ever increasing number of dug wells and deep bore wells, the water table has been falling in several watersheds, especially in those lying in the semi-arid region of the traps, so that now the emphasis has shifted from development to sustainable management. Issues like climatic change, poverty mitigation in villages, sustainable development, rapid urbanization of the population, and resource pollution have invited the attention of politicians, policy makers, government agencies and non-governmental organizations towards watershed management, forestation, soil and water conservation, recharge augmentation and, above all, the voluntary control of groundwater abstraction in the Deccan Traps terrain.  相似文献   

10.
In the northern part of the Indian sub-continent, the Ganga alluvial plain (GAP) feeds its weathering products to the Ganga–Brahmaputra River system, one of the world’s largest fluvial systems. The authors present a geochemical study of the GAP weathering products transported by the Gomati River (the Ganga River tributary) to understand weathering processes of an alluvial plain in a humid sub-tropical climate. A total of 28 sediment samples were collected during the monsoon season and were analysed by X-ray fluorescence spectrometry for 25 major and trace elements. Bulk chemistry of the channel, flood and suspended sediments mostly consists (>90%, >80% and >75%, respectively) of three elements; Al, Si and Fe. Major element concentrations normalised with respect to upper continental crust (UCC) show strong depletion of highly mobile elements (Na, Ca) and enrichment of immobile elements (Ti, Si). Silica enrichment in the sand fraction is probably caused by chemical weathering of feldspar. Mineral sorting during fluvial transportation acts as the single important factor that controls the geochemistry of these weathering products and also strongly influences major and trace element distribution in the individual sediment samples. Trace element (Ba, Cr, Cu, Nb, Ni, Pb, V and Zn) concentrations were strongly correlated with major element (Si, Al, Fe, Mn and K) concentrations indicating that the abundance of trace elements is controlled by the same processes that control the major element distribution in these sediments.The GAP weathering products were geochemically distinguished as arkose to litharenite in rock classification. Chemical mobility, normalised with respect to TiO2 in UCC, indicates that Si, Na, Zr, Ba and Sr, mainly derived from feldspar, muscovite and biotite, are lost during weathering. Iron and Zn remained immobile during weathering and were strongly adsorbed by phyllosilicates and concentrated in fine-grained sediment fractions. The chemical index of alteration indicates that the GAP has experienced chemical weathering of incipient to moderate intensity. The GAP weathering products also demonstrated a progressive incomplete alteration in the alluvial sequence made-up of the Himalayan-derived sediments. A model has been proposed to better understand weathering processes and products of the GAP in temporary storage of ∼50 ka in a humid sub-tropical climate.  相似文献   

11.
A review of the available radiometric and paleomagnetic data from the Deccan Flood Basalt Province (DFBP) suggests that the volcanism was episodic in nature and probably continued over an extended duration from 69 Ma to 63 Ma between 31R and 28N. It is likely that the most intense pulse of volcanism at 66.9 ± 0.2 Ma preceded the Cretaceous Tertiary Boundary (KTB, 65.2 ± 0.2Ma) events by R∼1.7Ma. The magnetostratigraphic record in the Deccan lava pile is incomplete and it is therefore possible that the lava flows constituting the reverse polarity sequence were erupted in more than one reversed magnetic chron.  相似文献   

12.
The age of the marine Nodular Limestone Formation of the Bagh Group is refined at Substage level through ammonoid and inoceramid index taxa. The study is based on the fresh collections from three well-defined successive intervals (Lower Karondia, Upper Karondia and Chirakhan members) of this formation having excellent exposures in different localities of the Narmada Basin, central India. The first record of the widely distributed Turonian ammonoid genera Spathites Kummel and Decker and Collignoniceras Breistroffer from the Nodular Limestone Formation constrained its age exclusively to Turonian. The Early Turonian species Spathites (Jeanrogericeras) aff. revelieranus (Courtiller) and Mytiloides labiatus (Sclotheim) occur in the lower part, while the Middle Turonian marker Collignoniceras cf. carolinum (d’Obrbigny) and Inoceramus hobetsensis (Nagao and Matsumoto) occurs in the upper part of the Karondia Member. The record of the index species Inoceramus teshioensis (Nagao and Matsumoto) in association with Placenticeras mintoi Vredenburg from Chirakhan Member allows a definite Late Turonian age. The present contribution is an attempt to resolve the controversies in the age of the Nodular Limestone Formation and also demarcation of the three divisions (Early, Middle and Late) of the Turonian Stage in the Narmada Basin, central India.  相似文献   

13.
The Gondwana (Early Permian to Early Cretaceous) basins of eastern India have been intruded by ultramafic–ultrapotassic (minette, lamproite and orangeite) and mafic (dolerite) rocks. The Salma dike is the most prominent among mafic intrusives in the Raniganj basin. This dike is tholeiitic in composition; MgO varies from 5.4 to 6.3% and the mg number from 54 to 59. In general, the major and trace element abundances are uniform both along and across the strike. There is geochemical and mineralogical evidence for fractional crystallization. The chondrite normalized REE pattern of the Salma dike (La/Ybn=3.5) is similar to that of Deccan dikes of the Son–Narmada rift zone, western India. 87Sr/86Sr varies from 0.70552 to 0.70671 suggesting assimilation of crustal material. Some trace element abundances (e.g. Ti, Zr, Y) of the Salma dike are comparable to Group I Rajmahal basalts. The 40Ar–39Ar whole rock age of 65 Ma for the Salma dike is less than the ca. 114 Ma age for the Rajmahal basalt, but is similar to the generally accepted age for Deccan volcanic rocks. Despite geographical proximity with the Rajmahal basalt, the Salma dike is believed to be related to late phase of Deccan volcanic activity.  相似文献   

14.
The origin of silicic rocks (SiO2 > 65 wt%) in Continental Flood Basalt (CFB) provinces could be attributed to complex petrogenetic processes. The 65.5–66 Ma old Deccan Traps CFB contains eight sporadic but significant silicic rock exposures that are studied here in a comprehensive framework using field observations, petrography, major oxides (n = 56), and trace element chemistry. Rhyolite and granophyre, as well as subordinate felsite, ignimbrite, trachyte, pitchstone, and microgranite coexist with volcanic and plutonic mafic rocks such as basalt, basaltic andesite, and gabbro. Multiple isolated and circular/semi-circular hills and linear dykes of silicic rocks are present in the form of lavas with prominent flow folding, rheomorphic ignimbrite, and tuffs. The ‘Rheological Agpaitic Index’ (RAI) indicates that most of the silicic rocks in the Deccan Traps are effusive in nature, except for Rajpipla, Alech, Bombay, and Osham silicic rocks, which are marked by explosive volcanism. Thermodynamic-based Rhyolite-MELTS modelling suggests that the major oxide composition of Pavagadh and Barda basalt is a likely candidate for the parental melt composition of the silicic rocks of the Deccan Traps. Ba, Sr, P, Zr, and Ti anomalies are consistent with the fractionation of K-feldspar, plagioclase, apatite, zircon, and Fe-Ti oxides, respectively. Two broad REE patterns are noticed in the Deccan Traps silicic rocks: a flat pattern for Barda, Alech, and Chogat-Chamardi silicic rocks, and a steep REE pattern for Osham, Rajula, Pavagadh, Rajpipla, and Bombay silicic rocks. Trace element modelling reveals that 5–10 % partial melting of a spinel peridotite source could produce an REE pattern and abundances similar to the associated basalts. Further extensive fractional crystallization (60–90 %) of the parental mafic melt at a deeper depth (where spinel is stable) could produce the REE composition and pattern observed in most silicic rocks except for those of Barda, Alech, and Chogat-Chamardi, which require fractional crystallization of the same parental melt at a shallower depth (where spinel is not stable). The geochemical variability of Deccan Traps silicic rocks reveals an origin from a mantle-derived parental mafic melt that evolved via the assimilation and fractional crystallization (AFC) process to form the silicic exposures, which is typical of silicic volcanism in other global CFBs.  相似文献   

15.

化学风化是地表岩石矿物向土壤释放营养元素同时形成土壤粘粒组分的地球化学过程,这一过程使土壤具有生态环境功能。本文选择采集青藏高原东南缘的雅砻江下游不同地貌部位和植物群落的表土样品并分析其粒度组成和地球化学特征。结果表明:研究区表土粒度组成以粉砂为主(46.68%),其次是砂粒(34.05%)和粘粒(19.28%);元素组成以Si、Al和Fe为主;K、P和Si相对于上陆壳亏损,与区内沉积岩为主的岩石分布特征一致。研究区表土粘粒含量和化学蚀变指数(CIA)存在明显的空间差异:海拔 < 1300 m、坡度较大的南部谷坡地表土粘粒平均含量为6.51%,CIA平均为65,处于脱Ca、Na的中等风化阶段早期;海拔>2400 m、坡度平缓的西部坡地和宽谷地表土粘粒含量达39.21%,CIA平均达86,风化程度较高。母岩、海拔、坡度和土壤总氮含量对表土CIA值的贡献依次是57.34%、23.46%、10.33%和6.87%。显然,母岩性质是控制研究区表土化学风化过程的主要因素,地貌条件(海拔和坡度)是驱动化学风化过程最重要的外部因素,且海拔高度的影响大于坡度;生物作用对CIA值有一定的贡献。本研究可为深入探讨干热河谷地区土壤生物地球化学过程提供基础数据。

  相似文献   

16.
 R-mode factor analysis of the recently acquired data on water and sediment chemistry has been performed. Basic chemical parameters have been merged together which aid in interpreting a few empirical geochemical factors controlling the chemical nature of water and sediments of the Gomti River, a major Himalayan tributary of the Ganges drainage basin. Water chemistry seems to be controlled by three factors: bicarbonate, rainfall and silicate and phosphate factors. Sediment chemistry is largely controlled by the following four factors: clay, adsorption/desorption, Fe-Mn hydroxide and mercury factors. These factors show spatial and temporal variability in terms of their R-scores. Received: 8 September 1997 · Accepted: 15 December 1997  相似文献   

17.
Chemical weathering of silicate minerals has long been known as a sink for atmospheric CO2, and feedbacks between weathering and climate are believed to affect global climate. While warmer temperatures are believed to increase rates of weathering, weathering in cool climates can be accelerated by increased mineral exposure due to mechanical weathering by ice. In this study, chemical weathering of silicate minerals is investigated in a small temperate watershed. The Jamieson Creek watershed is covered by mature coniferous forest and receives high annual precipitation (4000 mm), mostly in the form of rainfall, and is underlain by quartz diorite bedrock and glacial till. Analysis of pore water concentration gradients indicates that weathering in hydraulically unsaturated ablation till is dominated by dissolution of plagioclase and hornblende. However, a watershed scale solute mass balance indicates high relative fluxes of K and Ca, indicating preferential leaching of these solutes possibly from the relatively unweathered lodgement till. Weathering rates for plagioclase and hornblende calculated from a watershed scale solute mass balance are similar in magnitude to rates determined using pore water concentration gradients.When compared to the Rio Icacos basin in Puerto Rico, a pristine tropical watershed with similar annual precipitation and bedrock, but with dissimilar regolith properties, fluxes of weathering products in stream discharge from the warmer site are 1.8 to 16.2-fold higher, respectively, and regolith profile-averaged plagioclase weathering rates are 3.8 to 9.0-fold higher. This suggests that the Arrhenius effect, which predicts a 3.5- to 9-fold increase in the dissolution rate of plagioclase as temperature is increased from 3.4° to 22 °C, may explain the greater weathering fluxes and rates at the Rio Icacos site. However, more modest differences in K and Ca fluxes between the two sites are attributed to accelerated leaching of those solutes from glacial till at Jamieson Creek. Our findings suggest that under conditions of high rainfall and favorable topography, weathering rates of silicate minerals in warm tropical systems will tend to be higher than in cool temperate systems, even if the temperate system is has been perturbed by an episode of glaciation that deposits regolith high in fresh mineral surface area.  相似文献   

18.
Large seasonal variations in the dissolved load of the headwater tributaries of the Marsyandi river (Nepal Himalaya) for major cations and 87Sr/86Sr ratios are interpreted to result from a greater dissolution of carbonate relative to silicate at high runoff. There is up to a 0.003 decrease in strontium isotope ratios and a factor of 3 reduction in the Si(OH)4/Ca ratio during the monsoon. These variations, in small rivers sampling uniform lithologies, result from a different response of carbonate and silicate mineral dissolution to climatic forcing. Similar trends are observed in compiled literature data, from both Indian and Nepalese Himalayan rivers. Carbonate weathering is more sensitive to monsoonal runoff because of its faster dissolution kinetics. Silicate weathering increases relative to carbonate during the dry season, and may be more predominant in groundwater with longer water-rock interaction times. Despite this kinetic effect, silicate weathering fluxes are dominated by the monsoon flux, when between 50% and 70% of total annual silicate weathering flux occurs.  相似文献   

19.
Peter K. Swart 《Sedimentology》2015,62(5):1233-1304
Stable carbon and oxygen isotopes (δ18O and δ13C values) and trace elements have been applied to the study of diagenesis of carbonate rocks for over 50 years. As valuable as these insights have been, many problems regarding the interpretation of geochemical signals within mature rocks remain. For example, while the δ18O values of carbonate rocks are dependent both upon the temperature and the δ18O value of the fluid, and additional information including trace element composition aids in interpreting such signals, direct evidence of either the temperature or the composition of the fluids is required. Such information can be obtained by analysing the δ18O value of any fluid inclusions or by measuring the temperature using a method such as the ‘clumped’ isotope technique. Such data speak directly to a large number of problems in interpreting the oxygen isotope record including the well‐known tendency for δ18O values of carbonate rocks to decrease with increasing age. Unlike the δ18O, δ13C values of carbonates are considered to be less influenced by diagenesis and more a reflection of primary changes in the global carbon cycle through time. However, many studies have not sufficiently emphasized the effects of diagenesis and other post‐depositional influences on the eventual carbon isotopic composition of the rock with the classic paradigm that the present is the key to the past being frequently ignored. Finally, many additional proxies are poised to contribute to the interpretation of carbonate diagenesis. Although the study of carbonate diagenesis is at an exciting point with an explosion of new proxies and methods, care should be taken to understand both old and new proxies before applying them to the ancient record.  相似文献   

20.
Water samples collected from the six reservoirs of Damodar River basin in pre- and post-monsoon, have been analysed, to study the major ion chemistry and the weathering and geochemical processes controlling the water composition. Ca, Na and HCO3 dominate the chemical composition of the reservoir water. The seasonal data shows a minimum concentration of most of the ions in post-monsoon and a maximum concentration in pre-monsoon seasons, reflecting the concentrating effects due to elevated temperature and increased evaporation during the low water level period of the pre-monsoon season. Water chemistry of the reservoirs strongly reflects the dominance of continental weathering aided by atmospheric and anthropogenic activities in the catchment area. Higher concentration of SO4 and TDS in Panchet, Durgapur and Tenughat reservoirs indicate mining and anthropogenic impact on water quality. The high contribution of (Ca+Mg) to the total cations, high concentration of dissolved silica, relatively high (Na+K)/TZ+ ratio (0.3) and low equivalent ratio of (Ca+Mg)/(Na+K) suggests combined influence of carbonate and silicate weathering. Kaolinite is the possible mineral that is in equilibrium with the water, implying that the chemistry of reservoir water favours kaolinite formation. The calculated values of SAR, RSC and sodium percentage indicate the ‘excellent to good quality’ of water for irrigation uses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号