首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An Early Permian volcanic assemblage is well exposed in the central-western part of the Apuseni Mountains (Romania). The rocks are represented by rhyolites, basalts and subordinate andesites suggesting a bimodal volcanic activity that is intimately associated with a post-orogenic (Variscan) syn-sedimentary intra-basinal continental molasse sequences. The mafic and mafic-intermediate rocks belong to sub-alkaline tholeiitic series were separated in three groups (I–III) showing a high Th and Pb abundances, depletion in Nb, Ta and Sr, and slightly enriched in LREE patterns (LaN/YbN = 1.4–4.4). Isotopically, the rocks of Group I have the initial ratios 87Sr/86Sr(i) = 0.709351–0.707112, 143Nd/144Nd(i) = 0.512490–0.512588 and high positive ?Nd270 values from 3.9 to 5.80; the rocks of Group II present for the initial ratios values 87Sr/86Sr(i) = 0.709434–0.710092, 143Nd/144Nd(i) = 0.512231–0.512210 and for ?Nd270 the negative values from −1.17 to −1.56; the rocks of Group III display for the initial ratios the values 87Sr/86Sr(i) = 0.710751–0.709448, 143Nd/144Nd(i) = 0.512347–0.512411 and for ?Nd270 the positive values from 1.64 to 2.35. The rocks resembling continental tholeiites, suggest a mantle origin and were further affected by fractionation and crustal contamination. In addition, the REE geochemistry (1 > SmN/YbN < 2.5; 0.9 > LaN/SmN < 2.5) suggests that these rocks were generated by high percentage partial melting of a metasomatized mantle in the garnet peridotite facies. The felsic rocks are enriched in Cs, Rb Th and U and depleted in Nb, Ta, Sr, Eu, and Ti. The REE fractionation patterns show a strong negative Eu anomaly (Eu/Eu* = 0.23–0.40). The felsic rocks show the initial ratios the values: 87Sr/86Sr(i) = 0.704096–0.707805, 143Nd/144Nd(i) = 0.512012–0.512021 and for ?Nd270 the negative values from −5.27 to −5.44. They suggest to be generated within the lower crust during the emplacement of mantle-derived magmas that provided necessary heat to crustal partial melting.  相似文献   

2.
There is a correlation between thorium and the light rare earth elements, indicated by La/Th ratios in fine grained sedimentary rocks of various ages from Australia and Greenland. The correlation between Th and the heavy rare earth elements (Th/Yb) is much less significant. Archean sedimentary rocks have a higher La/Th (3.6 ± 0.4) than post-Archean sedimentary rocks (La/Th = 2.7 ± 0.2).The cause of this correlation can be attributed to the coherent behaviour of these elements during most sedimentary processes (weathering, transport, diagenesis, etc.). Since the chondrite-normalized rare earth element distribution of clastic fine grained sedimentary rocks is accepted to be parallel to the distribution of REE in the upper continental crust, an estimate of upper crustal Th abundances can be made. Using reasonable assumptions of certain elemental ratios (K/U, Th/U, K/Rb) in the upper crust, minimum estimates of the abundances of K, U and Rb can also be made for the post-Archean and Archean upper crusts.The post-Archean values (K = 2.9%; Rb = 115 ppm; Th = 11.1 ppm; U = 2.9 ppm) compare favourably to some previous estimates made from direct sampling and theoretical considerations and help confirm a granodiorite present day upper continental crust. The Archean data (K = 0.92%; Rb = 30ppm; Th = 3.5 ppm; U = 0.92 ppm) support models which suggest a significantly more mafic exposed crust at that time.  相似文献   

3.
In situ U-Pb SHRIMP analysis of hydrothermal monazite virtually free of Th and poor in U (<0.2 ppm Th, 40-103 ppm U) from the world-class Llallagua tin porphyry deposit in Bolivia defines a mineralization age of 23.4 ± 2.2 Ma (MSWD 0.48) confirming earlier K-Ar sericite alteration age data. These ages are, however, in contrast with a weighted mean single crystal 207Pb/206Pb evaporation age of 39.3 ± 6.0 Ma, and a related Pb-Pb inverse isochron age of 42.4 ± 4.0 Ma (MSWD 0.66) on zircon from a post-porphyry dike, as well as with an earlier single crystal Sm-Nd apatite isochron age.Our data points to a significant time gap between emplacement of the ore-hosting porphyry intrusion (magmatism) and its hydrothermal overprint (tin mineralization), suggesting long-lived magmatic-hydrothermal activity in this part of the Andean back-arc crust. The decoupling of porphyry magmatism and hydrothermal activity may explain the unusual occurrence of relatively little fractionated felsic rocks together with extensive tin mineralization.Our study demonstrates the usefulness of the application of the U-Pb SHRIMP method to direct age determination of ore mineralization using Th-poor hydrothermal monazite even when dealing with geological young events. The common assumption of synchronous magmatism and hydrothermal ore formation in porphyry systems may not always be warranted.  相似文献   

4.
A combined study of internal structure, U-Pb age, and Hf and O isotopes was carried out for metamorphic zircons from ultrahigh-pressure eclogite boudins enclosed in marbles from the Dabie orogen in China. CL imaging identifies two types of zircon that are metamorphically new growth and recrystallized domain, respectively. The metamorphic zircons have low Th and U contents with low Th/U ratios, yielding two groups of 206Pb/238U age at 245 ± 3 to 240 ± 2 Ma and 226 ± 4 to 223 ± 2 Ma, respectively. Anomalously high δ18O values were obtained for refractory minerals, with 9.9 to 21.4‰ for garnet and 16.9‰ for zircon. This indicates that eclogite protolith is sedimentary rocks capable of liberating aqueous fluid for zircon growth during continental subduction-zone metamorphism. Most of the zircons are characterized by very low 176Lu/177Hf ratios of 0.000001-0.000028, indicating their growth in association with garnet recrystallization. A few of them falling within the older age group have comparatively high 176Lu/177Hf ratios of 0.000192-0.000383, suggesting their growth prior to the formation of garnet in the late stage of subduction. The variations in the Lu/Hf ratios for zircons can thus be used to correlate with garnet growth during eclogite-facies metamorphism. In either case, the zircons have variable εHf (t) values for individual samples, suggesting that their protolith is heterogeneous in Hf isotope composition with localized fluid availability in the bulk processes of orogenic cycle. Nevertheless, a positive correlation exists between 206Pb/238U ages and Lu-Hf isotope ratios for the metamorphically recrystallized zircons, suggesting that eclogite-facies metamorphism in the presence of fluid has the identical effect on zircon Lu-Hf and U-Th-Pb isotopic systems. We conclude that the zircons of the older group grew in the presence of fluid during the subduction prior to the onset of peak ultrahigh-pressure metamorphism, whereas the younger zircons grew in the presence of fluid released during the initial exhumation toward high-pressure eclogite-facies regime.  相似文献   

5.
The Daping Neoproterozoic plutonic rocks at the northeastern margin of Indochina block in southwest China provide an ideal opportunity for studying the tectonic setting and relationship between the Indochina and Yangtze Blocks. LA-ICP-MS U-Pb dating on the zircon cores and rims of a hornblende-gabbro yield 206Pb/238U weighted means ages of 873 ± 9.1 Ma and 769 ± 7 Ma, respectively, and that for cores, mantles and rims of a granodiorite yield 206Pb/238U weighted means ages of 981-987 Ma, 829 ± 10 Ma and 761 ± 11 Ma, respectively. The zircon cores and mantles are interpreted as inherited from their source region. The zircon rims are magmatic, their ages represent the emplacement timing. The zircon cores and rims from the hornblende-gabbro have εHf(t) values ranging from − 5.0 to − 5.8 and + 0.6 to + 6.4. Corresponding single-stage model ages range from 1626 to 1662 Ma and 1094 to 1311 Ma, respectively. For the granodiorite, the inherited mantles (including cores) show two groups: (1) εHf(t) values of + 3.3 to + 12.3 with single-stage Hf model ages of 897 to 1235 Ma; and (2) εHf(t) values of − 1.9 to − 7.8 with single stage model ages of 1470-1667 Ma. The zircon rims are characterized by positive εHf(t) values (+ 5.4 to + 8.2) with single-stage model ages ranging from 977 to 1108 Ma. Whole-rock geochemical data for the hornblende-gabbro, such as enrichment of LILE and LREE, negative anomaly of Nb and Ta, and high Mg# (52.1-65.4), suggest magma generation in a subduction-related setting. An island-arc affinity is strongly supported by the features of high-alumina basalt and abundant hornblende in a large hornblende-gabbro sill. The granodiorites are characterized by high Sr contents and Sr/Y ratios, strong enrichment of LILE and LREE, and negative anomaly of Nb, Ta, P and Ti, comparable with the features of subduction-related plutonic rocks. These data show that the hornblende-gabbro was generated by the partial melting of a metasomatized mantle wedge peridotite with contribution from aqueous fluids derived from a subducted slab. The granodiorite magma is a product of the mixing of mafic magma produced by partial melting of a slab-fluid-enriched metasomatized mantle wedge peridotite and felsic magma formed by the partial melting of crustal materials. The emplacement ages and geochemical features of subduction-related Daping plutonic rocks are the same as those reported from the western margin of the Yangtze block, suggesting the presence of an oceanic crust in between, with subduction to either side generating island-arc magmatism in the Neoproterozoic.  相似文献   

6.
We have carried out a Pb double-spike and Lu-Hf isotope study of clinopyroxenes from spinel-facies mantle xenoliths entrained in Cenozoic intraplate continental volcanism of the French Massif Central (FMC). U-Th-Pb and Lu-Hf isotope systematics verify the existence of different lithospheric domains beneath the northern and southern FMC. Northern FMC clinopyroxenes have extreme Lu/Hf ratios and ultra-radiogenic Hf (εHf = +39.6 to +2586) that reflect ∼15-25% partial melting in Variscan times (depleted mantle model ages ∼360 Ma). Zr, Hf and Th abundances in these clinopyroxenes are low and unaffected by hydrous/carbonatitic metasomatism that overprinted LILE and light REE abundances and caused decoupling of Lu/Hf-Sm/Nd ratios and Nd-Hf isotopes (εNd = +2.1 to +91.2). Pb isotopes of northern FMC clinopyroxenes are radiogenic (206Pb/204Pb > 19), and typically more so than the host intraplate volcanic rocks. 238U/204Pb ratios range from 17 to 68, and most samples have distinctively low 232Th/238U (<1) and 232Th/204Pb (3-22). Clinopyroxenes from southern FMC lherzolites are generally marked by overall incompatible trace element enrichment including Zr, Hf and Th abundances, and have Pb isotopes that are similar to or less radiogenic than the host volcanic rocks. Hf isotope ratios are less radiogenic (εHf = +5.4 to +41.5) than northern FMC mantle and have been overprinted by silicate-melt-dominated metasomatism that affected this part of FMC mantle. Major element and Lu concentrations of clinopyroxenes from southern FMC harzburgites are broadly similar to northern FMC clinopyroxenes and suggest they experienced similar degrees of melt extraction as northern FMC mantle. 238U/204Pb (53-111) and 232Th/204Pb ratios (157-355) of enriched clinopyroxenes from the southern FMC are extreme and significantly higher than the intraplate volcanic rocks. In summary, mantle peridotites from different parts of the FMC record depletion at ∼360 Ma during Variscan subduction, followed by differing styles of enrichment. Northern FMC mantle was overprinted by a fluid/carbonatitic metasomatic agent that carried elements like U, Pb, Sr and light REE. In contrast, much of the southern FMC mantle was metasomatised by a small-degree partial silicate melt resulting in enrichment of all incompatible trace elements. The extreme mantle 238U/204Pb (northern and southern FMC), 232Th/238U (northern FMC) and 232Th/204Pb ratios (southern FMC), coupled with unremarkable present-day Pb isotope ratios, constrain the timing of enrichment. Mantle metasomatism is a young feature related to melting of the upwelling mantle responsible for Cenozoic FMC volcanism, rather than subduction-related metasomatism intimately associated with mantle depletion during the Variscan orogeny. The varying metasomatic styles relate to pre-existing variations in the thickness of the continental lithospheric lid, which controlled the extent to which upwelling mantle could ascend and melt. In the northern FMC, a thicker and more refractory lithospheric lid (?80 km) only allowed incipient degrees of melting resulting in fluid/carbonatitic metasomatism of the overlying sub-continental lithospheric mantle. The thinner lithospheric lid of the southern FMC (?70 km) allowed larger degrees of melting and resulted in silicate-melt-dominated metasomatism, and also focused the location of the volcanic fields of the FMC above this region.  相似文献   

7.
To examine the petrogenesis and sources of basalts from the Kolbeinsey Ridge, one of the shallowest locations along the global ridge system, we present new measurements of Nd, Sr, Hf, and Pb isotopes and U-series disequilibria on 32 axial basalts. Young Kolbeinsey basalts (full-spreading rate = 1.8 cm/yr; 67°05′-70°26′N) display (230Th/238U) < 1 and (230Th/238U) > 1 with (230Th/238U) from 0.95 to 1.30 and have low U (11.3-65.6 ppb) and Th (33.0 ppb-2.40 ppm) concentrations. Except for characteristic isotopic enrichment near the Jan Mayen region, the otherwise depleted Kolbeinsey basalts (e.g. 87Sr/86Sr = 0.70272-0.70301, εNd = 8.4-10.5, εHf = 15.4-19.6 (La/Yb)N = 0.28-0.84) encompass a narrow range of (230Th/232Th) (1.20-1.32) over a large range in (238U/232Th) (0.94-1.32), producing a horizontal array on a (230Th/232Th) vs. (238U/232Th) diagram and a large variation in (230Th/238U). However, the (230Th/238U) of the Kolbeinsey Ridge basalts (0.96-1.30) are inversely correlated with (234U/238U) (1.001-1.031). Samples with low (230Th/238U) and elevated (234U/238U) reflect alteration by seawater or seawater-derived materials. The unaltered Kolbeinsey lavas with equilibrium 234U/238U have high (230Th/238U) values (?1.2), which are consistent with melting in the presence of garnet. This is in keeping with the thick crust and anomalously shallow axial depth for the Kolbeinsey Ridge, which is thought to be the product of large degrees of melting in a long melt column. A time-dependent, dynamic melting scenario involving a long, slowly upwelling melting column that initiates well within the garnet peridotite stability zone can, in general, reproduce the (230Th/238U) and (231Pa/235U) ratios in uncontaminated Kolbeinsey lavas, but low (231Pa/235U) ratios in Eggvin Bank samples suggest eclogite involvement in the source for that ridge segment.  相似文献   

8.
Upper crustal abundances of trace elements: A revision and update   总被引:7,自引:0,他引:7  
Zhaochu Hu  Shan Gao   《Chemical Geology》2008,253(3-4):205-221
We report new estimates of abundances of rarely analyzed elements (As, B, Be, Bi, Cd, Ge, In, Mo, Sb, Sn, Te, Tl, W) in the upper continental crust based on precise ICP-MS analyses of well-characterized upper crustal samples (shales, pelites, loess, graywackes, granitoids and their composites) from Australia, China, Europe, New Zealand and North American. Obtaining a better understanding of the upper crustal abundance and associated uncertainties of these elements is important in placing better constraints on bulk crust composition and, from that, whole Earth models of element cycling and crust generation. We also present revised abundance estimates of some more commonly analyzed trace elements (Li, Cr, Ni, and Tm) that vary by > 20% compared to previous estimates. The new estimates are mainly based on significant (r2 > 0.6) inter-element correlations observed in clastic sediments and sedimentary rocks, which yield upper continental crust elemental ratios that are used in conjunction with well-determined abundances for certain key elements to place constraints on the concentrations of the rarely analyzed elements. Using the well-established upper crustal abundances of La (31 ppm), Th (10.5 ppm), Al2O3 (15.40%), K2O (2.80%) and Fe2O3 (5.92%), these ratios lead to revised upper crustal abundances of B = 47 ppm, Bi = 0.23 ppm, Cr = 73 ppm, Li = 41 ppm, Ni = 34 ppm, Sb = 0.075, Te = 0.027 ppm, Tl = 0.53 ppm and W = 1.4 ppm. No significant correlations exist between Mo and Cd and other elements in the clastic sediments and sedimentary rocks, probably due to their enrichment in organic carbon. We thus calculate abundances of these elements by assuming the upper continental crust consists of 65% granitoid rocks plus 35% clastic sedimentary rocks. The validity of this approach is supported by the similarity of SiO2, Al2O3, La and Th abundances calculated in this way with their upper crustal abundances given in Rudnick and Gao [Rudnick, R., Gao, S., 2003. Composition of the continental crust. In: Rudnick, R.L. (Ed.), The Crust. In: Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry, vol. 3. Elsevier–Pergamon, Oxford, pp. 1–64.]. The upper crustal abundances thus obtained are Mo = 0.6 ppm and Cd = 0.06 ppm. Our data also suggest a  20% increase of the Tm, Yb and Lu abundances reported in Rudnick and Gao [Rudnick, R., Gao, S., 2003. Composition of the continental crust. In: Rudnick, R.L. (Ed.), The Crust. In: Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry, vol. 3. Elsevier–Pergamon, Oxford, pp. 1–64.].  相似文献   

9.
Geochemistry and U-Pb ages of leucosomes and tonalites in a high pressure granulite unit of the Dulan area have been determined to constrain the tectonothermal evolution related to collision and thickening of lower crust in the North Qaidam Mountains (NQD). Leucosomes and tonalites show a marked chemical resemblance to adakites: (1) high La/Yb and Sr/Y, and low Y and HREE; (2) high Al2O3 and low Mg# values with obvious positive Eu anomalies; and (3) slightly positive εNd(t) values. Zircon U-Pb analysis of leucosomes and tonalites yielded 206Pb/238U ages of 428-437 Ma and 436-437 Ma respectively, which constrain the emplacement ages of the adakitic rocks. Petrological, geochronological and geochemical characters indicate that the adakitic rocks may have been derived from partial melting of a thickened mafic lower crust (> 50 km), suggesting a dominating source regime of synchronous high-pressure mafic granulites. Contemporary magmatism in other units of the NQD shows evidence of a widespread tectonothermal event during early Silurian (420-450 Ma) that includes metamorphism, magmatism and anatexis related to collision and thickening of lower crust.  相似文献   

10.
Heterogeneous magnesium isotopic composition of the upper continental crust   总被引:3,自引:0,他引:3  
High-precision Mg isotopic data are reported for ∼100 well-characterized samples (granites, loess, shales and upper crustal composites) that were previously used to estimate the upper continental crust composition. Magnesium isotopic compositions display limited variation in eight I-type granites from southeastern Australia (δ26Mg = −0.25 to −0.15) and in 15 granitoid composites from eastern China (δ26Mg = −0.35 to −0.16) and do not correlate with SiO2 contents, indicating the absence of significant Mg isotope fractionation during differentiation of granitic magma. Similarly, the two S-type granites, which represent the two end-members of the S-type granite spectrum from southeastern Australia, have Mg isotopic composition (δ26Mg = −0.23 and −0.14) within the range of their potential source rocks (δ26Mg = −0.20 and +0.15) and I-type granites, suggesting that Mg isotope fractionation during crustal anatexis is also insignificant. By contrast, δ26Mg varies significantly in 19 A-type granites from northeastern China (−0.28 to +0.34) and may reflect source heterogeneity.Compared to I-type and S-type granites, sedimentary rocks have highly heterogeneous and, in most cases, heavier Mg isotopic compositions, with δ26Mg ranging from −0.32 to +0.05 in nine loess from New Zealand and the USA, from −0.27 to +0.49 in 20 post-Archean Australian shales (PAAS), and from −0.52 to +0.92 in 20 sedimentary composites from eastern China. With increasing chemical weathering, as measured by the chemical index of alternation (CIA), δ26Mg values show a larger dispersion in shales than loess. Furthermore, δ26Mg correlates negatively with δ7Li in loess. These characteristics suggest that chemical weathering significantly fractionates Mg isotopes and plays an important role in producing the highly variable Mg isotopic composition of sedimentary rocks.Based on the estimated proportions of major rock units within the upper continental crust and their average MgO contents, a weighted average δ26Mg value of −0.22 is derived for the average upper continental crust. Our studies indicate that Mg isotopic composition of the upper crust is, on average, mantle-like but highly heterogeneous, with δ26Mg ranging from −0.52 to +0.92. Such large isotopic variation mainly results from chemical weathering, during which light Mg isotopes are lost to the hydrosphere, leaving weathered products (e.g., sedimentary rocks) with heavy Mg isotopes.  相似文献   

11.
Measurements of 238U-230Th-226Ra disequilibria, Sr-Nd-Pb-Hf isotopes and major-trace elements have been conducted for lavas erupted in the last quarter-millennium at Hekla volcano, Iceland. The volcanic rocks range from basalt to dacite. Most of the lavas (excluding dacitic samples) display limited compositional variations in radiogenic Sr-Nd-Pb-Hf isotopes (87Sr/86Sr = 0.70319-0.70322; 143Nd/144Nd = 0.51302-0.51305; 206Pb/204Pb = 19.04-19.06; 207Pb/204Pb = 15.53-15.54; 208Pb/204Pb = 38.61-38.65; 176Hf/177Hf = 0.28311-0.28312). All the samples possess (230Th/238U) disequilibrium with 230Th excesses, and they show systematic variations in (230Th/232Th) and (238U/232Th) ratios. The highest 226Ra excesses occur in the basalt and most differentiated andesite lavas, while some basaltic-andesite lavas have (226Ra/230Th) ratio that are close to equilibrium. The 238U-230Th-226Ra disequilibria variations cannot be produced by simple closed-system fractional crystallization with radioactive decay of 230Th and 226Ra in a magma chamber. A closed-system fractional crystallization model and assimilation and fractional crystallization (AFC) model indicate that the least differentiated basaltic andesites were derived from basalt by fractional crystallization with a differentiation age of ∼24 ± 11 kyr, whereas the andesites were formed by assimilation of crustal material and fractionation of the basaltic-andesites within 2 kyr. Apatite is inferred to play a key role in fractionating the parent-daughter nuclides in 230Th-238U and 226Ra-230Th to make the observed variations. Our proposed model is that several batches of basaltic-andesite magmas that formed by fractional crystallization of a basaltic melt from a deeper reservoir, were periodically injected into the shallow crust to form individual magma pockets, and subsequently modifying the original magma compositions via simultaneous assimilation and fractional crystallization. The assimilant is the dacitic melt, which formed by partial melting of the crust.  相似文献   

12.
To date, few adakitic rocks have been reported in direct association with contemporary intra-continental extensional structures, which has cast doubt on genetic models involving partial melting of the lower crust. This study presents Early Cretaceous (143-129 Ma, new Sensitive high-resolution ion microprobe (SHRIMP) zircon U-Pb ages) adakitic granites, which are directly associated with a contemporary metamorphic core complex (i.e., the Northern Dabie Complex in the Dabie area). These granites exhibit relatively high Sr contents, negligible to positive Eu and Sr anomalies, high La/Yb and Sr/Y ratios, but very low Yb and Y contents, similar to subducted oceanic crust-derived adakites. They are also characterized, however, by very low MgO or Mg# and Ni values, and Nd-Sr isotope compositions (εNd(t) = −14.6 to −19.4 and (87Sr/86Sr)i = 0.7067-0.7087) similar to Triassic continent-derived eclogites subducted in the Dabie-Sulu Orogen. Additionally, late granitic dikes in the adakitic intrusions exhibit low Sr contents, clearly negative Eu and Sr anomalies, low La/Yb and Sr/Y ratios, but relatively high Yb and Y contents, similar to 118-105 Ma granites in the Northern Dabie Complex. Based on composition and geochronology data of Neoproterozoic amphibolites and orthogneisses, Triassic high- to ultra-high pressure metamorphic rocks, and Early Cretaceous mafic-ultramafic intrusive rocks, and the constraints provided by experimental melt data for tonalites, metabasaltic rocks and eclogites, we suggest that the adakitic granites were most probably generated by partial melting of thickened amphibole or rutile-bearing eclogitic lower crust as a consequence of Triassic-Middle Jurassic subduction and thrusting. The late dikes probably originated from plagioclase-bearing intermediate granulites. Moreover, we suggest that late Mesozoic delamination or foundering of thickened eclogitic lower crust is also a more plausible mechanism for the petrogenesis of Early Cretaceous mafic-ultramafic intrusive rocks in the Dabie area, and probably involved partial melting of a mixed source comprising eclogitic lower crust that had delaminated or foundered into upper lithospheric or asthenospheric mantle peridotite. Asthenospheric upwelling in response to post-collisional delamination of lithospheric mantle was likely to have provided the heat source for the Cretaceous magmatism.  相似文献   

13.
U-series disequilibria measured in waters and rocks from a chalk aquifer in France have been used as an analog for long-term radionuclide migration. Drill core samples from a range of depths in the vadose zone and in the saturated zone, as well as groundwater samples were analyzed for 238U, 234U, 232Th and 230Th to determine transport mechanisms at the water/rock interface and to quantify parameters controlling the migration of radionuclides. Isotope measurements in rocks were done by TIMS, whereas (234U/238U) and (230Th/232Th) activity ratios in water samples were measured by multi-collector-ICP-MS. Both depletion and enrichment in 234U relative to 238U were observed in carbonate rock samples resulting from chemical weathering in the unsaturated zone and calcite precipitation in the zone of water-table oscillation, respectively. The correlation between (230Th/232Th) activity ratios and 87Sr/86Sr ratios found in the chalk samples indicates that thorium is mainly contained in a minor silicate phase whose abundance is variable in chalk samples. Water samples are all characterized by (234U/238U) > 1 resulting from α-recoil effect of 234Th. Groundwaters are characterized by a more radiogenic signature in 87Sr/86Sr than the rocks. Moreover, (230Th/232Th) activity ratios in the waters are lower than in the rocks, and increase with distance from the water divide, which suggests that Th transport is controlled by colloids formed during water infiltration in the soil. A 1-D transport model has been developed in order to constrain the U-series nuclide transport considering a transient behavior of radionuclides in the aquifer and a time-dependent composition for the solid phase. This model permits a prediction of the time scale of equilibration of the system, and an estimation of parameters such as weathering rate, distribution coefficients and α-recoil fractions. Retardation factors of 10-35 and from 1 × 104 to 2 × 105 were predicted for U and Th, respectively, and can be used to predict the migration of radionuclides released as contaminants in the environment. At the scale of our watershed (∼32 km2), a characteristic migration time from recharge to riverine discharge of 200-600 yr for U and 0.2-3.7 Myr for Th was obtained.  相似文献   

14.
We have determined U-Pb ages, trace element abundances and Hf isotopic compositions of approximately 1000 detrital zircon grains from the Mississippi, Congo, Yangtze and Amazon Rivers. The U-Pb isotopic data reveal the lack of >3.3 Ga zircons in the river sands, and distinct peaks at 2.7-2.5, 2.2-1.9, 1.7-1.6, 1.2-1.0, 0.9-0.4, and <0.3 Ga in the accumulated age distribution. These peaks correspond well with the timing of supercontinent assembly. The Hf isotopic data indicate that many zircons, even those having Archean U-Pb ages, crystallized from magmas involving an older crustal component, suggesting that granitoid magmatism has been the primary agent of differentiation of the continental crust since the Archean era. We calculated Hf isotopic model ages for the zircons to estimate the mean mantle-extraction ages of their source materials. The oldest zircon Hf model ages of about 3.7 Ga for the river sands suggest that some crust generation had taken place by 3.7 Ga, and that it was subsequently reworked into <3.3 Ga granitoid continental crust. The accumulated model age distribution shows peaks at 3.3-3.0, 2.9-2.4, and 2.0-0.9 Ga.The striking attribute of our new data set is the non-uniformitarian secular change in Hf isotopes of granitoid crusts; Hf isotopic compositions of granitoid crusts deviate from the mantle evolution line from about 3.3 to 2.0 Ga, the deviation declines between 2.0 and 1.3 Ga and again increases afterwards. Consideration of mantle-crust mixing models for granitoid genesis suggests that the noted isotopic trends are best explained if the rate of crust generation globally increased in two stages at around (or before) 3.3 and 1.3 Ga, whereas crustal differentiation was important in the evolution of the continental crust at 2.3-2.2 Ga and after 0.6 Ga. Reconciling the isotopic secular change in granitoid crust with that in sedimentary rocks suggests that sedimentary recycling has essentially taken place in continental settings rather than active margin settings and that the sedimentary mass significantly grew through addition of first-cycle sediments from young igneous basements, until after ∼1.3 Ga when sedimentary recycling became the dominant feature of sedimentary evolution. These findings, coupled with the lack of zircons older than 3.3 Ga in river sands, imply the emergence of large-scale continents at about 3.3 Ga with further rapid growth at around 1.3 Ga. This resulted in the major growth of the sedimentary mass between 3.3 and 1.3 Ga and the predominance of its cannibalistic recycling later.  相似文献   

15.
Analyses of zircon grains from the Queureuilh Quaternary tephras (pumice) provide new information about their pre-eruptive history. U-Pb dating was performed in situ using two methods: SHRIMP and LA-MC-ICPMS equipped with a multi-ion counting system. Both methods provided reliable 207Pb/206Pb and 206Pb/238U ratios as well as U and Th abundances required for U-Pb Concordia intercept age determination, after initial 230Th disequilibrium correction. The new LA-MC-ICPMS method was validated by dating a reference zircon (61.308B) and zircons from a phonolitic lava dated independently with the two techniques. A time resolution of about 20 kyr for 1 Ma zircon crystals was achieved for both methods.The clear euhedral zircon population from Queureuilh tephras is quite complex from several points of view: (1) some grains are reddish or yellowish while others are colorless; (2) the U and Th composition changes by more than an order of magnitude and Th/U is generally high (∼1-2); (3) there are three discrete ages recorded at 2.35 ± 0.04, 1.017 ± 0.008 and 0.640 ± 0.010 Ma.From the previously determined 40Ar/39Ar age at 0.571 ± 0.060 Ma [Duffell H. (1999) Contribution géochronologique à la stratigraphie volcanique du Massif des Monts Dore par la méthode 40Ar/39Ar. D.E.A. Univ. Clermont-Ferrand, 56 p.], the discontinuous zircon age populations, the color of the grains and their composition, we favor the following model as explanation: The oldest, less numerous group of reddish zircons represents xenocrystic grains resulting from assimilation of the local material during magma ascent. A primitive magma chamber, perhaps deep in crustal level, was formed at 1.0 Ma. The related magma, previously characterized by high Th/U ratio (2.2 ± 1.1), underwent rejuvenation during ascent to a new chamber at shallow depth and/or during injection of more mafic magmas. During this stage, at 0.64 Ma, the colorless zircon grains of lower Th/U ratio (1.3 ± 0.5) crystallized. This last stage defined the magma residence time of 70 kyr prior to eruption dated by the 40Ar/39Ar method. However, if the primitive magma is considered, the magma residence time as a whole from this first stage reached 446 kyr.In the light of the complex history of such magmas, which commonly involves recycling of zircon grains that precipitated tens to hundreds of kyr earlier than eruptions, the use of Zr concentration in geochemical modeling of whole rock compositional data can be problematic.  相似文献   

16.
New mapping, geochemistry and zircon U-Pb ion microprobe geochronology of pre-3750 Ma rocks from West Greenland was used to identify sedimentary protoliths in a problematic high-grade metamorphic terrane. Samples were collected from southernmost part of the Itsaq Gneiss Complex where Akilia association supracrustal rocks have previously been noted. Supracrustal lithologies include laterally continuous and variably deformed units of amphibolite, ultramafics and ferruginous quartz-pyroxene rocks. Oxygen isotope and mass-independently fractionated sulfur isotopes, immobile trace elements and rare earth element patterns are consistent with origin of quartz-pyroxene rocks as chemical sediments deposited in a marine hydrothermal setting. We describe a further supracrustal lithology: Garnet-bearing quartz-biotite schists with elevated oxygen isotope values (δ18OSMOW ? +16‰) and mass-independently fractionated S isotopes consistent with a low-temperature aqueous sedimentary origin. In several enclaves, granitoid gneisses within low-strain limbs transect lithologic contacts and contain inclusions of surrounding rocks. This supports the interpretation that some orthogneisses were originally emplaced as igneous veins that cut supracrustal lithologies. Zircon geochronology on orthogneisses that preserve intrusive relationships confirms minimum ages of ca. 3750 Ma for the supracrustals and pooled [Th/U]zircon and δ18Ozircon values of older zircon populations are consonant with igneous growth in the bulk composition of the host rocks. Low [Zr]WR and high Zr saturation temperatures further minimize the possibility of zircon inheritance. A >3750 Ma age and chemical sedimentary origin for various Akilia association lithologies underscores the widespread occurrence of rocks of this kind beyond the type locality on Akilia (island) at the southern limit of the Itsaq Gneiss Complex.  相似文献   

17.
We carried out a detailed study of sulphide minerals, a ubiquitous mineral group in lower crustal mafic to peraluminous granulite xenoliths from the Diavik kimberlites, to assess their use in constraining the origin and tectonothermal evolution of the deep crust, and to obtain additional data on the composition of lower crust beneath ancient continents. Sulphides are overwhelmingly pyrrhotite with minor Ni (0.7-3.9 at.%), Co (0.1-0.7 at.%), and Cu contents (0.4-3.9 at.%). Sulphide modes in mafic granulites range from 0.14 to 0.55 vol%, translating into bulk rock S contents from ∼600 to 2000 ppm, similar to S contents in other mafic igneous rocks and indicating preservation of primary igneous S contents. In mafic granulites, Re and Os abundances in sulphides range from 42.5 to 726 ppb and 3.2 to 180 ppb, respectively, whereas those in peraluminous granulites are distinctly lower (36.1-282 ppb and 1.8-7.2 ppb, respectively), suggestive of Re and Os loss to fractionating sulphides in the more evolved precursors of these rocks.The significant within-sample variability of 187Os/188Os and correlation with 187Re/188Os indicates the preservation of primary Re-Os isotope systematics and time-integrated decay of the measured 187Re. Within the large uncertainties inherent in the nature of the samples and technique, sulphides in some granulites may record major tectonothermal events in the central Slave craton spanning several billion years of evolution. Multiple generations of sulphide can occur in a single sample. These data attest to the heterogeneous composition and complex history of the Slave craton lower crust.  相似文献   

18.
We investigate the Logatchev Hydrothermal Field at the Mid-Atlantic Ridge, 14°45′N to constrain the calcium isotope hydrothermal flux into the ocean. During the transformation of seawater to a hydrothermal solution, the Ca concentration of pristine seawater ([Ca]SW) increases from about 10 mM to about 32 mM in the hydrothermal fluid endmember ([Ca]HydEnd) and thereby adopts a δ44/40CaHydEnd of −0.95 ± 0.07‰ relative to seawater (SW) and a 87Sr/86Sr isotope ratio of 0.7034(4). We demonstrate that δ44/40CaHydEnd is higher than that of the bedrock at the Logatchev field. From mass balance calculations, we deduce a δ44/40Ca of −1.17 ± 0.04‰ (SW) for the host-rocks in the reaction zone and −1.45 ± 0.05‰ (SW) for the isotopic composition of the entire hydrothermal cell of the Logatchev field. The values are isotopically lighter than the currently assumed δ44/40Ca for Bulk Earth of −0.92 ± 0.18‰ (SW) [Skulan J., DePaolo D. J. and Owens T. L. (1997) Biological control of calcium isotopic abundances in the global calcium cycle. Geochim. Cosmochim. Acta61,(12) 2505-2510] and challenge previous assumptions of no Ca isotope fractionation between hydrothermal fluid and the oceanic crust [Zhu P. and Macdougall J. D. (1998) Calcium isotopes in the marine environment and the oceanic calcium cycle. Geochim. Cosmochim. Acta62,(10) 1691-1698; Schmitt A. -D., Chabeaux F. and Stille P. (2003) The calcium riverine and hydrothermal isotopic fluxes and the oceanic calcium mass balance. Earth Planet. Sci. Lett. 6731, 1-16]. Here we propose that Ca isotope fractionation along the fluid flow pathway of the Logatchev field occurs during the precipitation of anhydrite. Two anhydrite samples from the Logatchev Hydrothermal Field show an average fractionation of about Δ44/40Ca = −0.5‰ relative to their assumed parental solutions. Ca isotope ratios in aragonites from carbonate veins from ODP drill cores indicate aragonite precipitation directly from seawater at low temperatures with an average δ44/40Ca of −1.54 ± 0.08‰ (SW). The relatively large fractionation between the aragonite precipitates and seawater in combination with their frequent abundance in weathered mafic and ultramafic rocks suggest a reconsideration of the marine Ca isotope budget, in particular with regard to ocean crust alteration.  相似文献   

19.
Shield-stage high-MgO alkalic lavas from La Palma and El Hierro (Canary Islands) have been characterized for their O-Sr-Nd-Os-Pb isotope compositions and major-, trace-, and highly siderophile-element (HSE: Os, Ir, Ru, Pt, Pd, Re) abundances. New data are also reported for associated evolved rocks, and entrained xenoliths. Clear differences in Pd/Ir and isotopic ratios for high Os (>50 ppt) lavas from El Hierro (δ18Oolivine = 5.17 ± 0.08‰; 87Sr/86Sr = 0.7029 to 0.7031; εNd = +5.7 to +7.1; 187Os/188Os = 0.1481 to 0.1750; 206Pb/204Pb = 19.1 to 19.7; Pd/Ir = 6 ± 3) versus those from La Palma (δ18Oolivine = 4.87 ± 0.18‰; 87Sr/86Sr = 0.7031 to 0.7032; εNd = +5.0 to +6.4; 187Os/188Os = 0.1421 to 0.1460; 206Pb/204Pb = 19.5 to 20.2; Pd/Ir = 11 ± 4) are revealed from the dataset.Crustal or lithospheric assimilation during magma transport cannot explain variations in isotopic ratios or element abundances of the lavas. Shallow-level crystal-liquid fractionation of olivine, clinopyroxene and associated early-crystallizing minerals (e.g., spinel and HSE-rich phases) controlled compatible element and HSE abundances; there is also evidence for sub-aerial degassing of rhenium. High-MgO lavas are enriched in light rare earth elements, Nb, Ta, U, Th, and depleted in K and Pb, relative to primitive mantle abundance estimates, typical of HIMU-type oceanic island basalts. Trace element abundances and ratios are consistent with low degrees (2-6%) of partial melting of an enriched mantle source, commencing in the garnet stability field (?110 km). Western Canary Island lavas were sulphur undersaturated with estimated parental melt HSE abundances (in ppb) of 0.07 ± 0.05 Os, 0.17 ± 0.16 Ir, 0.34 ± 0.32 Ru, 2.6 ± 2.5 Pt, 1.4 ± 1.2 Pd, 0.39 ± 0.30 Re. These estimates indicate that Canary Island alkali basalts have lower Os, Ir and Ru, but similar Pt, Pd and Re contents to Hawai’ian tholeiites.The HIMU affinities of the lavas, in conjunction with the low δ18Oolivine and high 206Pb/204Pb for La Palma, and elevated 187Os/188Os for El Hierro implies melting of different proportions of recycled oceanic crust and lithosphere. Our preferred model to explain isotopic differences between the islands is generation from peridotitic mantle metasomatised by <10% pyroxenite/eclogite made from variable portions of similar aged recycled oceanic crust and lithosphere. The correspondence of radiogenic 206Pb/204Pb, 187Os/188Os, elevated Re/Os and Pt/Os, and low-δ18O in western Canary Island lavas provides powerful support for recycled oceanic crust and lithosphere to generate the spectrum of HIMU-type ocean island basalt signatures. Persistence of geochemical heterogeneities throughout the stratigraphies of El Hierro and La Palma demonstrate long-term preservation of these recycled components in their mantle sources over relatively short-length scales (∼50 km).  相似文献   

20.
Rare felsic volcanic rocks of dacitic to rhyolitic composition occur in the central part of the Jack Hills metasedimentary belt in the Narryer Terrane of Western Australia, interleaved with clastic sedimentary rocks and amphibolite. Representative samples of the four identified felsic volcanic units reveal a similar complex pattern of zircon age distribution, with all samples containing zircon populations at ∼3.3–3.4, ∼3.0–3.1, ∼2.6 and ∼1.8–1.9 Ga. The ∼3.3–3.4 Ga zircons show well-developed oscillatory zoning in cathodoluminescence (CL) images and are interpreted as inherited igneous zircon derived from granitic precursors, similar to the ∼3.3 Ga trondhjemitic granitoids currently exposed along the northern and southern margins of the belt. The ∼3.0–3.1 Ga zircons also reveal well-developed oscillatory zoning in CL and are most likely derived from granitoid and/or volcanic rocks of this age, as recorded in the Murchison domain to the south and possibly also present in the Narryer Terrane. The ∼2.6 Ga population matches the age of nearby late Archean granitoids intruding the Jack Hills belt and their oscillatory zoning and U–Th chemistry is consistent with their origin from such a source. The youngest discrete group of zircon grains, with ages ranging from ∼1970 to ∼1775 Ma, show strong oscillatory zoning and average Th/U ratios of 0.76, features consistent with an igneous origin. These younger zircons are therefore interpreted as defining the age of crystallisation of the volcanic rocks. These results establish that the Jack Hills metasedimentary belt contains significant post-Archean components. Taken together with similar results obtained from zircon occurring as detrital grains in clastic sedimentary rocks at Jack Hills, these results overturn the generally-accepted view that the belt is entirely Archean in age and that sedimentation was completed around 3.0 Ga ago. Instead, there is a distinct possibility that much of the material currently exposed in the Jack Hills belt formed in the Proterozoic. A further implication of this study is that the metamorphism affecting these rocks also occurred in the Proterozoic and consequently the rocks should not be considered as forming an Archean greenstone or metasedimentary belt. The paucity of zircons >4 Ga in the known Proterozoic sedimentary rocks and their total absence in the felsic volcanic rocks suggests that such ancient source rocks were no longer present in the area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号