首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant litter decomposition plays a fundamental role in carbon and nitrogen cycles, provides key nutrients to the soil environment and represents a potentially large positive feedback to atmospheric CO2. However, the full details of decomposition pathways and products are unknown. Here we present the first application of HR-MAS NMR spectroscopy on 13C and 15N labeled plant materials, and apply this approach in a preliminary study to monitor the environmental degradation of the pine and wheatgrass residues over time. In HR-MAS, is it possible to acquire very high resolution NMR data of plant biomass, and apply the vast array of multidimensional experiments available in conventional solution-state NMR. High levels of isotopic enrichment combined with HR-MAS significantly enhance the detection limits, and provide a wealth of information that is unattainable by any other method. Diffusion edited HR-MAS NMR data reveal the rapid loss of carbohydrate structures, while two-dimensional (2-D) HR-MAS NMR spectra demonstrate the relatively fast loss of both hydrolysable and condensed tannin structures from all plant tissues studied. Aromatic (partially lignin) and aliphatic components (waxes, cuticles) tend to persist, along with a small fraction of carbohydrate, and become highly functionalized over time. While one-dimensional (1-D)13C HR-MAS NMR spectra of fresh plant tissue reflect compositional differences between pine and grass, these differences become negligible after decomposition suggesting that recalcitrant carbon may be similar despite the plant source. Two-dimensional 1H-15N HR-MAS NMR analysis of the pine residue suggests that nitrogen from specific peptides is either selectively preserved or used for the synthesis of what appears to be novel structures. The amount of relevant data generated from plant components in situ using HR-MAS NMR is highly encouraging, and demonstrates that complete assignment will yield unprecedented structural knowledge of plant cell components, and provide a powerful tool with which to assess carbon sequestration and transformation in the environment.  相似文献   

2.
To obtain information on the contribution of aromatic fragments to the chemical structure of humic substances, we carried out a study on the [1H]NMR and [13C]NMR spectra of humic and fulvic acids and their oxidative degradation products extracted from an Andosol soil.[1H]NMR spectra of all organic fractions present considerable adsorption between 7.4 and 8.8 ppm, due to the presence of aromatic protons.The percentages of aromatic protons in respect to the total amount of protons are as follows: FA 20%, HA 19%, degraded FA < 12%, degraded HA 14%. The values indicate that the contribution of aromatic structures to the humic substances is significant, also considering that they are highly substituted.The degraded fractions contain smaller amounts of aromatic protons, because degradation causes the opening of the aromatic rings. Thus results obtained from the degradation do not seem to be reliable for defining the importance of aromatic structures in humic substances.Also the [13C]NMR spectra show signals in the aromatic region which derive from unsubstituted carbon atoms, while signals originating from tertiary carbon atoms merge with the noise. We believe that, at present, [1H]NMR spectroscopy is more suited for studying the role played by aromatic compounds in organic soil fractions.  相似文献   

3.
Soil organic matter (SOM) is important for soil fertility and for the global C cycle. Previous studies have shown that during SOM formation no new compound classes are formed and that it consists basically of plant- and microorganism-derived materials. However, little data on the contribution from microbial sources are available. Therefore, we investigated previously in a model study the fate of C from 13C-labelled Gram-negative bacteria in soil (Kindler, R., Miltner, A. Richnow, H.H., Kästner, M., 2006. Fate of gram negative bacterial biomass in soil – mineralization and contribution to SOM. Soil Biology and Biochemistry 38, 2860–2870) and showed that 44% of the bulk 13C remained in the soil. Here we present the corresponding data on the fate of amino acids hydrolysed from proteins, which are the most abundant components of microbial biomass. After 224 days incubation, the label in the total amino acids in the soil amended with 13C-labelled cells decreased only to >95%. The total amino acids therefore clearly showed a lower turnover than the bulk 13C and a surprisingly stable concentration. Proteins therefore have to be considered as being stabilised in soil in dead, non-extractable biomass or cell fragments by known general stabilisation mechanisms. The label in the amino acids in a fraction highly enriched in living microbial biomass decreased to a greater extent, i.e. to 25% of the initially added amount. The amino acids removed from this fraction were redistributed via the microbial food web to non-living SOM. All amino acids in the microbial biomass were degraded at similar rates without a change in isotopic signature. The nuclear magnetic resonance (NMR) spectra of the soils were very similar and indicate that the residues of the degraded microbial biomass were very similar to those of the SOM and are a significant source for the formation of the SOM.  相似文献   

4.
A peat deposit from the East European Russian Arctic, spanning nearly 10 000 years, was investigated to study soil organic matter degradation using analyses of bulk elemental and stable isotopic compositions and plant macrofossil remains. The peat accumulated initially in a wet fen that was transformed into a peat plateau bog following aggradation of permafrost in the late Holocene (~2500 cal a BP). Total organic carbon and total nitrogen (N) concentrations are higher in the fen peat than in the moss‐dominated bog peat layers. Layers in the sequence that have lower concentrations of total hydrogen (H) are associated with degraded vascular plant residues. C/N and H/C atomic ratios indicate better preservation of organic matter in peat material dominated by bryophytes as opposed to vascular plants. The presence of permafrost in the peat plateau stage and water‐saturated conditions at the bottom of the fen stage appear to lead to better preservation of organic plant material. δ15N values suggest N isotopic fractionation was driven primarily by microbial decomposition whereas differences in δ13C values appear to reflect mainly changes in plant assemblages. Positive shifts in both δ15N and δ13C values coincide with a local change to drier conditions as a result of the onset of permafrost and frost heave of the peat surface. This pattern suggests that permafrost aggradation not only resulted in changes in vegetation but also aerated the underlying fen peat, which enhanced microbial denitrification, causing the observed 15N‐enrichment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
为了阐明高寒草甸退化过程中植物群落物种多样性、生产力与土壤特性的关系, 在青藏高原东缘的玛曲县沿着高寒草甸退化梯度选取了轻度退化草甸、中度退化草甸、重度退化草甸和沙化草甸, 测定了高寒草甸退化过程中植物群落物种多样性、生产力与土壤理化性状. 结果表明: 从轻度退化到中度、重度和沙化草甸, 植被地下生物量分别降低了36%、48%和91%, 总生物量分别降低了34%、47%和91%, 土壤有机碳分别下降了18%、81%和97%, 全N分别下降了25%、82%和95%, 全P含量分别下降了14%、33%和41%. 随着高寒草甸的退化, 植被群落的生物多样性和地上生物量呈先稳定后降低的趋势, 土壤砂粒含量、pH值和全K含量呈增加趋势, 黏粉粒呈降低趋势, 速效N、速效P和速效K呈先增加后降低的趋势. 相关分析表明, 群落物种多样性和生产力与土壤有机碳、全N、全P、速效N、速效P、速效K、黏粒含量、粉粒含量、水分含量均呈显著正相关(P<0.01), 而与土壤砂粒、全K和pH值均呈显著负相关(P<0.05). 因此, 高寒草甸退化过程中, 土壤质地、养分和水分等的复杂变化及其相互关系共同决定着高寒草甸群落物种多样性和生产力的变化. 同时, 植被生产力和土壤碳、氮的降低产生明显的正反馈效应, 导致在重度退化阶段和沙化阶段, 植被生产力和土壤碳氮的急剧下降.  相似文献   

6.
森林生态系统的土壤微生物群落组成和活性,是影响生物地球化学循环、有机质代谢和土壤质量的关键因素.磷脂脂肪酸(PLFA)是一类可有效表征活体微生物群落结构的生物标志物,而其单体稳定碳同位素(δ13C)水平对土壤微生物植物碳代谢具有独特的指示作用.本次研究以土壤PLFA为对象,分析了我国位处纬度梯度带上(24°N~47°N...  相似文献   

7.
During the past 50 years, the amount of agricultural fertilizer used in Northern China increased from about 7.5 kg ha?1 in the 1950s to approximately 348 kg ha?1 in the 1990s. Given that little is known about the effects of nitrogen fertilization on soil labile carbon fraction in Northern China, this paper evaluated such effects in terms of microbial biomass and dissolved organic carbon in the Sanjiang Plain located in Northeast China. Soils with different cultivation time and undisturbed marsh with Deyeuxia angustifolia were selected to study the effects of nitrogen fertilization on the soil labile organic fractions microbial C (biomass C, microbial quotient, and basal respiration) and to estimate the contributions of nitrogen input on the dynamics of soil labile carbon. Continuous nitrogen application decreased total organic and dissolved organic carbon concentrations significantly, leading to the lack of carbon source for microbes. Therefore, continuous nitrogen fertilizer application induced negative effects on measured soil microbiological properties. However, a moderate nitrogen application rate (60 kg N ha?1) stimulated soil microbial activity in the short term (about 2 months), whereas a high nitrogen application rate (150 kg N ha?1) inhibited measured soil microbiological properties in the same period.  相似文献   

8.
A study was made to determine the influence of pasture degradation on soil quality indicators that included physical, chemical, biological and micromorphological attributes, along the hillslope positions in Chaharmahal and Bakhtiari province, western Iran. Soil samples from different slope positions were collected from 0 to 30 cm depth for physical and chemical properties and from 0 to 15 cm depth for biological properties at two adjacent sites in the two ecosystems: natural pasture and cultivated land. Soil quality indicators including bulk density, mean weight diameter, soil organic carbon (SOC), particulate organic material (POM) in aggregate fractions, total nitrogen, available potassium, available phosphorus, cation exchange capacity, soil microbial respiration (SMR) and microbial biomass C and N were determined. The results showed that SOC decreased cultivation from 1.09 to 0.77 % following pasture degradation. The POM decreased by about 19.35 % in cultivated soils when compared to natural pasture; also, SMR and microbial biomass C and N decreased significantly following pasture degradation. Furthermore, aggregate stability and pore spaces decreased, and bulk density increased in the cultivated soils. Overall, our results showed that long-term cultivation following pasture degradation led to a decline in soil quality in all selected slope positions at the site studied in the semiarid region.  相似文献   

9.
Soil organic matter (SOM) is one of the earth’s largest reservoirs of actively cycled carbon and plays a critical role in various ecosystem functions. In this study, mineral soils with the same parent material and of similar approximate age were sampled from the same climatic region in Halsey, Nebraska to determine the relationship between overlying vegetation inputs to SOM composition using complementary molecular level methods (biomarker analyses and solid state 13C nuclear magnetic resonance (NMR) spectroscopy). Soil samples were collected from a native prairie and cedar and pine sites planted on the native prairie. Free and bound lipids isolated from the pine soil were more enriched in aliphatic and cutin-derived compounds than the other two soils. Cinnamyl type lignin-derived phenols were more abundant in the grassland soil than in the pine and cedar soils. Acid to aldehyde ratios (Ad/Al) for vanillyl and syringyl type phenols were higher for the pine soil indicating a more advanced stage of lignin oxidation (also observed by 13C NMR) in the soil that has also been reported to have accelerated carbon loss. In agreement with the more abundant aliphatic lipids and cutin-derived compounds, solid state 13C NMR results also indicated that the SOM of the pine soil may have received more aliphatic carbon inputs or may have lost other components during enhanced decomposition. The observed relationship between vegetation and SOM composition may have important implications for global carbon cycling as some structures (e.g. aliphatics) are hypothesized to be more recalcitrant compared to others and their accumulation in soils may enhance below ground carbon storage.  相似文献   

10.
The transformation and mobility of charcoal in a fire-impacted watershed   总被引:3,自引:0,他引:3  
The incomplete combustion of fossil fuels and biomass has resulted in the global-scale distribution and accumulation of black carbon (BC) in the environment. Recently, the molecular identity of BC in the dissolved phase has been distinguished from that of natural organic matter. However, many of the processes that control BC cycling remain unidentified. We investigate changes in soil charcoal particle morphology and chemical composition using surface area analysis, scanning electron microscopy, energy dispersive X-ray spectroscopy, chemical oxidation, and 13C NMR spectroscopy. A comparison of soil charcoals differing in age by 100 years shows that aged charcoal has lower specific surface areas, higher BC/OC ratios, direct associations with soil minerals and microbial biomass, and a greater abundance of non-aromatic carbon. The water-soluble portion of soil charcoal and dissolved organic matter (DOM) from the watershed were also characterized by electrospray ionization mass spectrometry. Aqueous charcoal extracts are comprised mostly of condensed aromatic ring structures (CARS) which are also present in soil pore, river, and ground water samples. We present indirect evidence and a chemical rationale for a microbial BC dissolution mechanism. Furthermore, the speciation of CARS in the soil solution versus river and ground water provides molecular evidence of reactivity in the dissolved phase. The dissolution and export of soil BC are presently unmeasured fluxes with important implications for the global carbon cycle.  相似文献   

11.
为了研究马衔山多年冻土区和非多年冻土区土壤微生物碳氮、土壤酶活性的差异,选取多年冻土区、季节冻土区和交界区为对象,分析了0~30 cm土层微生物碳氮和转化酶、脲酶、中性磷酸酶、淀粉酶、过氧化氢酶、多酚氧化酶酶活性不同季节的变化特征。结果表明:全氮、总有机碳、微生物量碳氮与多数土壤酶之间呈显著相关关系。在不同区域,土壤微生物碳氮均在0~10 cm含量最高,10~20 cm次之,20~30 cm最低。土壤微生物碳氮在生长季表现为含量逐渐增加,但是多年冻土区与季节冻土区差异不大。土壤酶活性在深度方面表现与微生物碳氮含量变化一致。土壤酶并无的季节变化规律。在多年冻土区,转化酶、多酚氧化酶和磷酸酶活性明显高于非多年冻土区。本研究表明,尽管多年冻土区的植被和土壤总有机碳明显高于非多年冻土区,其土壤微生物碳氮含量相当,且一些土壤酶活性也相当。说明非多年冻土区土壤的生物地球化学相对强度较大。因此,多年冻土退化后可能会导致生态系统的退化。  相似文献   

12.
The vegetation community succession influences soil nutrient cycling, and this process is mediated by soil microorganisms in the forest ecosystem. A degraded succession series of karst forests were chosen in which vegetation community changed from deciduous broadleaved trees (FO) toward shrubs (SH), and shrubs–grasses (SHG) in the southwest China. Soil organic carbon (SOC), total nitrogen (TN), labile organic carbon (LOC), water extractable organic matter (WEOM), microbial biomass carbon and nitrogen (MBC and MBN), bacterial and fungal diversity, as well as soil enzyme activities were tested. The results showed that SOC, LOC, MBC, MBN, and enzyme activities declined with vegetation succession, with the relatively stronger decrease of microbial biomass and functions, whereas WEOM was higher in SHG than in other systems. In addition, soil bacterial and fungal composition in FO was different from both SH and SHG. Despite positive relationship with SOC, LOC, and TN (p < 0.01), MBC, MBN appeared to be more significantly correlated to LOC than to SOC. It suggested that vegetation conversion resulted in significant changes in carbon fractions and bioavailability, furthermore, caused the change in soil microbial community and function in the forest ecosystem.  相似文献   

13.
外源氮输入对草地土壤微生物特性影响的研究进展   总被引:5,自引:0,他引:5  
大气氮沉降作为全球变化的重要现象之一,沉降量不断增加所带来的一系列生态问题日趋严重.草地作为陆地生态系统的主体类型之一,对大气氮沉降的响应不仅体现在地上植被生长和群落动态的变化,其地下各种生态过程的变化更加值得关注.此外,世界范围内的草地生态系统大部分面临不同程度的退化,草地施氮是寻求草地恢复的有益尝试.综述了大气氮沉降和人为施氮引起的外源氮输入变化对草地生态系统土壤微生物特性(微生物数量、微生物量、微生物呼吸、微生物多样性和土壤酶)影响的研究进展,研究表明:①施氮有利于细菌数量的增加,但对真菌数量的影响甚微或是降低真菌的数量.②长期施氮降低土壤微生物量,但短期施氮的影响效应具有不确定性.③施氮对草地土壤微生物呼吸的影响效应取决于微生物可获得的碳源的量.输入地下的植物碳量增加促进土壤微生物呼吸,输入地下的有机质减少则抑制微生物呼吸.④施氮改变了土壤微生物的群落结构组成和底物利用方式,对土壤微生物多样性的影响表现出负效应.⑤施氮提高了β-葡糖苷酶、磷酸酶和大部分糖苷酶的活性,降低了脲酶的活性.迄今为止,施氮对草地土壤微生物特性的影响效应仍存在很大的不确定性,今后的研究中应开展氮输入对草地生态系统影响的长期试验研究、加强对土壤微生物呼吸的影响研究以及合理确定我国草地生态系统可持续发展的氮饱和阈值,并进一步完善和发展测量土壤微生物多样性的新方法.  相似文献   

14.
Livestock grazing is one of the main causes for the change of soil organic carbon (SOC) and total nitrogen (TN) in the arid and semi-arid parts in northern China. This paper examined the SOC, TN, and their components of the local steppe and desert steppe, considering continuous grazing and 4-year livestock exclusion, respectively. In steppe where livestock is excluded, both SOC and TN in the topsoil (0–0.20 m) are found to remain unchanged; however, significant growths are found in microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), particulate organic carbon (POC), and particulate organic nitrogen (PON). On the contrary, both POC and PON progressively decrease at the continuous grazing sites, attributed to the reduction of the mass proportions of soil particulate fraction in the top 0.10 m soil. In the desert steppe where grazing is excluded, the SOC, TN, and their components of the topsoil increase. However, at the continuous grazing sites, POC and PON in the 0.10 m topsoil are reduced, caused by the decrease of C and N content in soil particulate fraction. Besides, microbial quotients were lower in the continuous grazing sites in the two grasslands. It is also found that both MBC and POC are more sensitive to human-induced activities than SOC, and thus could serve as earlier indicators of the soil-fertility variation caused by short-period grazing management.  相似文献   

15.
The carbon and nitrogen isotope composition of organic matter has been widely used to trace biogeochemical processes in marine and lacustrine environments. In order to reconstruct past environmental changes from sedimentary organic matter, it is crucial to consider potential alteration of the primary isotopic signal by bacterial degradation in the water column and during early diagenesis in the sediments.In a series of oxic and anoxic incubation experiments, we examined the fate of organic matter and the alteration of its carbon and nitrogen isotopic composition during microbial degradation. The decomposition rates determined with a double-exponential decay model show that the more reactive fraction of organic matter degrades at similar rates under oxic and anoxic conditions. However, under oxic conditions the proportion of organic matter resistent to degradation is much lower than under anoxic conditions. Within three months of incubation the δ13C of bulk organic matter decreased by 1.6‰ with respect to the initial value. The depletion can be attributed to the selective preservation of 13C-depleted organic compounds. During anoxic decay, the δ15N values continuously decreased to about 3‰ below the initial value. The decrease probably results from bacterial growth adding 15N-depleted biomass to the residual material. In the oxic experiment, δ15N values increased by more then 3‰ before decreasing to a value indistinguishable from the initial isotopic composition. The dissimilarity between oxic and anoxic conditions may be attributed to differences in the type, timing and degree of microbial activity and preferential degradation. In agreement with the anoxic incubation experiments, sediments from eutrophic Lake Lugano are, on average, depleted in 13C (−1.5‰) and 15N (−1.2‰) with respect to sinking particulate organic matter collected during a long-term sediment trap study.  相似文献   

16.
岩溶石山地区土壤退化与恢复的成因和机理一直是近年来土壤学和生态学研究的热点。以贵州西南部贞丰—关岭岩溶石山区为对象,选择了区内退化地、农用地、恢复地等生态样块以及与未退化地为对照,采集了其中的表层和亚表层土壤,分别进行了土壤的养分库量、微生物活性与功能和土壤酶活性等化学分析。研究表明土壤养分库是土壤中微生物活性基础,微生物量碳随土壤养分库容的退化或恢复而相应变化,退化岩溶地植被恢复3~6年后,主要养分总库容得到明显恢复(恢复程度55%~65%),因而带动了微生物量碳的恢复(平均恢复程度60%以上),但养分的活性(有效磷)、微生物的功能(呼吸熵及土壤脲酶和磷酸酶活性)并没有得到相应程度的恢复(平均恢复程度仅在25%~40%)。这些结果提示,限制性养分活性和微生物功能的恢复是植被恢复下生态系统健康水平的重要指示。因此,在分析岩溶土壤和生态系统退化过程的本质以及评价生态恢复的效应时,不仅应将微生物量碳和总养分库指标作为岩溶土壤退化恢复的指标,更应将微生物区系的质量和功能指标纳入关键评价内容。   相似文献   

17.
In this paper we present an elemental and isotopic investigation of carbon and nitrogen in the soil-plant system. Plants grown in an unamended soil were compared to plants grown in a soil amended with natural and NH4+-enriched zeolitites. The aim was to verify that zeolitites at natural state increase the chemical fertilization efficiency and the nitrogen transfer from NH4+-enriched zeolitites to plants. Results showed that plants grown on plots amended with zeolitites have generally a δ15N approaching that of chemical fertilizers, suggesting an enhanced nitrogen uptake from this specific N source with respect to the unamended plot. The δ15N of plants grown on NH4+-enriched zeolitites was strongly influenced by pig-slurry δ15N (employed for the enrichment process), confirming the nitrogen transfer from zeolitites to plants. The different agricultural practices are also reflected in the plant physiology as recorded by the carbon discrimination factor, which generally increases in plots amended with natural zeolitites, indicating better water/nutrient conditions.  相似文献   

18.
Increased nitrogen (N) input to ecosystems could alter soil organic carbon (C) dynamics, but the effect still remains uncertain. To better understand the effect of N addition on soil organic C in wetland ecosystems, a field experiment was conducted in a seasonally inundated freshwater marsh, the Sanjiang Plain, Northeast China. In this study, litter production, soil total organic C (TOC) concentration, microbial biomass C (MBC), organic C mineralization, metabolic quotient (qCO2) and mineralization quotient (qmC) in 0–15 cm depth were investigated after four consecutive years of N addition at four rates (CK, 0 g N m?2 year?1; low, 6 g N m?2 year?1; moderate, 12 g N m?2 year?1; high, 24 g N m?2 year?1). Four-year N addition increased litter production, and decreased soil organic C mineralization. In addition, soil TOC concentration and MBC generally increased at low and moderate N addition levels, but declined at high N addition level, whereas soil qCO2 and qmC showed a reverse trend. These results suggest that short-term N addition alters soil organic C dynamics in seasonally inundated freshwater marshes of Northeast China, and the effects vary with N fertilization rates.  相似文献   

19.
Low molecular weight organic acids (LMWOA) are produced in soil by various biological and chemical processes and can exhibit substantial metal complexing and dissolution capacity. The reactivity of these compounds in the soil environment is dependent on their non-complexed concentration in the soil solution. Adsorption of LMWOA has been shown to reduce their concentration in the soil solution; however, little is known about the reduction of LMWOA concentration due to microbial degradation. To examine the extent of microbial degradation in reducing LMWOA concentration in the soil solution, three-biometer methods were used: a soil biometer flask, an in-situ field biometer and a soil column biometer. Four soil horizons were used with each method. To each soil sample, 2.0×10−6 moles of organic acid containing 3.7×104 Bq total activity was applied. The 14C-radiolabeled aliphatic and aromatic acids studied included oxalic, malonic, succinic, and phthalic acid. Evolved 14CO2 was trapped in 0.5 mol l−1 NaOH and measured using liquid scintillation counting. Labeled acids degraded rapidly within the first 5 days for the Ap1, Ap2, and BA horizons, with a generally slower rate of 14CO2 evolution being observed for the Bt1 horizon. The % degradation of labeled acid was substantially greater for the soil biometer flask method, compared to the field and soil column biometer methods. The average % degradation for the soil biometer flask was 67% for all soil horizons and organic acids, compared to 14% for the field biometer and 13% for the soil column biometer. Results indicate that substantial microbial degradation of organic acids can occur within a relatively short time period and the biometer method selected can influence the % acid degraded. Based on primary results, the soil column biometer method better approximated microbial degradation under field conditions, as evaluated using the field biometer.  相似文献   

20.
Soil organic nitrogen was quantified by solid-state 15N cross-polarization nuclear magnetic resonance spectroscopy (NMR) during a 14-month laboratory incubation of a sandy loam soil amended with 15N-clover. In whole soil and particle-size fractions, the clover-derived N was always 85–90% amide, 5–10% guanidinium N of arginine, and 5% amino. Quantitativeness of these results was suggested by (1) analysis of a standard containing a complex mixture of organic 15N and (2) correlation of spectral intensities with 15N concentrations. Based on the unchanging proteinaceous NMR signature of clover-derived N throughout the incubation, differences in the mineralization/immobilization kinetics of clover-N among the different particle-size fractions appeared not to be linked to organic functional group. Kinetic analysis of the mineralization of 15N, with correction of rate constants for field temperatures, suggested that the proteinanceous 15N in the clay and fine silt fractions observed here had a mean residence time of 7 years in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号