首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pyrite (FeS2) and iron monosulfide (FeS) play a central role in the sulfur and iron cycles of marine sediments. They may be buried in the sediment or oxidized by O2 after transport by bioturbation to the sediment surface. FeS2 and FeS may also be oxidized within the anoxic sediment in which NO3, Fe(III) oxides, or MnO2 are available as potential electron acceptors. In chemical experiments, FeS2 and FeS were oxidized by MnO2 but not with NO3 or amorphous Fe(III) oxide (Schippers and Jørgensen, 2001). Here we also show that in experiments with anoxic sediment slurries, a dissolution of tracer-marked 55FeS2 occurred with MnO2 but not with NO3 or amorphous Fe(III) oxide as electron acceptor. To study a thermodynamically possible anaerobic microbial FeS2 and FeS oxidation with NO3 or amorphous Fe(III) oxide as electron acceptor, more than 300 assays were inoculated with material from several marine sediments and incubated at different temperatures for > 1 yr. Bacteria could not be enriched with FeS2 as substrate or with FeS and amorphous Fe(III) oxide. With FeS and NO3, 14 enrichments were obtained. One of these enrichments was further cultivated anaerobically with Fe2+ and S0 as substrates and NO3 as electron acceptor, in the presence of 55FeS2, to test for co-oxidation of FeS2, but an anaerobic microbial dissolution of 55FeS2 could not been detected. FeS2 and FeS were not oxidized by amorphous Fe(III) oxide in the presence of Fe-complexing organic compounds in a carbonate-buffered solution at pH 8. Despite many different experiments, an anaerobic microbial dissolution of FeS2 could not be detected; thus, we conclude that this process does not have a significant role in marine sediments. FeS can be oxidized microbially with NO3 as electron acceptor. O2 and MnO2, but not NO3 or amorphous Fe(III) oxide, are chemical oxidants for both FeS2 and FeS.  相似文献   

2.
The respiratory reduction of nitrate (denitrification) is acknowledged as the most important process that converts biologically available nitrogen to gaseous dinitrogen (N2) in marine ecosystems. Recent findings, however, indicate that anaerobic ammonium oxidation by nitrite (anammox) may be an important pathway for N2 formation and N removal in coastal marine sediments and in anoxic water columns of the oceans. In the present study, we explored this novel mechanism during N mineralization by 15N amendments (single and coupled additions of 15NH4+, 14NO3 and 15NO3) to surface sediments with a wide range of characteristics and overall reactivity. Patterns of 29/30N2 production in the pore water during closed sediment incubations demonstrated anammox at all 7 of the investigated sites. Stoichiometric calculations revealed that 4% to 79% of total N2 production was due to this novel route. The relative importance of anammox for N2 release was inversely correlated with remineralized solute production, benthic O2 consumption, and surface sediment Chl a. The observed correlations indicate competition between reductants for pore water nitrite during early diagenesis and that additional factors (e.g. availability of Mn-oxides), superimposed on overall patterns of diagenetic activity, are important for determining absolute and relative rates of anammox in coastal marine sediments.  相似文献   

3.
A steady-state reaction-transport model is applied to sediments retrieved by gravity core from two stations (S10 and S13) in the Skagerrak to determine the main kinetic and thermodynamic controls on anaerobic oxidation of methane (AOM). The model considers an extended biomass-implicit reaction network for organic carbon degradation, which includes extracellular hydrolysis of macromolecular organic matter, fermentation, sulfate reduction, methanogenesis, AOM, acetogenesis and acetotrophy. Catabolic reaction rates are determined using a modified Monod rate expression that explicitly accounts for limitation by the in situ catabolic energy yields. The fraction of total sulfate reduction due to AOM in the sulfate-methane transition zone (SMTZ) at each site is calculated. The model provides an explanation for the methane tailing phenomenon which is observed here and in other marine sediments, whereby methane diffuses up from the SMTZ to the top of the core without being consumed. The tailing is due to bioenergetic limitation of AOM in the sulfate reduction zone, because the methane concentration is too low to engender favorable thermodynamic drive. AOM is also bioenergetically inhibited below the SMTZ at both sites because of high hydrogen concentrations (∼3-6 nM). The model results imply there is no straightforward relationship between pore water concentrations and the minimum catabolic energy needed to support life because of the highly coupled nature of the reaction network. Best model fits are obtained with a minimum energy for AOM of ∼11 kJ mol−1, which is within the range reported in the literature for anaerobic processes.  相似文献   

4.
Marine sediments and ferromanganese nodules from the Pacific Ocean have been analyzed for the OMn ratio of solid manganese. We tested six chemical methods and concluded that the iodometric and oxalate methods were equivalent and were the best choice in terms of accuracy and precision on natural samples. We choose the iodometric method for most of our analyses because the oxalate procedure is a method of differences.The ferromanganese nodules that we analyzed were all from MANOP site H and had MnFe ratios that ranged from 5.6 to 70. These nodules were invariably highly oxidized with OMn values ranging from 1.90 to 2.00. Our most precise analyses suggest that less than 1% of the total manganese is present as Mn(II).We also analyzed red clay and hemipelagic sediments from the eastern tropical Pacific (Baja borderland and MANOP site H) and carbonate ooze samples from the equatorial Pacific. These sediments are also highly oxidized (OMn= 1.90 to 2.00) except when Mn(II) appears in the interstitial water. As dissolved Mn(II) increases the value of the OMn ratio in the solid phase decreases. The OMn ratio decreases to values as low as 1.40. This decrease appears to be due to a decrease in oxidized manganese by reduction, however, an increase in reduced manganese in the solid sediments by adsorption or MnCO3 formation can not be ruled out in all cases.  相似文献   

5.
海底沉积物中不同形式烃类气体的地球化学意义   总被引:6,自引:0,他引:6  
付少英 《地学前缘》2005,12(3):253-257
顶空气法和酸解烃法将东沙群岛海域海底浅表层沉积物中不同形式的烃类气体释放出来,通过分析两类气体在沉积物中的含量及其甲烷碳同位素,发现两类气体的成因和来源不同。笔者认为,相对而言,吸附气(包裹气)反映的是一种更为早期的信息,而游离气(溶解气)则更具有“现代性”。笔者进一步认为,两类气体的不同形成过程,对于天然气水合物调查具有不同的意义,其中游离气(溶解气)具有直接的指示意义,而吸附气(包裹气)可能指示成岩时沉积物中的空间信息。  相似文献   

6.
Hydrocarbon seepage is a surface expression where fluids mixed with sediments and hydrocarbons are expelled through fracture systems that potentially tap into gas–petroleum reservoirs. Hydrocarbons released from most seeps appear to be thermogenic on the basis of their relative abundance and isotopic composition. The potential for subsurface microbial processes modifying these geochemical fingerprints remains poorly constrained. In this study, microcosm incubations were conducted on mud slurries supplied with/without various methanogenic precursors at temperatures ranging from ambient conditions to 90 °C, in order to assess microbial CH4 formation in the subsurface beneath hydrocarbon seeps. The analyses indicated that CH4 production was positive at ?80 °C, regardless of whether or not or which precursors were added. However, the pattern of CH4 production rates varied with the precursor and temperature. In general, the optimum CH4 production from H2/CO2 and formate occurred over a wide range of temperatures (?40 °C), whereas that from acetate, methanol and methylamine was restricted to relatively lower temperatures (40–50 °C). The CH4 recoveries, together with the C isotopic compositions of CH4, further indicated that the quantities of CH4 produced could not completely account for the quantities of precursor consumed, suggesting that a complex metabolic network was involved in the transformation of the added precursor and organic C inherited from inoculated sediments. Microbial CH4 was estimated to constitute 7–61% of the CH4 observed using experimentally-derived apparent isotope fractionations as the end member compositions. This illustrates the possibility that microbial CH4 produced at shallower depths could quantitatively and isotopically alter deeply-sourced thermogenic CH4 in hydrocarbon seep environments.  相似文献   

7.
The organic rich sediments of the Skagerrak contain high quantities of shallow gas of mostly biogenic origin that is transported to the sediment surface by diffusion. The sulfate methane transition zone (SMTZ), where anaerobic oxidation of methane (AOM) and sulfate reduction occur, functions as a methane barrier for this upward diffusing methane.To investigate the regulation of AOM and sulfate reduction rates (SRR) and the controls on the efficiency of methane consumption, pore water concentrations, and microbial rates of AOM, sulfate reduction and methanogenesis were determined in three gravity cores collected along the slope of the Norwegian Trench in the Skagerrak. SRR occurred in two distinct peaks, at the sediment surface and the SMTZ, the latter often exceeding the peak AOM rates that occurred at the bottom of the SMTZ. Highest rates of both AOM and SRR were observed in a core from a pockmark, where advective methane transport occurred, generating high methane and sulfate fluxes. But even at this site with a shallow SMTZ, the entire flux of methane was oxidized below the sediment surface. AOM, SRR and methanogenesis seem to be closely associated and strongly regulated by sulfate concentrations, which were, in turn, regulated by the methane flux. Rate measurements of SRR, AOM and methanogenesis revealed a tight coupling of these processes. Bicarbonate-based methanogenesis occurred at moderate sulfate concentrations (>5 mM) above the AOM zone but seemed to be inhibited in the depth where AOM occurred. The unbalanced stoichiometry of AOM and SRR in the SMTZ was more pronounced in rate measurements than in methane and sulfate fluxes, and seemed more likely be related to enhanced SRR in this zone than an underestimation of methane fluxes.  相似文献   

8.
The free energy yield of microbial respiration reactions in anaerobic marine sediments must be sufficient to be conserved as biologically usable energy in the form of ATP. Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SRR) has a very low standard free energy yield of ΔG° = −33 kJ mol−1, but the in situ energy yield strongly depends on the concentrations of substrates and products in the pore water of the sediment. In this work ΔG for the AOM-SRR process was calculated from the pore water concentrations of methane, sulfate, sulfide, and dissolved inorganic carbon (DIC) in sediment cores from different sites of the European continental margin in order to determine the influence of thermodynamic regulation on the activity and distribution of microorganisms mediating AOM-SRR. In the zone of methane and sulfate coexistence, the methane-sulfate transition zone (SMTZ), the energy yield was rarely less than −20 kJ mol−1 and was mostly rather constant throughout this zone. The kinetic drive was highest at the lower part of the SMTZ, matching the occurrence of maximum AOM rates. The results show that the location of maximum AOM rates is determined by a combination of thermodynamic and kinetic drive, whereas the rate activity mainly depends on kinetic regulation.  相似文献   

9.
I. Leifer  A. G. Judd 《地学学报》2002,14(6):417-424
ABSTRACT Bubble plumes from hydrocarbon seeps drive upwelling flows in the water column that can disappear if the bubbles dissolve. This may lead to formation of a layer enriched in gases and substances transported by the bubbles, a process we term bubble deposition. A review of observed dissolved methane layers in the North Sea showed their existence in an area of active seeping pockmarks at a height of ∼ 20–30 m above the sea bed, well below the thermocline. To test the bubble deposition hypothesis, rising seep bubbles were simulated numerically. The model predicted a dissolution depth consistent with the observed methane layer for ∼ 2700-µm-radius bubbles. The model also predicted that bubbles smaller than 3400 µm dissolved subsurface, decreasing to 2000 µm for a 10-cm s−1 upwelling flow. We speculate that this layer may be attractive to marine organisms. Although North Sea seeps are not oily, this mechanism also applies to oily bubbles from hydrocarbon seeps or a leaking undersea gas/oil pipeline. Thus bubble deposition can create a subsurface oil layer which rises far slower than either the bubble stream or droplets entrained in the stream.  相似文献   

10.
11.
12.
Sedimentary records of redox-sensitive trace elements hold significant potential as indicators of paleoceanographic environmental conditions. Records of Re can reveal the intensity of past reducing conditions in sediments at the time of deposition, whereas records of Ag may record the magnitude of past diatom fluxes to the seafloor. Confidence in paleoenvironmental reconstruction from records of either metal, however, requires it to have experienced negligible redistribution since deposition. This study examines diagenetic rearrangements of Re and Ag that occur in response to exposure to bottom-water O2 in environments of low sedimentation rate, including Madeira Abyssal Plain turbidites and eastern Mediterranean basin sapropels. Authigenic Re was remobilized quantitatively by oxidation but poorly retained by the underlying sediments. All records are consistent with previous work demonstrating that only a limited reimmobilization of Re occurs preferentially in Corg-rich, reducing sediments. Silver was also mobilized quantitatively by oxidation, but it was subsequently immobilized more efficiently in all cases as sharp peaks immediately into anoxic conditions below active oxidation fronts, and these peaks remain immobile in anoxic conditions during long-term burial. Comparison of Ag, S, and Se records from various cores suggests that Ag is likely to have been immobilized as a selenide, a mechanism previously proposed for Hg in similar situations (Mercone et al., 1999). Coexisting narrow peaks of Ag and Hg with Se offer a means of assessing whether oxidative burndown has ever occurred at the top of Corg- and sulfide-rich sedimentary units. Although these results suggest that caution must be used when inferring paleoenvironmental information from records of Ag and Re in cores with low sediment accumulation rates (<5 cm ka−1), they should not affect the promise that authigenic Ag and Re records hold for paleoenvironmental reconstruction in sediments with higher accumulation rates and where anoxic conditions have been maintained continuously.  相似文献   

13.
The sterol analysis of six hydrocarbon seep mussels (mytilid II and mytilid Ib) from the Alaminos Canyon in the Gulf of Mexico is reported. The sterol composition of the mussel-symbiotic bacteria complex reflects a preponderant synthesis of 4α-methyl sterols (seep mytilid II), and a predominant biosynthesis of 4-desmethyl sterols with some amounts of 4α-methyl sterols (seep mytilid Ib). This suggests a methane-based symbiotic relationship between the mussels and methanotrophic bacteria. It also suggests that the biosynthesis of sterols in the mussel-bacteria complex is completed to the level of cholest-5-en-3ß-ol (mytilid II) or 5α-cholestan-3ß-ol (mytilid Ib).  相似文献   

14.
Analyses for dissolved oxygen, nitrate and total CO2 in the interstitial water have been combined with solid phase sediment analyses of carbon and nitrogen to calculate the rates of reaction and stoichiometry of decomposing organic matter in central Equatorial Pacific pelagic sediments. The diagenesis is dominated by aerobic respiration and nitrification.Organic carbon and total nitrogen decrease exponentially with depth in both red clay and carbonate ooze sediments. In addition, there is a correlation between surface organic carbon and total nitrogen with distance from the equator. Fixed NH4 is relatively constant with depth and constitutes 12 to 64% of the total nitrogen. The remainder is considered to be organic nitrogen.The CN ratio of the decomposing organic matter was obtained using three approaches. Using the correlations of organic carbon with total nitrogen or organic nitrogen the molar ratios varied from 3.4 to 18.1. The average of all stations was 12.6 using total nitrogen and 13.7 using organic nitrogen. The Redfield ratio is 6.6. Approaches using interstitial water chemistry gave lower ratios. The average value using correlations between dissolved oxygen and nitrate was 8.1. The same approach using total CO2 and nitrate gave an average of 9.1. Due to difficulties in unambiguously interpreting the solid phase data we favor the ratios obtained from the pore water analyses.The rate of organic matter decomposition can be obtained from model calculations using the dissolved oxygen and solid organic carbon data. Most gradients occur in the upper 10 to 20 cm of the sediments. Assuming that bioturbation is more important than sedimentation we have calculated first order rate constants. The average values using organic carbon and dissolved oxygen was 3.9 kyr? and 4.2 kyr? respectively using a biological mixing coefficient of 100 cm2 kyr?1. These rate constants decrease in direct proportions to the mixing coefficient.  相似文献   

15.
Two sediment cores retrieved at the northern slope of Sakhalin Island, Sea of Okhotsk, were analyzed for biogenic opal, organic carbon, carbonate, sulfur, major element concentrations, mineral contents, and dissolved substances including nutrients, sulfate, methane, major cations, humic substances, and total alkalinity. Down-core trends in mineral abundance suggest that plagioclase feldspars and other reactive silicate phases (olivine, pyroxene, volcanic ash) are transformed into smectite in the methanogenic sediment sections. The element ratios Na/Al, Mg/Al, and Ca/Al in the solid phase decrease with sediment depth indicating a loss of mobile cations with depth and producing a significant down-core increase in the chemical index of alteration. Pore waters separated from the sediment cores are highly enriched in dissolved magnesium, total alkalinity, humic substances, and boron. The high contents of dissolved organic carbon in the deeper methanogenic sediment sections (50-150 mg dm−3) may promote the dissolution of silicate phases through complexation of Al3+ and other structure-building cations. A non-steady state transport-reaction model was developed and applied to evaluate the down-core trends observed in the solid and dissolved phases. Dissolved Mg and total alkalinity were used to track the in-situ rates of marine silicate weathering since thermodynamic equilibrium calculations showed that these tracers are not affected by ion exchange processes with sediment surfaces. The modeling showed that silicate weathering is limited to the deeper methanogenic sediment section whereas reverse weathering was the dominant process in the overlying surface sediments. Depth-integrated rates of marine silicate weathering in methanogenic sediments derived from the model (81.4-99.2 mmol CO2 m−2 year−1) are lower than the marine weathering rates calculated from the solid phase data (198-245 mmol CO2 m−2 year−1) suggesting a decrease in marine weathering over time. The production of CO2 through reverse weathering in surface sediments (4.22-15.0 mmol CO2 m−2 year−1) is about one order of magnitude smaller than the weathering-induced CO2 consumption in the underlying sediments. The evaluation of pore water data from other continental margin sites shows that silicate weathering is a common process in methanogenic sediments. The global rate of CO2 consumption through marine silicate weathering estimated here as 5-20 Tmol CO2 year−1 is as high as the global rate of continental silicate weathering.  相似文献   

16.
Anaerobic degradation of mixtures of isomeric pristenes and phytenes by sedimentary bacterial communities was investigated. These isoprenoid alkenes were quickly metabolized without formation of the corresponding alkanes. Identification of several bacterial metabolites allowed us to confirm the key role played by hydration in the metabolism of alkenes. Despite the increasing production of 5α-stanols during incubation, attesting to the involvement of biohydrogenation, this process did not act significantly on the double bond of pristenes and phytenes. Their resistance is attributed to the lack of binding polar group(s) to anchor the substrate to the enzyme and thus allow the double bond to reach the reductive catalytic site. It therefore seems that microbial hydrogenation of pristenes and phytenes does not account for the presence of pristane and phytane in recent sediments during early diagenesis.  相似文献   

17.
Vanadyl ions in ancient shaly-type sedimentary rocks of marine origin from a variety of world sources and geological periods have been investigated using electron spin resonance. These and other results provide evidence that there are two types of vanadyl ions. The first is inorganically bound in the clay/ silicate fraction of these rocks and the second type is associated with vanadyl porphyrin compounds.  相似文献   

18.
In order to attempt to elucidate the nature of biogeochemical processes occurring at the water-sediment interface, sterols have been analysed in near bottom sea and interstitial waters collected in the eastern and western intertropical Atlantic ocean. Free and esterified sterol concentrations range from 0.2 to 82 μg l?1 and are much higher than those found in overlying sea water, which range from 0.2 to 1.7 μg l?1 for the dissolved fraction and from 0.01 to 0.07 μg l?1 for the particulate fraction. Cholest-5-en-3β-ol and 24-ethylcholest-5-en-3β-ol are the dominant sterols in sea and interstitial waters. The variability encountered for the relative importance of minor sterols such as 24-methylcholesta-5,24(28)-dien-3β-ol and stanols, 5α-cholest-22(E)-en-3β-ol, 5α-cholestan-3β-ol and 24-ethyl-5α-cholestan-3β-ol in interstitial water and their variation with depth is discussed in terms of diversity of inputs and bacterial activity. For sediments cored off the Mauritanian coast, a productive area characterized by an intense upwelling, the chemical signatures observed in interstitial water through stanol/stenol ratios occur at levels of very high heterotrophic aerobic bacterial biomass estimations. The study of the sterol composition of interstitial water could constitute a valuable tool in appreciating the intensity of chemical and biological processes occurring in the first few metres of recent marine sediments.  相似文献   

19.
The Tunisian environmental legislation that follows the EC Directives requires monitoring of persistent, toxic and bio-accumulated substances commonly considered as hazardous substances. In order to comply with this requirement, samples of sea water, sediment and biota from the urbanized and industrialized coast line of Sfax city are investigated. This study presents the results of petroleum hydrocarbon content, distribution and probable origin (anthropogenic and/or biogenic) in 16 intertidal sediments of Sfax coastal area. Alkane distribution indices and hydrocarbon distribution patterns are used to identify natural and anthropogenic input. Non-aromatic hydrocarbons present a high concentration with a range varying from 180 to 1,400 μg/g of dry sediment. The total concentrations of polycyclic aromatic hydrocarbons (PAHs) varied from 0.41 to 5.6 μg/g dry weight. These concentrations are comparable to other marine areas that receive important inputs. n-Alkanes with carbon number ranging from 15 to 35 are identified to be derived from both biogenic and anthropogenic sources in varying proportions. Pristane/phytane ratio shows values lower than 1.4 suggesting the presence of petroleum contamination. This is confirmed by the presence of a large group of unresolved complex mixture and the identification of hopanes with predominant C29 and C30 compounds and steranes with predominance of C27 over C28 and C29 compounds. Ratios of selected PAH concentrations indicate petrogenic and pyrolytic origin of hydrocarbons. Anthropogenic hydrocarbon inputs were more apparent at sites associated with industrial discharges, shipping activities and sewage outfalls.  相似文献   

20.
The present-day contribution of coastal-marine placers into the bulk gold production is insignificant. As usual, only gold of coarse- and medium-grained classes is recovered while the fine-grained and dispersed gold are disposed into tailings. During the sedimentation, such a floating gold is removed far from the wave-surf zone. Despite the common belief about poor prospects of the Black Sea shelf for modern gold placers, we have proved the expediency to study the distribution of floating microscopic gold in Holocene marine sediments and carried out the respective works. Using the special concentrating methods, we enabled to detect the gold in most of the 830 samples collected. Geomorphological, lithological, hydrodynamic, and other factors controlling the gold potential were determined. In some cases, the gold content exceeds the minimal economic grade in continental placers. The prospective sites for further investigation were outlined. It was established that the polygenic microscopic gold can be divided into at least clastic, authigenic, and clastic-authigenic types. According to our data, the alluvial, lagoonal-marine, liman, and other sediments at the adjacent land also contain substantial amounts of microscopic gold. The pre10987nary study of oceanic bottom sediments near the Antarctic Peninsula and within the Argentine Basin proved the possibility of microscopic gold to accumulate under various facies conditions. The microscopic gold, mainly of clastic type, was detected here in 82% of samples. The obtained results testify to the global-scale deposition of floating microscopic gold in sedimentation basins of various age and may serve as a basis for the further comprehensive tackling of the problem in different regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号